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Abstract: In this paper, we propose an integrated framework for safe intersection coordination of
connected and automated vehicles (CAVs) in mixed traffic. An intelligent intersection is introduced as a
central node to orchestrate state data sharing among connected agents and enable CAV to acknowledge
the presence of human-driven vehicles (HDVs) beyond the line of sight of onboard sensors. Since state
data shared between agents might be uncertain or delayed, we design the intelligent intersection to
safely compensate for these uncertainties and delays using robust set estimation and forward reachability
analysis. When the intersection receives state data from an agent, it first generates a zonotope to capture
the possible measurement noise in the state estimate. Then, to compensate for communication and
processing delays, it uses forward reachability analysis to enlarge the set to capture all the possible
states the agent could have occupied throughout the delays. Finally, using the resulting set as the initial
condition, a distributed model predictive control onboard the CAV will plan an invariant safe motion by
considering the worst-case behavior of human drivers. As a result, the vehicle is guaranteed to be safe
while driving through the intersection. A prototype of our proposed framework is implemented using
the Small-Vehicles-for-Autonomy (SVEA) platform. The effectiveness of our framework is evaluated in
experiments based on a challenging scenario where the collision would have occurred without efficient
coordination.

Keywords: Intelligent Transportation Systems, Autonomous vehicles, Multi-vehicle systems, Sensor
integration and perception, Decentralized control and systems.

1. INTRODUCTION

In recent years, great progress has been made in the develop-
ment of connected and automated vehicles (CAVs). Utilizing
vehicle-to-everything (V2X) communication and vehicle au-
tomation, the CAV technology is expected to drastically im-
prove traffic safety and efficiency (Contreras-Castillo et al.
(2018); Bajpai (2016)).

In particular, the safe coordination of CAVs in intersections
is a promising research direction with many ongoing works
(Khayatian et al. (2020)). With the help of wireless commu-
nication, CAVs approaching an intersection can access the state
information of others that are beyond the line of sight of the
onboard sensors and form inter-vehicle cooperation in advance.
This enables CAVs to automatically adjust their motion into the
intersection with increased safety and efficiency by minimizing
stop-and-go traffic and avoiding collisions in general. In light
of these benefits, coordination strategies based on both central-
ized (Müller et al. (2016); Nor and Namerikawa (2019); Chen
and Mårtensson (2021)) and distributed (Zhang and Cassandras
(2018); Chen and Mårtensson (2022); Katriniok et al. (2022))
approaches have been proposed. In centralized approaches, a
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coordination node gathers state information on all approaching
CAVs and designs a conflict resolution plan for every vehicle.
For improved scalability, distributed approaches allow CAVs
to resolve individual motion planning problems through mu-
tual information sharing. Safety and traffic efficiency bene-
fits can be witnessed in both approaches and the results are
mainly obtained through extensive simulation studies. Most
coordination studies work under the idealized assumption of
homogeneous CAV traffic. In addition, relying on vehicular
communication for intersection coordination heavily depends
on the quality of communication. Although the applicability
of both the distributed and the centralized approach has been
experimentally demonstrated (Katriniok et al. (2022); Hult et al.
(2019)), performance degradation is to be expected without
rigorous treatment of the communication delay and measure-
ment uncertainty (Liu et al. (2021)). In this paper, we study
the intersection coordination problem of CAVs with potentially
occluded human-driven vehicles (HDVs). Due to the occlu-
sion, there is a need to complement the perception of CAVs
with external information through V2X communication. Such
a concept is often referred to as shared situational awareness
(Narri et al. (2021)). To compensate for measurement noise, set-
based methods for shared situational awareness provide better
safety guarantees in comparison to point-based methods (Rego
et al. (2018)). Among set-based estimation methods, the set-
membership estimator (Alanwar et al. (2020)) has proven to



be effective in providing situational awareness for CAVs in our
previous work Narri et al. (2021). In this work, we extend the
use of our method and propose an integrated framework for
the safe coordination of CAVs. For shared situational aware-
ness, We design a central node to provide reliable estimation
using the set membership method. In addition, to deal with
communication and processing delay, we propose the use of
reachability analysis (Althoff (2010)) to compute state variation
over the delay period to further enlarge the set estimation for
safety guarantee. Using the resulting set estimation as the ini-
tial condition, a distributed model predictive control (DMPC)
(Chen and Mårtensson (2022)) is integrated onboard the CAV
to plan a safe motion by considering the worst-case behavior
of the human driver. As a result, the integrated framework is
designed to counteract the presence of measurement errors,
communication, and processing delays, making it more resilient
against points of failure and offering a higher degree of safety
for in-vehicle implementation in a mixed-traffic scenario.

To summarize, the contributions of this paper include the fol-
lowing:

(1) We extend our previous works Narri et al. (2021), Chen
and Mårtensson (2022) and propose an integrated frame-
work to deal with the safe coordination task of CAVs in
mixed traffic through shared situational awareness.

(2) We provide a systematic way of dealing with measure-
ment uncertainties, communication, and processing delays
for enhanced safety.

(3) A prototype of our integrated framework is implemented
using SVEA platform Jiang et al. (2022) and evaluated in
experiments.

The remainder of the paper is outlined as follows. In Section
2, we explain the problem formulation together with the basic
intersection scenario considered in this paper. In Section 3, we
outline the proposed system architecture and describe in detail
each module of the system and their integration. A prototype
of our proposed system is implemented and the experimental
setup and results are presented in Section 4. Finally, we provide
some concluding remarks in Section 5.

2. PROBLEM FORMULATION

In this paper, we consider a simple four-way intersection of
crossing conflict between one CAV and one HDV to simplify
the formulation and analysis. Here we denote the CAV as
vehicle A and the HDV as vehicle H as can be seen in
Fig. 1. Our framework is not restricted by the scenario and
can be extended to handle general intersections with multiple
vehicles in a similar fashion. Here the HDV is occluded from
the sensing range of the CAV. To assist the CAV with state
information of the HDV, we assume that an edge device denoted
as an intelligent intersection with potential sensing capability is
installed to support shared situational awareness.

Given the maximal effective communication range of the in-
telligent intersection, We define the control zone as the area
covered under the communication range. Within the control
zone, we introduce two coordinate frames: A fixed global frame
(x, y) common for all vehicles and a road-aligned local frame
(si, di) for each vehicle i ∈ {A,H} individually along the
center line of the road it occupies. Here si is the distance
traveled measured from the entry of the road into the control
zone and di is the lateral deviation from the road center line as
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Fig. 1. Intersection scenario of occlusion with one CAV and one
HDV.

can be seen in Fig. 1. The translation between the two frames is
done through a mapping function

Mi : (x, y) → (si, di) (1)

In this paper, we make the following reasonable assumptions
for the intersection scenario:
Assumption 1. The state of the HDV inside the control zone can
be measured and communicated to the intelligent intersection
by the HDV itself or by the intelligent intersection or Both.
Assumption 2. All communication delays and processing time
are upper-bounded and can be measured and acquired by the
intelligent intersection.

3. METHODOLOGY

3.1 Integrated System Architecture

In this section, we describe the proposed integrated framework
in detail. The communication architecture that connects all
entities and the corresponding information flows can be seen
in Fig. 2. The proposed framework can be scaled to multiple
vehicles by adding them in a similar fashion as described below.

The intelligent intersection is assigned the task as the central
node to orchestrate communication and provide situational
awareness to the CAV. The overall framework consists of 2
main modules:

• Robust Set Estimation Module: Provide reliable set esti-
mation of HDV to the CAV

• Safe Vehicle Coordination Module: Provide an invariant
safe motion plan for CAV using the given set estimation

As can be seen in Fig. 3. The robust set estimation module
resides on the intelligent intersection. Once the HDV enters
the control zone, it gathers the state estimation of the HDV
together with measurement uncertainty in terms of covariance.
To compensate for the measurement uncertainty, first, a set
membership estimator is implemented to fuse state estimation
from potentially multiple sources (HDV and Intelligent Inter-
section). As a complement to the robust set estimation module,
we use reachability analysis to compute a forward reachable
set to capture potential state variation during the interval of
communication and processing delay. This is viable since the
intelligent intersection as the central node can measure com-
munication delay to and from it. In addition, it measures the
internal process time for the robust estimation module and
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acquires the processing time of the safe vehicle coordination
module onboard the CAV. The remaining uncertainty of the
scenario is unpredictable human behavior. For the safe vehicle
coordination module, we implement a DMPC by using the
received set estimation as the initial condition and perform an
invariant safe motion plan according to the worst-case behavior
of the human driver.

3.2 Robust Set Estimation

The robust set estimation module is designed to compensate for
the uncertainty caused by measurement noise, communication
and processing delay to form the set of initial state for safe
vehicle coordination module.

First, to handle measurement noise and model error, a set mem-
bership estimator based on our previous work Narri et al. (2021)
is designed to generate a set representation using zonotopes
(Kühn (1998)). The true state of the vehicle is guaranteed to
belong to the set given that the state estimation and covariance
of the HDV are obtained, see Fig. 2.

We use a discrete-time linear time-varying system (2) to de-
scribe the state model for the HDV.

zk+1 = Fkzk +Bkuk + ϵk, (2)
where zk ∈ Rn is the state vector defined in the global
coordinate frame (x, y) at time k = 1, 2, . . . , N , where N is
the horizon. Fk and Bk are time-varying state and input matrix.
uk ∈ U is the input with the corresponding bounded input set
U and ϵk is the model error to the system.

An observable discrete-time linear time-varying system (3) is
used as the measurement model

ϕk = Hkzk + ωk, (3)
where ϕk ∈ Rp is state estimation in the global frame obtained
by intelligent intersection see Fig. 3. This is assumed to be
generated by the sensors of HDV or intelligent intersection or
both. Hk is the measurement matrix and ωk is the measurement
noise.

Both the model error and measurement noise in (2), (3) are
assumed to be unknown but bounded by zonotopes: ϵk ∈
ZQ,k = ⟨0, Qk⟩, and ωk ∈ ZR,k = ⟨0, Rk⟩. Here the
measurement noise zonotope is generated using the received
covariance matrix from state estimation.

Given state estimation and covariance, the set-membership
estimator uses Definitions 1, 2 and 3 to compute a set of
reachable states that encloses the true state of system (2) in an
iterative fashion.
Definition 1. (Predicted State Set). Given system (2) – (3)
with initial set Z0 = ⟨c0, G0⟩, the predicted reachable set Ẑk is
defined recursively as:

Ẑk = FkẐk−1 ⊕ZQ,k, Ẑ0 = Z0 (4)
Definition 2. (Measurement State Set). Given system (2) –
(3), the measurement state set Sk is the set of all possible
solutions zk which can be reached given ϕk and noise zonotope
ZR,k where Rk = diag([r1k, . . . , r

ms

k ]).

Sk =
{
zk

∣∣∣|Hkzk − ϕk| ≤ rk

}
. (5)

Definition 3. (Corrected State Set). Given system (2) – (3)
with initial set Z0 = ⟨c0, G0⟩, the reachable corrected state
set Z̄k is defined as: (

Ẑk ∩ Sk

)
⊆ Z̄k. (6)

Set-membership estimator intersects the set of states consistent
with the model (predicted state set), Ẑk−1 with the set con-
sistent with the measurements (measurement state set), Sk to
obtain the corrected state set, Z̄k. We denote the final corrected
state set after iteration as Z̄f . Given that the error bounds
ϵk ∈ ZQ,k, and ωk ∈ ZR,k hold, Z̄f will enclose the true state
of system (2).

The time difference between the instance when the state esti-
mation is generated and when the CAV applies the control is
considered as a delay denoted δsum. To guarantee safety, poten-
tial state variation during the delay δsum needs to be captured.
As indicated in Fig. 2, the intelligent intersection gathers the
communication delay δcom from HDV to CAV. In addition, the
internal process time δset for the robust set estimation module
and the computation time δMPC for the vehicle coordination
module onboard CAV are measured and notified by the intelli-
gent intersection. The total delay is then obtained as:

δsum = δcom + δset + δMPC (7)

To capture the state variation during the delayed time interval
[0, δsum], we introduce the definition of a forward reachable set
as follows:
Definition 4. (Forward Reachable Set). Given the initial set
of vehicle state X0 at t0, a forward reachable set at time th,
denoted as R(X0, th), is defined as

R(X0, th) =
{
χ(th, x0, u([t0, th]))

∣∣∣x0 ∈ X0, u([t0, th]) ∈ U
}

(8)
where χ(th, x0, u([t0, th])) denote the solution of (2) given the
initial state x0 and a input trajectory u([t0, th]) between time t0
and th

We use the CORA toolbox (Althoff (2015)) based on reach-
ability analysis (Althoff (2010)) to compute the reachable set
R([0, δsum]) in the time interval [0, δsum] as the union of
reachable sets computed at N discrete time instances within
that interval:



R([0, δsum]) =

N−1⋃
k=0

R(Z̄f , kδt), (9)

where (N − 1)δt = δsum. Notice here we use Z̄f from
the set membership estimator as the initial set. As a result,
R([0, δsum]) will capture uncertainty caused by both measure-
ment noise and the total delay. For simplicity, in what follows,
we denoted R([0, δsum]) as RH,0 since it will serve as the
initial set for HDV in the safe vehicle coordination module.

3.3 Safe Vehicle Coordination

For vehicle coordination, the remaining uncertainty is the hu-
man behavior of HDV. Here, we restrict to the longitudinal
vehicle motion on the road-aligned coordinate frame (s,d). The
dynamic model considered for each vehicle i ∈ {A,H} is a
second-order linear differential equation given as follows:

ṡi(t) = vi(t),

v̇i(t) = ui(t), (10)
where si(t) is the distance traveled of vehicle i measured from
its road aligned coordinate frame. vi(t) is the velocity and ui(t)
is the input acceleration.

Both vi(t) and ui(t) are restricted by the following constraints
0 ≤ vi(t) ≤ vmax

umin
i ≤ ui(t) ≤ umax

i , (11)

We denote D(sA(t), sH(t)) as the distance measure between
CAV A and HDV H , which is a function of sA(t) and sH(t).

Assuming sH(t) is known at time t, to ensure safety, we require
that

D(sA(t), sH(t)) ≥ dsafe (12)
where dsafe is the safety distance. Since the model is restricted
to the longitudinal direction, safety constraint (12) is valid
given that vehicles perfectly follow the road center line. For
HDV, there is a potential to deviate from the path due to the
uncertainty of human control. Such lateral deviation from the
road center line needs to be considered when forming the
safety constraints. For this, we propose the following safety
constraint:
D(sA(t), sH(t)) ≥ min

(
dH(t) + dsafe, d

max + dsafe
)

(13)
Here dH(t) is the lateral deviation of HDV, and dmax is the
maximal lateral deviation due to the road layout that is bounded
by the distance between the road center line and the road
boundary.

To guarantee the safety of vehicles in mixed traffic, we use
the invariant safe DMPC formulation proposed in our previous
work Chen and Mårtensson (2022). Given the initial set RH,0

for HDV obtained from robust set estimation, We formulate a
safe state set for CAV based on the forward reachable set of the
HDV in the following fashion:
Definition 5. (Safe State Set). The set of safe states for CAV
A at time t against HDV H with initial set RM

H,0 is denoted

as F(RM
H,0, t) which is the set of state [sA(t) vA(t)]

T in
which safety constraint (13) is satisfied for all sH(t), dH(t) ∈
RM(RM

H,0, t) and vA(t) ∈ [0, vmax].

Here superscript M over the reachable sets indicates the fact
that a mapping from the global frame to the local road-aligned
frame is done. e.g., M : RH,0 → RM

H,0

To impose safety at all times, a maximal invariant safe set
is defined and later used in the MPC to form the terminal
constraint.
Definition 6. (Maximal Invariant Safe Set). The maximal in-
variant safe set for CAV A at time t against HDV H
with initial set RM

H,0 denoted as S(RM
H,0, t) is defined as

the set of all state zA(t) = [sA(t) vA(t)]
T such that at

time t, zA(t) ∈ F(RM
H,0, t) and ∀τ ≥ t, ∃uA([t, τ ]) ∈

[umin, umax] s. t. χ(τ, zA(t), uA([t, τ ]) ∈ F(RM
H,0, τ).

Here χ(τ, zA(t), uA([t, τ ]) denote the solution of (10) given the
initial state zA(t) and a input trajectory uA([t, τ ]) between time
t and τ

For the exact calculation of the maximal invariant safe set,
we refer the interested reader to our previous work Chen and
Mårtensson (2022).

We consider a planning horizon of N steps with a discretization
of ∆t for each step. At any planning time instance tp, given the
initial set RH,0 of HDV, we formulate the MPC problem for
CAV as follows:

min

N−1∑
k=0

gk(uA,k, zA,k) + gN (zA,N ) (14a)

s. t. zA,k+1 = AzA,k +BuA,k, k = 0, ..., N − 1 (14b)
zA,0 = z0A, (14c)
uA,k ∈ [umin

A , umax
A ], k = 0, ..., N − 1 (14d)

zA,k ∈ F(RM
H,0, k), k = 1, ..., N (14e)

zA,N ∈ S(RM
H,0, N) (14f)

Here zA,k = [sA,k vA,k]
T and uA,k are the state and input

of CAV A at discrete time instance k with the initial condi-
tion zA,0 = z0A. The objective function (14a) is designed to
minimize control effort and maximize control progress. The
constraint (14b) is the discrete-time dynamics obtained by the
discretization of (10). Constraint (14e) is the safety constraint
to ensure that zA,k is in the safe state set within the planning
horizon. The terminal constraint (14f) ensures that the terminal
state zA,N will stay in the maximal invariant safe set to guaran-
tee invariant safety at all times.

As an integrated framework, the system is robustified against
measurement uncertainty, communication, and processing de-
lay. It results in safe intersection coordination regardless of the
uncertain behavior of the human driver which is due to the
recursive feasibility and invariant safety property of (14)
Remark 7. The recursive feasibility property of (14) is true
under the condition that the error bound assumed for the mea-
surement noise holds. In practice, the slack variable needs to be
added to (14) since measurement noise is unbounded and it can
drift away due to bad localization.
Remark 8. For the initial condition z0A of CAV, a time delay
δMPC is present due to processing time for solving the opti-
mization problem (14). To compensate for δMPC , the previous
optimal input sequence can be applied to forecast the actual
initial state at tp + δMPC . It is a safe approach since the input
sequence is invariant safe against all conditions. A more rig-
orous approach is to apply the constraint-tightening technique
which is not done in this paper.
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4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

To evaluate our proposed integrated framework, a prototype of
the system is implemented using two 1:10 scale miniature plat-
forms SVEA developed at KTH see our previous work Jiang
et al. (2022). Here, one SVEA is acting as HDV, the proposed
safe vehicle coordination module is implemented onboard the
second SVEA acting as CAV. A laptop PC is used as the in-
telligent intersection where the robust set estimation module is
implemented. Both the SVEAs and PC are connected through
a local WiFi network using ROS and a tailored communication
protocol to support the required data sharing. For implemen-
tation, we use Matlab and Cora Tool Box for the robust set
estimation while the MPC (14) is implemented in python and
the resulting MIQP problem is formulated using CasADi and
solved with the default Bonmin solver.

The layout of our experimental scenario is shown in Fig. 4. The
HDV and CAV are placed in separate corridors with complete
occlusion until the vicinity of the crossing. We initiate the
scenario with a configuration that would lead to a collision
without coordination. To demonstrate the effectiveness of our
proposed framework, we choose two-speed settings: a low-
speed setting at vmax = 0.5 m/s and a high-speed setting at
vmax = 0.8 m/s. For the MPC, we set the horizon to N = 8
and time step to ∆t = 0.5 for both speed settings. A video of
the experiments can be found at https://bit.ly/ifac_
intersection.

4.2 Experimental Results

For the experiment, we measured the worst case communica-
tion delay δcom, processing delay δset of robust set estimation
and processing delay δMPC of MPC. The results are gathered
in Table. 1.

Table 1. Worst case delay measurement

δcom δset δMPC

(s) (s) (s)

Worst Case Delay 0.2 0.2 0.6

The experimental results for both speed setting vmax =
0.5 m/s and vmax = 0.8 m/s are shown in Fig. 5 and Fig.
6. For the result in Fig. 5, the longitudinal distance traveled is
shown in Fig. 5a, the intersection is located at 18.43 m. here the
HDV measurement is shown to be within its upper and lower
bound as a result of the robust set estimation. The CAV success-
fully anticipate the variation caused by both measurement and
delay and slows down before the intersection to avoid collision.

More specifically, as the upper bound of the distance traveled
for the HDV reached the intersection point, the CAVs reacts
by slow down at about 16 s in Fig. 5a. The same result can
be clearly seen in Fig. 5b, here the relative distance between
CAV and HDV is shown to be above the computed maximal
safe distance at all time, this is the safety constraitn required to
be fulfilled. In Fig. 5c we demonstrate the fact that the HDV
velocity is within its bound as a result of the set estimation,
and CAV approaches the intersection by slowing down until a
full stop. In summary, the experimental result indicates that the
CAV travels through the intersection safely without collision
under noisy measurement and delays. A similar result is shown
in Fig. 6, with the high speed setting. The CAV avoids collision
with the HDV in a similar fashion as in the low speed setting.

5. CONCLUSION

In this work, we have developed an integrated framework for
safe intersection coordination of CAVs in mixed traffic with
occluded HDVs. To enable shared situational awareness to the
CAV, an intelligent intersection is introduced. As the central
node, a robust set estimation module is designed on the intel-
ligent intersection to provide a set estimation capturing mea-
surement noise, and various delays using the set-membership
method and reachability analysis. A safe vehicle coordination
module is designed onboard the CAV to use the given set
estimation as the initial condition and plans an invariant safe
motion for the vehicle.

With the experiment results, we demonstrate that our proposed
framework is feasible for in-vehicle implementation and results
in safe coordination of CAV in mixed traffic with occluded
HDV under noisy measurement and real communication and
processing delays.

For future work, we would like to verify our proposed frame-
work in a multi-vehicle experiment with the addition of an RSU
and study in detail how the network property can affect the co-
ordination performance on a large scale. Another direction is to
integrate hardware-in-the-loop using the proposed framework
with real-time traffic data in an integrated testbed.
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