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Abstract—Vehicle platooning has been attracting attention
recently because of its ability to improve road capacity, safety
and fuel efficiency. Vehicles communicate using Vehicle-to-
Vehicle (V2V) wireless communication, making their status
(acceleration, position, etc.) available to other vehicles. Shock
waves, i.e. zones of reduced traffic speed that propagate
upstream, are a well known emergent traffic phenomenon.
Since vehicles entering such a zone need to decelerate sharply,
shock waves cause a deterioration of fuel economy, driving
comfort, and safety. While typically caused by bad driving
behavior, recent studies have shown that it is possible to diminish
or dissipate shock waves by applying certain good driving
behavioral patterns. In this work, we use the information about
the traffic situation to adapt the reference speed profile of the
platoon we control, in order to mitigate the effect of a shock
wave coming from downstream. The platoon leader receives the
velocity of the vehicles downstream of the platoon and distance
gap between them using V2V communication and it computes
the shock wave speed. We show that by doing this we reduce the
fuel consumption of the vehicles in the platoon, and improve
the traffic situation by helping dissipate the shock wave. We
validate our results using microscopic models with the help of a
toolchain composed of Matlab, and the SUMO traffic simulator.

I. INTRODUCTION

Although platooning, where vehicles drive as one unit
with low inter-vehicular distances, is in principle possible
with human drivers, it is only now with the advent of
modern vehicle control systems, such as Adaptive Cruise
Control (ACC), becoming feasible in realistic road scenarios.
While short platoons consisting of a few vehicles can be
formed and maintained using only the vehicles’ own sensor
data, it is shown that this approach does not ensure string
stability [1], and thus Vehicle-to-Vehicle (V2V) commu-
nication is required in order to robustly regulate spacing
of longer platoons. Cooperative Adaptive Cruise Control
(CACC), which is an extension to ACC is an enabling
technology for the vehicle platoons, enhances the function-
ality of ACC by integrating V2V wireless communication
between vehicles along with other sensors. CACC enables
significant reduction in headway time (i.e. the time needed
by the follower vehicle to reach the position of the preceding
vehicle). Wireless communication enables vehicles to share
a richer set of information such as acceleration, position,
velocity, road intersection and traffic flow status e.g. existence

of moving or stationary obstacles. Studies have shown that
highway capacity improves by increasing CACC market
penetration [2].

In the future, we may expect V2V communication to be
commonplace, not only for platooned vehicles, but also for
other human-driven vehicles. Platoon of vehicles exchange
periodic Cooperative Awareness Messages (CAMs) over V2V
communication. As per IEEE 802.11p under the European
Telecommunications Standards Institute (ETSI) [3], there are
two types of channels – one control channel (CCH) and six
service channels (SCHs). The SCHs allow for higher trans-
mission rates e.g., 25Hz, 50Hz, 100Hz. The CCH is dedicated
to safety-critical applications like vehicle platooning and it
allows for transmission rate ranges from 1-10Hz.

One particularly interesting additional benefit of V2V com-
munication is that it can enable platooned vehicles to know
the traffic situation downstream, allowing them to prepare
for disturbances originating from the background traffic. For
example, using CAMs from downstream vehicles, platooned
vehicles might infer that they are approaching a stop-and-
go wave, and adjust the speeds and spacings accordingly,
improving their safety and fuel economy. A stop-and-go
wave, or shock wave can be defined as a wave of slowed or
stationary vehicles. They are typically caused by a breakdown
of metastable traffic flow that might happen because of some
bad driving behavior, e.g. an aggressive lane change that
causes the following vehicle to brake, which in turn causes
the next vehicle to brake harder and so on [4].

The behavior of shock waves has for long been studied
in macroscopic traffic models [5]. Likewise, we may use
vehicle trajectory data, to estimate shock wave propagation
speed in a microscopic framework [6]. Recently, some works
investigate the effects of using new connected and automated
vehicle technologies to attenuate the shock waves, e.g. using
a real-time lane selection algorithm [7], using the automated
vehicles as moving bottlenecks [8], or controlling the car-
following behavior of few autonomous vehicles so that stop-
and-go waves are dissipated in field experiments [9].

The focus of this work is on improving the control of
vehicles in a platoon by including additional information
about the downstream traffic conditions. We assume that
some vehicles downstream of the platoon communicate their
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Figure 1: Interaction between ns-3, SUMO and Matlab in
CReTS toolchain (ContRol, nEtwork and Traffic Simulator).

speeds and the distance gap between them, allowing us to
detect and identify a shock wave, and adapt the speed of
platooned vehicles accordingly. By reducing their speed in a
timely and smooth manner, platooned vehicles avoid having
to brake harshly when they reach the shock wave, avoiding
a potentially dangerous situation. The control of platooned
vehicles is composed of two-layers, the upper-layer which
is responsible for receiving information from the preceding
vehicle and computing vehicle’s desired acceleration. Model
Predictive Control (MPC) [16] is the control framework cho-
sen for this layer because of its ability to handle constraints
on inputs and states. The upper-layer of the platoon leader
has more advanced functionality, it receives information from
vehicles downstream of the platoon and detects the formed
shock wave, computes the shock wave speed and changes
the reference speed to adapt the platoon to the approaching
shock wave. The upper-layer controller for the leader follows
a predefined trajectory in case there is no vehicles ahead
of the platoon and no detected shock wave. If there exists
some vehicles in front of the leader, the leader follows the
speed of the preceding vehicle and keeps safe distance which
is longer than the distance between platooned vehicles. The
lower-layer which is designed using state feedback control
method, is responsible for reaching the desired acceleration
set by the upper-layer.

Our approach is tested using CReTS toolchain [10]
(ContRol, nEtwork and Traffic Simulator), which is a co-
simulation framework that connects Matlab (for control de-
sign), the traffic simulator SUMO (for generating real driver
behavior) [11], the network simulator ns-3 (for simulating
V2V communication) (see Figure 1). Using microscopic
simulations in SUMO, we compare the fuel consumption of
platooned vehicles and show that preemptively lowering their
speed leads to better fuel economy.

The outline of this paper is as follows. First, in Section II,
we present the motivating scenario that is studied. Next, in
Section III, we give models of platooned vehicles and the
background traffic, which are then used in Section IV to
derive a control law for the platoon. Finally, in Section V, we
describe the simulation setup and results, and in Section VI
we conclude our paper.

II. MOTIVATING SCENARIO

The scenario we are looking at in this work consists of
a platoon of five vehicles driving in congested traffic and
encountering a shock wave originating from some point
downstream (see Figure 2). Although in the SUMO traffic

Figure 2: SUMO GUI – a five-vehicle platoon driving on a
two lane road segment approaching a stop-and-go wave.

simulator, such a shock wave will not arise on its own, we
can simulate it by forcing adjacent vehicles on all lanes to
temporarily reduce their speed. This causes the incoming
traffic (free flow region) to cluster behind them, and due to
vehicles accelerating slower than braking, a shock wave is
formed and starts propagating upstream.

Having detected a shock wave in its path, platooned
vehicles can adjust their speeds accordingly. By reducing
their speed, the vehicles can act as a moving bottleneck,
thus restricting the traffic flow at their position, and if this
inflow into the shock wave is lower than the discharging
flow, the wave length will decrease and the shock wave will
eventually dissipate. We consider three scenarios including
a shock wave. (i) uncontrolled scenario, in this scenario
there is no information received via V2V communication
and therefore there is no early adaptation to this situation.
Therefore the platoon will suddenly enter the shock wave
with huge drop in velocity to avoid crash with other vehicles.
With the availability of the V2V communication we define
two scenarios, (ii) preemptive deceleration scenario, where
the speed of platooned vehicles is slowly decreased to the
low speed of the vehicles driving inside the shock wave.
Platooned vehicles in this scenario will avoid hard braking but
no improvement in dissipating the shock wave. (iii) Predictive
deceleration scenario, in this scenario platooned vehicles can
react prior to reaching the shock wave. Therefore they do
not reach such low speed as in previous scenario. Acting
as a moving bottleneck, fewer vehicles will enter the shock
wave so this will help in damping the shock wave faster.

Figure 2 shows a realistic highway scenario simulated in
SUMO with a road section of 3km length and two lanes
(Lane-1 and Lane-2) in each direction. Platooned vehicles
drive on the left-hand lane (Lane-2), without lane changing.
The distance between the platoon leader and the congested
area is 1300m at the beginning of the simulation time.
The speed and acceleration of all vehicles range from 0
to 30m/s (108km/h), and from -5 to 3m/s2, respectively.
We assume that vehicles communicate via IEEE 802.11p;
network congestion is ignored for simplicity where packet
loss and network delay are not considered in this work.
The driving behavior of human-driven vehicles in SUMO is
governed by the Intelligent Driver Model (IDM) [15].

Note that it is assumed that vehicles ahead of the platoon
are equipped with V2V devices with high transmission power.
This assures that network coverage is sufficient such that
information of vehicles at least 1km ahead of the platoon
can be received by the platoon leader [12].
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Figure 3: Consecutive vehicles in a platoon.

III. MODELLING

In this section we establish the models required for control
and simulation. Platooned vehicles are described in more
detail, while the background traffic adheres to a car-following
model. Finally, traffic shock waves are described and their
behavior outlined.

A. Platoon model

Distributed platoon model is considered in this work; each
vehicle has a model of itself (vehicle model) and its relation
with its preceding vehicle (inter-vehicle dynamics).

The model of vehicle i combines a simplified model of the
longitudinal dynamics of the vehicle with the dynamics of the
engine system. The throttle actuator which adjusts throttle
angle is modeled as a DC motor [13], [14]. The combined
model is given by:

ẋvi = Avi x
v
i +Bvi u

v
i , (1)

where Avi and Bvi are the state and input matrices respec-
tively, uvi is the duty cycle of the input to the motor and
xvi = [ai ȧi]

T is the state vector, where ai and ȧi are the
acceleration and the rate of change of acceleration of vehicle
i, respectively. Moreover, state matrix Avi and input vector
Bvi of vehicle i are defined as:

Avi =

(
0 1
−1
τiτa

i

−(τi+τ
a
i )

τiτa
i

)
∈ R2×2, Bvi =

(
0

KiK
a
i

τiτa
i

)
∈ R2×1,

where τi, τai , Ki, Ka
i are model parameters of vehicle i.

To obtain the platoon model under the Predecessor-
Follower (PF) topology1, the inter-vehicle longitudinal dy-
namics are defined to relate vehicle i to vehicle i−1. This is
done by adding two new states, ∆vi and ∆di. They represent
the speed difference and the gap error between the vehicles,
respectively and they are defined as follows, (see Figure 3),

∆di = di − ddesi ,

∆vi = vi−1 − vi,

where ∆di is the error between the actual gap (di) and the
desired inter-vehicle gap (ddesi ) between vehicle i and vehicle
i−1. ∆vi is the velocity error between vehicle i and vehicle

1In PF topology, a vehicle receives information via wireless communica-
tion from its direct predecessor only.

i− 1, where vi denotes the velocity of vehicle i. di and ddesi

are defined as,

ddesi = d0 + τhvi,

di = qi−1 − qi − Li,

where d0 is the gap between vehicles at standstill, τh is the
constant headway time (the time vehicle i needs to reach the
position of vehicle i− 1 when d0 = 0). Li, qi are the length
and position of vehicle i, respectively.

Combining the vehicle model with the inter-vehicle dy-
namics we obtain the following platoon model,

ẋpi = Api x
p
i +Bpi u

p
i +Gpi ai−1, (2)

where the state xpi = [ai ȧi ∆di ∆vi]
T . ai−1 is the

acceleration of the preceding vehicle and Gpi = [0 1]T . Api
and Bpi are the state and input matrices.

B. Background traffic model

We use the well-known Intelligent Driver Model (IDM) to
model the remainder of the traffic. The time-continuous IDM
is an accident-free model producing realistic acceleration
trajectories. The acceleration of each vehicle is defined as,

v̇ = a

[
1−

(
v

vf

)δ
−
(

∆ddes(v,∆v)

d

)2]
, (3)

where d is the actual gap between vehicles, the desired gap
is defined as,

∆ddes(v,∆v) = d0 + τv +
v∆v

2
√
ab
, (4)

τ is the headway time, v and vf are the actual speed and
the desired speed, respectively. The term (v∆v) /

(
2
√
ab
)

in
Eq. 4 achieves an accident-free “intelligent” braking strategy
where b defines the comfortable deceleration value.

According to Eq. 3, vehicles have a tendency to accelerate
with acceleration,

aaccel := a

(
1−

(
v

vf

)δ)
on a free road and a tendency to brake with deceleration,

adecel := −a
(

∆ddes(v,∆v)

d

)2

.

Starting from a standstill, and assuming there are no vehicles
in front of it, a vehicle will accelerate with maximum
acceleration aaccel = a. As its velocity increases, the ac-
celeration will decrease until becoming zero for v = vf ,
with the exponent δ governing how smooth the transition is.
Conversely, if a vehicle is reaching an obstacle, such as a red
light or a slow vehicle, it will brake with deceleration adecel.
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Figure 4: Shock wave between two different traffic flow
states.

C. Shock waves

Shock waves in traffic flow, i.e. discontinuous jumps be-
tween two different traffic states (see Figure 4) that propagate
upstream or downstream, typically arise due to some inho-
mogeneity of road characteristics (bottleneck, red traffic light,
on-ramp, etc.), but may also appear due to traffic breakdown
in a form of a stop-and-go wave. Depending on traffic density
and flow on both sides of the discontinuity, the shock wave
may propagate either upstream or downstream, and the speed
of its propagation is given according to the Rankine-Hugoniot
condition,

λ =
Qc −Qf
ρc − ρf

, (5)

where Qc and Qf are traffic flows, and ρc and ρf are traffic
densities downstream and upstream of the shock, respectively.
Since the average traffic speed v is tied to traffic flow
and density, Q = vρ, another characteristic of the shock
wave is that there will be a sharp decrease in vehicle’s
speed before and after crossing the boundary, vf > vc.
For a platoon of vehicles driving with short inter-vehicular
gaps, this abrupt deceleration serves as a major disturbance,
potentially endangering the safety of the vehicles. Therefore,
it is desirable for platooned vehicles to preemptively adjust
their speeds prior to reaching the shock wave.

Although the behavior of shock waves is typically de-
scribed in macroscopic models, traffic data obtained from
stationary sensors might be insufficient, insufficiently de-
tailed, or too delayed to be used for immediate platoon
speed adaptation. Instead, we use the communicated data
from individual vehicles, which is also readily available in
microscopic traffic models. In order to compute the shock
wave speed, a formula similar to Eq. 5 is obtained where
average values are replaced with individual vehicle values,
as in [6],

λµ =
(
vj
dj

)− (
vj+1

dj+1
)

( 1
dj

)− ( 1
dj+1

)
, (6)

where vj is the speed of vehicle j and dj the gap between
vehicles j and j + 1, as shown in Figure 5.

IV. CONTROL STRUCTURE OF PLATOONED VEHICLES

Multi-layer control structure is adopted for platooned vehi-
cles. The lower layer controller is a state-feedback controller

Figure 5: How the platoon leader computes shock wave
speed.

runs with a sampling rate of 2ms. The output of this controller
is the motor duty cycle which controls the vehicle accelera-
tion [10]. The upper-layer controller uses Model Predictive
Controller (MPC) with a longer sampling period (100ms)
complying with the IEEE 802.11p communication standard.

A. MPC: Upper-layer controller

In MPC, an optimization problem is solved every time
step subject to constraints on inputs and states. A quadratic
cost function is chosen so that the problem is convex and a
global minimum can be found. The MPC problem is defined
as follows,

J = xi(N + k|k)TPxi(N + k|k)+
N−1∑
j=0

[
(xi(j + k|k)

T
Qxi(j + k|k)+

ui(j + k|k)
T
Rui(j + k|k))

]
(7)

subject to
xi(j + k + 1|k) = Φixi(j + k|k) + Γiui(j + k|k)+

Ψiai−1(j + k|k), j = 0, . . . , N − 1 (8)
xmin ≤ xi(j + k + 1|k) ≤ xmax, j = 1, . . . , N − 1 (9)
umin ≤ ui(j + k|k) ≤ umax, j = 0, . . . , N − 1 (10)

where J is the cost function, N is the horizon length,
xi(j + k|k) is the predicted state at step j + k of vehicle i
when the prediction is done at step k. xi(k|k) is the measured
state of vehicle i. ui(j + k|k), j = 0, . . . , N − 1 is the
sequence of optimal control inputs that will be computed
where only the first value will be applied. Q, R and P are the
weighting parameters. Eq. 9 and Eq. 10 define the upper and
lower bounds of the state and input constraints, respectively.

In order to use MPC, the platoon model in Eq. 2 has to be
discretized using Zero-Order Hold (ZOH) (refer to [10] for
more details). After discretization, the predictive model for
vehicle i can be obtained as shown in Eq. 8. The predicted
state xi(j + k|k) is defined as,

xi(j + k|k) =


ai(j + k|k)
δai(j + k|k)
∆di(j + k|k)
∆vi(j + k|k)

 .
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ai−1(j + k|k) is the predicted acceleration of the preceding
vehicle. We consider that the future evolution of the acceler-
ation of the preceding vehicle is constant. Therefore, it does
not affect the optimization process.

B. Leader vehicle in the platoon

The platoon leader is assumed to be driven by a human
driver who follows a predefined acceleration trajectory. Due
to road congestion, other traffic members may decide to
change their lane and overtake platooned vehicles. In case
that the distance between the platoon leader and its prede-
cessor is less than 30m, the upper-layer controller for the
leader (MPC controller) is switched on and its targets are:

1) To keep the headway time τh =2s between the leader
and its predecessor.

2) To avoid rear-end collision.
3) To maintain a constant speed equal to the speed of its

preceding vehicle.
The gap between the platoon leader and its predecessor and
the velocity of the predecessor are assumed to be obtained
using on-board sensors such as Lidar. Therefore, the accel-
eration of the preceding vehicle (used as feedback in MPC)
can be determined by dividing the difference in velocity by
the time step.

C. Follower vehicles in the platoon

The platoon is assumed to drive with maximum speed of
100km/h. The headway time τh between the platoon leader
and its followers is considered to be 0.2s. The upper layer
for each platooned vehicle uses MPC to achieve certain
objectives such as:

1) Minimizing the gap between the vehicles to achieve a
desired and safe inter-vehicle distance.

2) Tracking the speed and acceleration profiles of the
preceding vehicle.

3) Minimizing sudden changes in acceleration to maintain
passenger comfort.

The upper-layer controller of each platoon member re-
ceives its current state via in-vehicle network and the state of
its preceding vehicle via IEEE 802.11p wireless communica-
tion. MPC controller computes the desired acceleration and
delivers it to the lower layer as a new acceleration reference.

D. Adapting to shock waves

For platooned vehicles to react to a shock wave, shock
wave has to be detected first, which can be done using
the information received from the vehicles downstream of
the platoon. The platoon leader computes shock wave speed
λµ using Eq. 6. Since λµ changes over time due to the
instantaneously changing velocity and gap between vehicles,
our algorithm does not require the exact value of λµ. Instead,
λµ < 7 is used to detect the presence of a shock wave. For
example, using the following information received from the
20th vehicle and the 26th vehicle ahead from the platoon
leader: di=7m, di+1=26m, vi=10m/s and vi+1=28m/s, then
shock wave speed can be calculated as λµ =3.3m/s. λµ is
computed based on the information received from vehicles

40 50 60 70 80

Time (s)

1400

1600

1800

2000

2200

2400

P
o

si
ti

o
n

 (
m

)

Predictive

Uncontrolled

Preemptive

Shock wave

Background

Shock wave zone

Figure 6: Adapting to the shock wave. Uncontrolled: the
platoon reaches the shock wave at t = 60s. Preemptive:
the platoon decelerates just before entering the shock wave
(t = 55s). Predictive: the platoon decelerates well ahead of
the shock wave (t = 35s).

that are 1km ahead from the platoon leader which is assumed
to be enough distance for the platoon to react and adjust its
reference speed.

We define three different ways to show how the platoon
can react to a shock wave: (i) uncontrolled scenario (ii)
preemptive deceleration scenario (iii) predictive deceleration
scenario. In the following we explain in detail each of these
scenarios. Figure 6 shows an overview of the three scenarios.
The horizontal region bounded by black dashed lines is the
shock wave zone which is formed by holding some vehicles
at low speed. Vehicles who enter this zone (gray dashed lines
in Figure 6) have to slow down their speed and after releasing
the slow moving vehicles they speed up again. The blue, red
and yellow curves in Figure 6 refer to the trajectories of the
platoon leader in the three scenarios. Traces of other vehicles
are omitted for simplicity.

1) Uncontrolled scenario: In this scenario it is assumed
that no information is available regarding the formed shock
wave and platooned vehicles enter the shock wave (see the
blue line in Figure 6). In this case platooned vehicles will
have to apply hard braking in order to avoid collision with
each other and with the vehicles in front, which may cause
accidents or discomfort driving.

2) Preemptive deceleration: In this scenario the platoon
leader avoids hard braking by decelerating preemptively to
reach the speed of the vehicles driving inside the shock wave
(see the red line in Figure 6). This yields a smoother speed
trajectory. However platooned vehicles still need to decrease
their speed to low values. Here the reaction is based on the
information received from the vehicles that are < 100m ahead
from the platoon.

3) Predictive deceleration: In this scenario, with the avail-
ability of the information of other vehicles over V2V wireless
communication and the presence of the automated vehicles,
a shock wave can be detected and damped by controlling
the speed of platooned vehicles. The platoon leader detects
the formation of the shock wave via calculating λµ based on
the information received, for example, from the 20th vehicle
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Acceleration (m/s2) 3
Deceleration (m/s2) 5
Length (m) 4
Maximum speed (m/s) 30
Tau (s) 0.7
Delta 4
minGap 0
lcStrategic 150
lcSpeedGain 350

Table I: IDM Parameters used in SUMO.

and the 26th vehicle ahead from the platoon leader. Having
detected the shock wave at time t = 33s, platooned vehicles
reduce their speed to some value (here taken to be 65km/h).
At time t = 55s, when platooned vehicles detect that the
shock wave is starting to dissipate, their reference speed is
increased to 83km/h (see Figure 7c). By doing so, platooned
vehicles help to dissipate the shock wave by restricting the
inflow of vehicles into it, acting as a moving bottleneck.
Applying this kind of control further improves fuel efficiency
and drive comfort.

V. SIMULATION

In this section we present the set-up and results of simu-
lations in which we test our control law.

A. Simulation setup

IDM is the car-following model implemented in SUMO
with the parameters shown in Table I. The minGap attribute
corresponds to d0 i.e. the gap between vehicles at standstill.
Tau and Delta correspond to τ and δ in Eq. 4 and Eq. 3,
respectively. The attributes Acceleration, Deceleration and
Maximum speed define the maximum acceleration, deceler-
ation, speed for regular vehicles in SUMO.

The default lane-changing model implemented in SUMO
and used in our case study is the model developed by Jakob
Erdmann [17]. The attribute lcStrategic ∈ [0,∞[ defines
the eagerness for performing strategic lane changing. Higher
values result in earlier lane changing. lcSpeedGain ∈ [0,∞[
defines the eagerness to perform lane changing to gain speed.
Higher values results in more lane changing.

In order to create a shock wave on a two-lane road in
SUMO, two vehicles are selected to drop their speed from
28m/s (100km/h) to 5.556m/s (20km/h) (the red-colored
vehicles in Figure 2). They keep their speed fixed at 5.556m/s
for 40s. Other vehicles are forced to slow down their speed to
5.556m/s to avoid collision with those slow-moving vehicles.
By keeping the speed of the red-colored vehicles fixed at
5.556m/s for 40s, the shock wave will propagate backward.
In other words, more vehicles will enter the congested region
and the length of the slow-moving vehicles will increase (see
Figure 8).

To keep the shock wave formed for 40s, the red-colored
vehicles should drive on a different lane. This can be done in
SUMO by manually placing those vehicles on separate lanes
with same horizontal position and disabling lane changing
property for those vehicles. Otherwise the shock wave will be
dissipated early or may not be formed at all because vehicles
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(a) Uncontrolled scenario – platooned vehicles have entered
the shock wave with huge drop in velocity.
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(b) Preemptive deceleration – lowering the platoon speed
slightly before entering the shock wave.
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(c) Predictive deceleration – platoon speed has been lowered
down using the information received via IEEE 802.11p.

Figure 7: Velocity of platooned vehicles.

will change their lanes to avoid the slow moving vehicles.
The attribute lcSpeedGain (see Table I) is set to zero in
SUMO files for those vehicles to disable lane changing.

B. Simulation results

The behavior of platooned vehicles are shown in Figure 7a,
7b, 7c. veh0, veh1, veh2, veh3, and veh4 in these figures refer
to platoon leader, 1st, 2nd, 3rd, and 4th following vehicle,
respectively.

1) Uncontrolled scenario: As shown in Figure 7a, at
time t = 60s the platoon leader’s speed sharply decreases
from free flow speed (100km/h) to the speed of vehicles
in congestion (32km/h) when suddenly entering the shock
wave. This sudden drop in velocity necessitates applying
hard braking which in real-life applications might cause an
accident due to possible delays in its application. String
stability is not preserved, and the follower vehicles need to
reduce their speed even further than the platoon leader (at
time t = 62s). Figure 8a shows the trajectories of all vehicles
on Lane-2 where the platoon drives. Other vehicles enter the
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(a) Uncontrolled scenario – no adaptation to shock wave is considered.
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(b) Preemptive deceleration – platooned vehicles slow down right
before entering the shock wave to avoid hard braking.
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(c) Predictive deceleration – platooned vehicles slow down earlier to
avoid driving with low speed.

Figure 8: Position trajectories for vehicles on Lane-2.

shock wave zone after platooned vehicles which means that
the queue length of the slow vehicles will keep increasing
until the shock wave dissipates.

2) Preemptive deceleration scenario: As shown in Fig-
ure 7b, the velocity profile of platooned vehicles is sig-
nificantly improved compared to the uncontrolled scenario.
By lowering the velocity five seconds in advance (at time
t = 55s) before entering the shock wave, string stability
is preserved and hard braking is avoided. As shown in
Figure 8a, the trajectories of vehicles on Lane-2 are very
similar to those in the uncontrolled scenario.

3) Predictive deceleration scenario: With the availabil-
ity of shock wave formation to the platoon leader, severe
changes in acceleration yet velocity of platooned vehicles
and other vehicles can be avoided. As shown in Figure 7c,
the velocity of the platoon leader decreases from 100km/h to
65km/h when a shock wave is detected. Acting as a moving
bottleneck, fewer vehicles enter the shock wave and therefore

the wave length decreases (see Figure 8c) and eventually
is dissipated. This leads to a smoother acceleration profile,
better fuel efficiency, and also improves the overall traffic
situation.

Fuel economy
Different factors affect fuel consumption such as travel

distance and time and weather conditions. However, the most
significant factors for fuel economy that also considered in
this paper, are vehicle-related and driver-related factors such
as engine, vehicle’s velocity and acceleration and smooth
driving behavior [18].

In SUMO, the default open source emission model is
represented as a continuous function of the instantaneously
changing velocity and acceleration (see Eq. 11) [19]. The
emission model is based on the data from the Handbook of
Emission Factors for Road Transport (HBEFA2) database.
HBEFA provides emission factors (e.g. CO2 emissions and
fuel consumption) for current vehicle categories such as
passenger cars, light duty vehicles, heavy duty vehicles, and
motorcycles; each divided in different categories that covers
a wide variety of traffic situations. Data are extracted from
HBEFA for different traffic situation and using curve fitting,
the coefficients C0, C1, C2, C3, C4, C5 for the emission
model Eq. 11 can be obtained. The coefficients of this model
change with the vehicle and emission type.

F = C0 + C1v + C2va+ C3v2 + C4va2 + C5v3. (11)

In this work, emission models of all vehicle are modeled
in SUMO using emission class HBEFA3/PC-G-EU4 (Euro-4
passenger car with a gasoline engine). Platooned vehicles in
all scenarios reach almost the same positions by the end of
the simulation time. Therefore the consumed fuel is computed
over the same travelled distance to have fair comparison.

Figure 9 shows the instantaneously changing fuel con-
sumption as a function of vehicle’s velocity and acceleration.
It compares between the consumed fuel for veh0 and veh4
for the three scenarios. Figure 9 shows that, a smooth driv-
ing behavior as in predictive deceleration scenario reduces
the consumed fuel for the platoon. Whereas more fuel is
consumed due to an aggressive driving behavior as in the
uncontrolled scenario.

Total fuel consumption of platooned vehicles are computed
and shown in Figure 10. It is shown that the total consumed
fuel in the predictive deceleration scenario is the lowest
compared to the preemptive and the uncontrolled scenarios.
In comparison to the uncontrolled scenario, Table II sum-
marizes fuel reduction rates for the five platooned vehicles
in preemptive and predictive scenarios. Table II shows that
the platoon leader saves 16.6% of the fuel if the predictive
scenario is followed, while lower fuel consumption rates
are obtained for the following vehicles. Similarly, the leader
saves 5.56% of the fuel if preemptive deceleration scenario
is applied. Similar fuel reduction rates are expected to be
obtained for other traffic members, in particular for vehicles

2http://www.hbefa.net/

7

1733



40 60 80 100 120

Time (s)

0

1

2

F
u

el
 c

o
n

su
m

p
ti

o
n

 (
li

tr
e)

10
-4

Uncontrolled--veh0

Uncontrolled--veh4

Preemptive--veh0

Preemptive--veh4

Predictive--veh0

Predictive--veh4

Figure 9: Fuel consumption as a function of the instanta-
neously changing vehicle’s velocity and acceleration.
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Figure 10: Total consumed fuel for platooned vehicles in litre.

which drive behind the moving bottleneck. The reason is that
they are forced to follow similar reference speed as platooned
vehicles.

VI. CONCLUSION

In this paper we have shown that it is possible to use
the information received over V2V communication in order
to improve the driving behavior of platooned vehicles. The
additional information allows the vehicles to adapt their speed
reference in response to disturbances originating from the
surrounding traffic. While this approach can also be used
for single vehicles, it is particularly effective when applied
to platoons, since follower vehicles greatly benefit from
knowing the exact behavior the leader vehicle will have
in the future. By using this information, we are able to
maintain string stability and improve the fuel economy and
driver comfort. Moreover, since this behavior smooths the
traffic flow, we can expect the overall traffic situation to be
improved, possibly even resolving the shock wave before the
platoon enters it.

Fuel reduction
preemptive
deceleration

predictive
deceleration

veh0 5.56% 16.60%
veh1 6.31% 21.01%
veh2 6.62% 20.88%
veh3 6.75% 20.57%
veh4 6.85% 20.29%

Table II: Fuel reduction for preemptive and predictive decel-
eration scenarios compared to the uncontrolled scenario.

In the future, the interaction between platooned vehicles
and the background traffic should be modelled in more detail,
and used to devise more advanced control laws. Taking into
account that the platoon acts as a moving bottleneck when
slowed down will lead to more precise prediction of shock
wave behavior, and consequently, better control performance.

ACKNOWLEDGEMENTS

This research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research
and Innovation under grant agreement no 674875 (oCPS).

REFERENCES

[1] Jeroen Ploeg, Nathan Van De Wouw, and Henk Nijmeijer. "Lp string
stability of cascaded systems: Application to vehicle platooning." IEEE
Transactions on Control Systems Technology 22.2, pp. 786-793, 2014.

[2] Van Arem, Bart, Cornelie JG Van Driel, and Ruben Visser. "The impact
of cooperative adaptive cruise control on traffic-flow characteristics."
IEEE Transactions on Intelligent Transportation Systems 7.4 (2006):
429-436.

[3] Jiang, Daniel, and Luca Delgrossi. "IEEE 802.11 p: Towards an
international standard for wireless access in vehicular environments."
VTC Spring, IEEE, 2008.

[4] Boris S. Kerner. "Experimental features of the emergence of moving
jams in free traffic flow". Journal of Physics A: Mathematical and
general 33(26) 2000.

[5] Lighthill, M.J. and Whitham, G.B. (1955) A Theory of Traffic Flow
on Long Crowded Roads. Proceedings of the Royal Society of London
A, 229, 317-345.

[6] Lu, Xiao-Yun, and Alexander Skabardonis. "Freeway traffic shockwave
analysis: exploring the NGSIM trajectory data." 86th Annual Meeting
of the Transportation Research Board, Washington, DC. 2007.

[7] Jin, Qiu, et al. "Improving traffic operations using real-time optimal
lane selection with connected vehicle technology." 2014 IEEE Intelli-
gent Vehicles Symposium Proceedings. IEEE, 2014.
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