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Abstract: The problem of maximizing the probability of two trucks being coordinated to
merge into a platoon on a highway is considered. Truck platooning is a promising technology
that allows heavy vehicles to save fuel by driving with small automatically controlled inter-
vehicle distances. In order to leverage the full potential of platooning, platoons can be formed
dynamically en route by small adjustments to their speeds. However, in heavily used parts of the
road network, travel times are subject to random disturbances originating from traffic, weather
and other sources. We formulate this problem as a stochastic dynamic programming problem
over a finite horizon, for which solutions can be computed using a backwards recursion. By
exploiting the characteristics of the problem, we derive bounds on the set of states that have
to be explored at every stage, which in turn reduces the complexity of computing the solution.
Simulations suggest that the approach is applicable to realistic problem instances.
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1. INTRODUCTION

Truck platooning is a promising technology that enables
significant fuel savings for heavy vehicles. It leverages
automatic control of inter-vehicle distances allowing for
small longitudinal spacing between trucks without affect-
ing safety. This reduces the air resistance of the trailing
vehicles in the platoon effectively which translates into
a reduction in fuel consumption. Other benefits include
improved road utilization, increased safety, and decreased
workload for the driver. Truck platooning has been suc-
cessfully demonstrated by several vehicle manufacturers,
e.g., (Besselink et al. (2016); Kunze et al. (2009); Tsugawa
et al. (2001)).

The efficient management of platoon formation is a cru-
cial ingredient for leveraging platooning (Janssen et al.
(2015)). We propose to form platoons dynamically en route
by slightly adjusting the speed of the vehicles. It has been
shown that coordinating platooning centrally can improve
the platooning rate and the system level reduction in
fuel consumption significantly over spontaneous platoon-
ing where trucks form platoons if they happen to get into
each others vicinity (van de Hoef et al. (2015)).

Platoon coordination has been approached on different
levels of abstraction, including combination of platoon-
ing and routing (Larsson et al. (2015)), identification of
promising platoon partners (Meisen et al. (2008)), as part
of automated highway systems (Horowitz and Varaiya
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(2000)), and using local infrastructure based controllers
(Larson et al. (2015)). Our previous work (van de Hoef
et al. (2015)) proposes a framework in which pairwise plans
are systematically composed into an overall coordination
plan for all vehicles. The proposed planning assumes that
the speed can be deterministically selected within a small
range of feasible speeds. To this end, the upper bound on
the speed on a road segment can be estimated by using his-
toric data, traffic measurements and advanced prediction
models (Wang and Papageorgiou (2005); Celikoglu (2014);
Sun et al. (2003)). However, an accurate prediction of the
travel times in a road network is a challenging task and
even advanced prediction models leave some uncertainty.
There is a wide scope of models that provide in addition to
the expected travel time its distribution, typically with the
goal of quantifying the reliability of road infrastructure,
for instance, Kim and Mahmassani (2014); Hofleitner et al.
(2012); Jenelius and Koutsopoulos (2013); Tu et al. (2007);
Wang et al. (2016).

In this paper, we consider a scenario where two vehicles
should merge at the intersection of their routes. One of
the vehicles has a fixed reference speed while the reference
speed of the other vehicle can be adjusted, fitting in the
framework of van de Hoef et al. (2015). The objective is
to control the second vehicle to maximize the probability
of both vehicles arriving at the intersection with a time
difference less than a given threshold. At the same time,
this probability is to be computed as an input to the higher
planning layer that combines pairwise plans into a plan
for all vehicles that are coordinated by the platoon service
provider at a given point in time. The considered distances
to the merge point are larger than in settings like Koller
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Fig. 1. In the considered scenario, two vehicles are to
merge into a platoon at the intersection of their routes
by adapting their speed on the way leading to that
intersection.

et al. (2015); Rios-Torres and Malikopoulos (2016) and
references therein, where vehicle dynamics and potentially
all vehicles in the control zone can be explicitly considered.
Liang et al. (2015) have employed traffic flow theory in
a scenario where one vehicle catches up to the other on
the same road. The main contribution of the paper is
to formulate the platoon coordination merge problem in
the framework of stochastic dynamic programming, which
yields a controller that maximizes and explicitly computes
the probability of a successful merge. Furthermore, we
derive how to bound the subsets of states that need to be
explored which is a prerequisite to computing solutions.
By allowing for a freely selectable error tolerance these
bounds are further improved. The method is demonstrated
in a simulation example.

The outline of the remainder is as follows. The problem is
formally modeled in Section 2. In Section 3, we formulate
the dynamic programming solution and show how com-
puting solutions can be made tractable. Section 4 discusses
simulation examples demonstrating the effectiveness of the
method. Section 5 concludes the paper and outlines future
work.

2. PROBLEM FORMULATION

Consider the scenario depicted in Fig. 1 of two vehicles
approaching an intersection at which they are supposed
to merge into a platoon. One vehicle, the coordination
leader, is controlled to arrive at the merge point at
a specified point in time, and the other vehicle, the
coordination follower, is controlled to maximize the benefit
from platooning with the coordination leader. This is
motivated by the framework introduced in van de Hoef
et al. (2015), where several coordination followers are
independently assigned to a coordination leader as the
result of a discrete optimization problem.

First, we model the movement of a single vehicle until
the merge point. We consider that the route is partitioned
into a finite number of segments. We consider discrete time
and represent it as integers where the measurement unit
is such that one increment corresponds to a sufficiently
small discretization interval. The traversal time T i of the
i-th segment is a random variable. Let ti ∈ Z be the time

Fig. 2. Illustration of how the distribution of ti and ti+1

are related for different reference speeds vref .

the vehicle starts traversing the i-th route segment, in the
following referred to as segment arrival time.

The arrival time at the next segment is the sum of the
arrival time at the previous segment and the traversal time
of the segment:

ti+1 = ti + T i. (1)

The traversal time T i ∈ Z is a random variable that is
assumed only to be dependent on the reference speed at
the i-th segment viref ∈ V, which is considered to be a
control input. The domain of V is a finite set of reference
speeds. It is assumed that T imin ≤ T i ≤ T imax, see Fig. 2.

Since T i is assumed to depend only on the control input
viref , eq. (1) describes a Markov decision process where
ti denotes the value of its state at the i-th stage and V
is the set of actions. Note that the stages in the decision
process correspond to locations. Let pT i(τ |viref) denote the
probability of T i = τ conditioned on viref . The transition
probability between state ti to ti+1 is the probability that
T i = ti+1 − ti, and thus the probability distribution of ti

can be recursively computed as

pti+1(t) =

∞∑
τ=−∞

pT i(τ |viref)pti(t− τ)

=

T i
max∑

τ=T i
min

pT i(τ |viref)pti(t− τ).

(2)

Note that pT i can also be modeled conditioned on the seg-
ment arrival time ti to reflect that travel time distributions
are time dependent. Let ti` denote the segment arrival time
of the coordination leader at the i-th segment of its route.
We consider that the reference speed of the coordination
leader is given as v` and its start time tS` is known meaning
that pt1

`
(t) = 1 if t = tS` and pt1

`
(t) = 0 otherwise. Let N`

be the index in the coordination leader’s route at which
the coordination leader and the coordination follower are
supposed to meet. The probability distributions of tN`

` are
recursively computed from (2).

We assume that a coordination leader and a coordination
follower can platoon if they arrive at the merge point with
an absolute time difference of at most ∆t, which is chosen
small enough so that they can establish vehicle-to-vehicle
communication and initiate a merge maneuver.

The probability of platooning conditioned on that the
arrival time of the coordination follower at the merge point
tNf

f = t is
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Ppl(t) := P(|tN`

` − t
Nf

f | < ∆t | tNf

f = t) =

t+∆t∑
τ=t−∆t

p
t
N`
`

(τ).

The objective is to compute policies viref : Z → V,
i = 1, . . . , Nf − 1 for selecting reference speeds for the
coordination follower that maximize the expected value
of Ppl with respect the probability distribution of the
coordination follower’s arrival time at the merge point and
conditioned on that the follower’s start time at the first
segment is tSf .

E
t
Nf
f

(Ppl|t1f = tSf ) =

∞∑
t=−∞

p
t
Nf
f

(t|t1f = tSf )Ppl(t). (3)

The relation between t1f and tNf

f is given by (2).

3. OPTIMAL SPEED CONTROL

In this section, we derive how to optimally select the
reference speeds using dynamic programming. At the same
time, the probability of platooning E

t
Nf
f

(Ppl), as defined in

(3), is computed. This information can be used in order
to decide whether or not two vehicles should platoon.
More specifically, in the algorithm presented in van de
Hoef et al. (2015), expected fuel savings from platooning
would now be used instead of a predicted reduction in fuel
consumption based on a deterministic model.

The formulated problem fits the framework of optimal
stochastic programming, when defining the value function
as J i(t) = E

t
Nf
f

(Ppl|tif = t), where E
t
Nf
f

(Ppl|tif = t) is the

expected value of Ppl conditioned on that tif = t and under

the optimal policies vjref , j = i, . . . , Nf − 1.

The value function at the final stage is accordingly

JNf (t) = E
t
Nf
f

(Ppl|tNf

f = t) = Ppl(t), (4)

and there is no stage cost.

The dynamic programming backwards recursion becomes

J i−1(t) = max
vi
ref

( ∞∑
τ=−∞

pT i−1
f

(τ |viref)J
i(t + τ)dτ

)
. (5)

The probability of a successful merge when the coordi-
nation follower starts at time tSf is given by J1(tSf ) =
E
t
Nf
f

(Ppl|t1f = tSf ), and the argument of the maximization

in (5) yields the optimal policy for each stage.

3.1 Correlated Travel Time Distributions

This section describes how the previously derived method
can be extended to the case where travel times are corre-
lated between segments. Depending on the length of the
segment and the amount of factors T i is conditioned on
for prediction, T i might be dependent on segments that
are geographically close.

We only consider correlation of travel times within the
coordination leader’s and the coordination follower’s route.
In the framework of dynamic programming, the above
reasoning implies that we have to add upstream traversal
times Ti = [T i−1, T i−2, . . . , T i−H ] with horizon length
H ≥ 1 to the state, which previously consisted only

of the segment arrival time t, in order to retain the
Markov property. The horizon length H depends on the
probabilistic model of the travel times. Equation (1) gets
then augmented to:

[ti+1, T (i−1)+1, . . . , T (i−H)+1] = [ti+T i, T i, . . . , T i−(H−1)].

A state [t, T−1, T−2, . . . , T−H ] can be reached from [t −
T−1, T−2, T−3, . . . , T−(H−1), τ ] for any τ ∈ Z with probabil-
ity pT i(T−1|T−2, T−3, . . . , T−(H−1), τ), so that (2) becomes

p(ti+1,Ti+1)(t, T) =

T i−H
max∑

τ=T i−H
min

pT i(T−1|viref ,T
i = T−(τ))p(ti,Ti)(t− T−1, T−(τ)),

where p(ti,Ti) denotes the joint probability distribution of

ti and T, and where T = [T−1, . . . , T−H ] and T−(τ) =
[T−2, . . . , T−(H−1), τ ].

Note the difference in notation between the random vari-
able Ti and a concrete value T that Ti can take. The
terminal value is similar to (4) JNf (t, T) = Ppl(t), where
T ∈ ZH and where the distribution p

t
N`
`

is computed by

marginalizing the traversal time states.

The backwards recursion as in (5) changes to

J i−1(t, T) =

= max
vi
ref

( ∞∑
τ=−∞

pT i−1
f

(τ |viref , T)J i(t + τ, T+(τ))dτ

)
,

where T+(τ) = [τ, T−1, . . . , T−(H−1)].

While it is straightforward to keep a record of previous
segment traversal times, measuring traversal times of
segments before the start is not trivial. If we assume that
the computation of the platooning probability and the
policies happen shortly before the vehicles start driving,
real-time information from other sources such as traffic
sensors or other vehicles might be used. Otherwise, travel
time distributions that are not conditioned on segments
before the start of the route have to be used.

It is well known that the complexity of dynamic program-
ming increases exponentially with the size of the state, an
effect known as the curse of dimensionality. However, if we
assume that most correlation between segment traversal
time is actually caused by traffic dynamics (Tu et al.
(2007)), we can reduce the state space size. According to
macroscopic traffic flow theory, traffic has mainly three
states (Kerner (2004)): free flow, synchronized flow, and
congested flow. Therefore, the elements of Ti could poten-
tially be discretized into these three regimes.

3.2 Efficient Computation of Optimal Control Policies

A challenge in using dynamic programming is finding ways
of implementing the recursion and handling its complexity.
There are two features make the problem considered in
this paper computationally tractable. The first is the
finite horizon of the problem and the second is the low
dimensionality of the state space. Additionally, we can
exploit the fact that unlike many other control systems,
the objective of letting the trucks meet at the designated
merge point does not have to be achieved at all cost. In case

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

4314



the merge fails, the problem can be resolved on the higher
planning layer. Because of this property, it is reasonable to
omit exploring state trajectories that lead to a successful
merge but have low probability.

We show that J i only has to be computed for an interval
[ti, t̄i] if a small error ε ≥ 0 on the computation of J can
be accepted. Furthermore, the length of the interval, i.e.,
t̄i − ti does not depend on the stage i. We define ti as

ti+1 = ti + T imin ⇒ ti = t1f +

i−1∑
j=1

T imin,

with t1 = tSf , with tSf being the start time of the coordina-
tion follower. Similarly, we define t̄i as

t̄i = t̄i+1 − T imin ⇒ t̄i = t̄Nf −
Nf−1∑
j=i

T imin,

where t̄Nf is selected large enough so that

JNf (t) ≤ ε for t > t̄Nf , (6)

for a given error tolerance ε ≥ 0.

Furthermore, we define an approximation of J i denoted as
J̃ i. It is initialized at i = Nf by

J̃Nf (t) =

{
JNf (t) if t ∈ [tNf , t̄Nf ]
0 if t /∈ [tNf , t̄Nf ],

(7)

and analogously to (5) for t ∈ [ti−1, t̄i−1]

J̃ i−1(t) = max
vi
ref

 t̄i∑
τ=ti

pT i−1
f

(τ − t|viref)J̃
i(τ)


where the summation is rewritten in terms of the arrival
time rather than the traversal time.

Note that segment arrival times ti ≤ ti cannot be reached
from t1f = tSf , and therefore J i and likewise J̃ i do not need

to be computed for these times. Furthermore, J̃ i(t) = 0
for i = 1, . . . , Nf and t > t̄i. The following result on the
error between J i and J̃ i holds

Proposition 1. For given error tolerance ε ≥ 0 it holds that

0 ≤ J i(t)− J̃ i(t) ≤ ε,
for all i = 1, . . . , Nf and t ≥ ti.

The proof is omitted due to space constraints.

This proposition states that we underestimate the prob-
ability of platooning by at most ε when using J̃ i instead
of J i. Choosing ε large means that t̄i − ti is small which
translates into small computational complexity but larger
errors on the computation of J i and vice versa, since
J̃ i only needs to be computed in the interval [ti, t̄i]. For
t > t̄i, the chance of platooning with the coordination
leader is smaller than ε. Once the vehicle reaches a segment
later than t̄i, it would no longer try to platoon with this
coordination leader and instead either try to join another
coordination leader or drive alone. The computational
complexity can potentially be significantly reduced by this
approach depending on how spread the distribution of
TN`

` is. In practice, we would expect that TN`

` with high
variance also leads to platooning probabilities so small
that they can in any case be discarded regardless of the
follower’s arrival time at the merge point.

Variable Reliable Unreliable

W 0.04 0.55
µ1 64.45 km/h 38.64 km/h
σ1 34.76 km/h 18.96 km/h
σ2 8.22 km/h 9.96 km/h

Table 1. Parameters of the speed distributions.

4. SIMULATIONS

Simulations are presented in this section in order to
demonstrate the applicability of the derived results. The
model published in Wang et al. (2016) is adapted for
modeling the traversal time distributions. In Wang et al.
(2016), speed distributions are modeled as the mixture of
Gaussian distributions, i.e., pV (v) = WN (v, µ1, σ1)+(1−
W )N (v, µ2, σ2). We interpret one mode as corresponding
to the free-flow and one to the congestion regime between
which transition often happens suddenly (Kerner (2004)).

We model the effect of control by setting the mean value
of the free flow model µ2 to viref , and we consider refer-
ence speeds in the range viref ∈ [70 km/h, 90 km/h] with
increments of 1 km/h. Furthermore, both Gaussians are
truncated individually to the range of [10 km/h, 100 km/h].
The measured speed value distributions in Wang et al.
(2016) contain some entries well above the truck speed
limit of 60 mph ≈ 96.56 km/h. Limiting the maximum
speed is justified considering that a centralized planning
system would not recommend speeds above the legal speed
limits. The speed is assumed to be constant over a segment,
i.e., we have that the probability P (T i ≤ τ) = P (V ≥
Li/τ), where Li is the length of the i-th segment. The
remaining parameters of the speed distribution are listed
in Table 1. The first set of parameters corresponds to a
reliable segment with high speeds and little variation in
the speed. The other set of parameters corresponds to an
unreliable segment with a high risk of small speeds due to
congestion and a wide spread in possible speeds.

First, the following scenario is considered. The coordina-
tion leader’s route consists of three segments with length
4 km, 4 km, 5 km respectively, and the leaders start at time
t1` = 0. The reference speed of the leader is 80 km/h.
The coordination follower’s route also consists of three
segments with lengths 6, 4, 5 km, and the start time is
computed so that the coordination leader and follower
would meet if they kept a constant speed of 80 km/h. All
segments are considered to be of the reliable type. The
maximum tolerable error ε between J and J̃ is set to 1 %,
and the maximum time-gap for platooning ∆t is 0.01 h =
36 seconds. A time step corresponds 10−4 h = 0.36 s. The
method was implemented using CPython 2.7 with Numpy
and Scipy and this example takes less than 50 milliseconds
to compute on a Core i3 processor using only one core.

Figs. 3 and 4 show the results from this scenario. Fig. 3
shows the computed distributions of T i` . We can see that
the distribution of T i` gets spread out from segment to

segment. Fig. 4 shows the computed function J̃ i with
and without optimal control as well as a visualization of
the optimal control policies. The optimal control is able
to significantly improve the probability of platooning by
centering the arrival time distributions of the next link
at arrival times with high values for J̃ i. As J̃ i gets more
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Fig. 3. This plot shows the segment arrival time probability
density functions of the coordination leader. At the
beginning of the first segment, the start time is
known and indicated by an arrow. The remaining
densities are plotted on the vertical axis and are
jointly scaled for presentation. The vertical dotted
lines correspond to the maximum value of the first
distribution and provide a reference for comparison of
the distributions. The dashed line corresponds to the
maximum speed of 100 km/h. At the end of the last
segment, which is the merge point, also JNf is plotted
in green. It is scaled so that a value of 1 corresponds
to the level of the dotted line. The scale of 2∆t is
indicated on the right side of the plot.

spread out to the left, the transition from slow reference
speeds to the highest reference speeds with increasing
segment arrival times also becomes more spread out. The
start time has been chosen here in a way that the two
trucks can easily meet in their reference speed range. This
means that being unable to arrive sufficiently late is no
issue and nothing could be gained from starting later. It
is also possible to see how the optimal control is able to
compensate if the coordination follower deviates from the
trajectory that would be obtained by driving constantly
at 80 km/h. The merge probability J̃0(t0f ) equals 52.96 %
using the optimal control and 43.97 % using the fixed
reference speed. The interval t̄i − ti is 11.51 times smaller
than with ε = 0, while the actual error on the platooning
probability according to (3) from using J̃ i instead of J i is
0.03 %� ε = 1 %.

Fig. 5 shows J̃ i for a similar scenario as described above
with the difference that the second segment in the coordi-
nation follower’s route is unreliable. We can see that this
causes a high risk of delay and thus much smaller values for
J̃ i. Furthermore, the control policy selects higher reference
speeds on the first segment compared to the previous
scenario without an unreliable segment in order to com-
pensate for a potential delay on the second segment. The
merge probability J̃0(t0f ) equals 32.62 % using the optimal
control and 24.62 % using the fixed reference speed.

The two speed distributions are extreme cases of reliable
and unreliable segments. In reality, there is probably a
whole range of characteristics between these two extremes.

Fig. 4. This plot shows J̃ i at the distances from the
coordination follower’s start point corresponding to
i = 1, . . . , Nf as a function of segment arrival time.
The vertical dotted lines correspond to a level of 1
one the scale of J̃ i. The blue plots show J̃ i when the
optimal control policy is implemented and the green
curves when the reference speed is kept constant. The
gray semi-transparent triangles visualize the control
policy. The two rightmost corners of the triangle
correspond to the 5- and 95 percentiles of the arrival
times at a segment under the optimal control policy
conditioned on that the start time at the previous
segment corresponds to the leftmost corner of the
triangle. The dashed lines correspond to ti and t̄i.

Fig. 5. This plot shows, similar to Fig. 4, J̃ i at the
distances from the coordination follower’s start point
corresponding to i = 1, . . . , Nf as function of segment
arrival time, but for a scenario where the second
segment is unreliable.

Furthermore, it is unclear how a controlled truck would
behave with respect to traversal time distributions, but
we can assume that the variability would probably be
smaller. A truck that is controlled to follow a reference
speed behaves more predictably as the control reduces
the variability due to different driver characteristics. In
addition, we have to take into account that the spot
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speed can vary more than the traversal time. Take for
instance a stop-and-go situation with regular shock-waves
traveling upstream. In this case vehicles will exhibit a large
variability in the speed which average out over a longer
distance. Nevertheless, the simulations demonstrate that
the method can handle realistically sized instances of the
problem and smaller variability would lead to even smaller
intervals of t̄i− ti and thus faster computation times. Note
also that these kind of computations lend themselves well
to parallel processing, for instance, on graphics cards.

5. CONCLUSIONS

The problem of maximizing the meeting probability of
two vehicles at an intersection to form a platoon was
formulated. In this model, control enters the system by af-
fecting the traversal time distribution on segments leading
towards the meeting point. The control problem was solved
by means of dynamic programming which also yields the
meeting probability explicitly as an input to higher plan-
ning layers. Considering the inherent constraint of the
maximum speed of a truck and allowing for a small error
makes it possible to significantly reduce the computational
effort by effectively bounding the state-space in which
solutions have to be computed. Simulations demonstrate
the effectiveness of this approach.

In the future, we would like to test the algorithm with
travel time distributions based on real truck travel time
data, and analyze what the implications of integrating this
kind of coordination in a large scale platoon coordination
system are. Furthermore, it would be possible to consider
a stage cost taking the dependency of fuel consumption
on the speed into account. Additional optimizations on
the numerical computation might be feasible in terms of
adaptive time steps.
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