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a b s t r a c t 

The growing number of man-made and natural disasters in recent years has made the disaster manage- 

ment a focal point of interest and research. To assist and streamline emergency evacuation, changing the 

directions of the roads (called contraflow, a traffic control measure) is proven to be an effective, quick 

and affordable scheme in the action list of the disaster management. The contraflow is computationally a 

challenging problem (known as NP-hard), hence developing an efficient method applicable to real-world 

and large-sized cases is a significant challenge in the literature. To cope with its complexities and to tai- 

lor to practical applications, a hybrid heuristic method based on a machine-learning model and bilevel 

optimization is developed. The idea is to try and test several contraflow scenarios providing a training 

dataset for a supervised learning (regression) model which is then used in an optimization framework to 

find a better scenario in an iterative process. This method is coded as a single computer program syn- 

chronized with GAMS (for optimization), MATLAB (for machine learning), EMME3 (for traffic simulation), 

MS-Access (for data storage) and MS-Excel (as an interface), and it is tested using a real dataset from 

Winnipeg, and Sioux-Falls as benchmarks. The algorithm managed to find globally optimal solutions for 

the Sioux-Falls example and improved accessibility to the dense and congested central areas of Winnipeg 

just by changing the direction of some roads. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Climate change is widely perceived as the main culprit in the

ecent surge of natural disasters ( Helmer & Hilhorst, 2006; Van

alst, 2006 ). For a timely and effective response to a disaster,

ransportation plays a vital role, be it during evacuation or to de-

loy aid to disaster-hit areas ( Perry, 2007; Zheng & Ling, 2013 ).

urricane Catrina in 2005 spurred a surge of research in disas-

er management and evacuation covering a variety of themes such

s forecasting evacuation travel demand, assigning evacuees to ap-

ropriate modes, routes, and destinations, as well as developing

nd evaluating various traffic management strategies to streamline

he evacuation operations ( He, Zheng, Peeta, & Li, 2017 ). Emer-

ency evacuation planning is viewed as a network design prob-

em, in the sense that altering some features of a transport net-
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ork (such as network topology design, intersection design, and

raffic management) aiming to help and facilitate the evacuation

 Sheffi, Mahmassani, & Powell, 1982 ). One effective measure is to

hange road directions aiming to facilitate emergency evacuation

r first-responder operations (known as contraflow), that is, to re-

erse the direction of a road to provide more capacity to the op-

osite direction. In other words, if it is a two-way road, it be-

omes a one-way road, or if it is a one-way road, the direction

s reversed. Hence, contraflow is synonymous with the one-way

etwork design problem or arc reversal problem. Moreover, the

ontraflow strategy stands for temporarily utilizing the available

ransport infrastructure without relying on major capital-intensive

nd time-consuming infrastructure investments such as road con-

truction projects. In addition to emergency situations, the idea

f contraflow has also been recognized as a traffic control mea-

ure by practitioners and scholars, especially when it is synthe-

ized with other control measures (i.e. parking restriction, ramp

etering, toll roads) to enhance traffic circulation in urban areas

 Bagloee & Sarvi, 2015, 2017; Bagloee, Asadi, & Richardson, 2012;

agloee, Sarvi, & Wallace, 2016; Du & Pardalos, 1993 ). In fact, a

ighway design book ( AASHTO, 2011 ), clearly favors one-way roads
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over two-way roads on the basis of fewer traffic conflicts at junc-

tions which results in higher speed and lane capacity. According

to Zhang and Gao (2007) , the one-way scheme is a widely used

policy in China to alleviate traffic congestion during the peak hour

time. 

Despite the merits of the contraflow, a reliable and practical

methodology tailored to real-life cases is a rare currency, that is

due to inherent theoretical and computational complexities of the

problem ( Murray-Tuite & Wolshon, 2013 ). To this end, this study

attempts to address the following task: given a large-sized road

network, and a travel demand scenario (which could be an evac-

uation scenario: how many people are supposed to be evacuated

from where to seek shelter where), change the direction of the

roads such that the total traverse time is minimized. By calling

it the contraflow problem (CP), first, the CP is formulated as a

bilevel programming problem to minimize the total traverse time

at the upper level, while accounting for route-choice behavior (as

a sub-problem) at the lower level. Second, to cope with the com-

plexity of the CP, a hybrid Machine-Learning and Optimization

approach (known as ML-O) recently developed and validated in

( Bagloee, Asadi, Sarvi, & Patriksson, 2018b ) is employed as a solu-

tion method. The ML-O essentially incorporates a surrogate model

in which a nonlinear objective function is replaced with a lin-

ear function while some of the constraints and variables are also

dropped resulting in a computationally efficient method. The pro-

posed methodology is tested using a road network of medium size

from Sioux-Falls and a large-sized network of Winnipeg. 

The kernel of the ML-O is to strip the original problem from

its difficult components (i.e. nonlinear functions and constraints)

and instead to spread it out over a binary space with a high de-

gree of freedom. For example, in the Winnipeg case-study, the total

number of original decision variable is 83, whereas, when it is for-

mulated in a binary space, it increases three folds (i.e. 249 binary

variables). Hence, instead of solving a nonlinear, discrete bilevel

problem with 83 integer variables, the ML-O solves a linear binary

single-level problem which is much easier to handle. 

The algorithm manages to find globally optimal solutions for

Sioux-Falls and improves accessibility to the dense and congested

central areas of Winnipeg just by changing the direction of some

roads. The main contribution of the proposed methodology can be

summarized as follows. (i) the contraflow problem (CP) is formu-

lated as a bilevel, nonlinear and discrete problem subject to solving

a traffic assignment problem. (ii) the general ML-O algorithm has

been customized to solve the CP. To this end, the triplet structure

of discrete solution (i.e. 0,1, 2) replaces the binary structure (i.e. 0,

1) in the original ML-O algorithm. Therefore, the ML-O is now able

to solve much generalized bilevel problems which need greater de-

tails of decision variables. 

The outline of the paper is as follows, Section 2 provides a re-

view of the relevant studies in one-way design as well as emer-

gency evacuation. In Section 3 , the mathematical setup of the

methodology is articulated. In Section 4 , the proposed ML-O so-

lution algorithm is discussed. Numerical evaluations are provided

in Section 5 and the paper is concluded in Section 6 . 

2. Literature review 

Though bilevel programming seems to be a natural way to for-

mulate the network design problems including the CP, it comes at

the cost of significant computational complexity. The CP can be

considered as a two-player game consisting of a traffic authority

and drivers. With an intention of improving traffic circulation, the

former makes changes to the transport network (e.g. changing the

roads’ direction) based on which the latter will change their driv-

ing habit (e.g. changing their usual routes). Drivers; driving change

can be accounted for by solving the traffic assignment problem.
uch a setup can be formulated as a bilevel problem also known as

tackelberg game ( Stackelberg, 1952 ). Generally speaking, a bilevel

roblem even at the easiest possible instance (all functions are lin-

ar and all variables are continuous) is NP-hard ( Jeroslow, 1985 ),

hat is, as the size of the problem (number of constraints and vari-

bles) increases, the problem becomes computationally burden-

ome. Therefore, some studies have instead formulated the CP as

 single-level optimization problem which are reviewed first. A re-

iew of the bilevel approaches is provided in the next section. 

.1. Single-level optimization 

Tuydes and Ziliaskopoulos (2004) identify optimal contraflow

perations using a system optimal dynamic traffic assignment

DTA) method based on the cell transmission model (CTM). Appli-

ation of the CTM to large-sized networks is computationally pro-

ibitive as it requires dividing the road links into small cells which

dds to the size of the network. Kalafatas and Peeta (2009) solve

he CP based on a graph-theoretic transformation of the CTM

iming to enhance the computational efficiency. Tuydes and Zil-

askopoulos (2006) employ a tabu search method (a metaheuristic

pproach) to find an optimal reversibility design that reduces total

ystem travel time in which traffic circulation is based on the CTM.

im, Shekhar, and Min (2008) formulate the CP as a mixed integer

inear program (MILP) based on “bottleneck relief”, which iden-

ifies the bottlenecks and increase their capacities by contraflow.

hang and Zhong (2013) extend the idea of contraflow to the op-

imal allocation of the lanes to opposite directions. The problem

s formulated as a binary complementarity problem which is then

ransformed to a relaxed knapsack problem to be solved with a

ommercial optimization software. Foulds, Duarte, do Nascimento,

ongo, and Hall (2014) address a similar problem, namely optimal

estriction (prohibition) of certain turns at intersections for which

 successive linear approximation is used. He et al. (2017) formu-

ate shelter assignment and contraflow operations as a mixed in-

eger linear program and develop a Benders decomposition algo-

ithm to solve for a medium-sized traffic network of the Dallas-

ort Worth area. Rebennack, Arulselvan, Elefteriadou, and Parda-

os (2010) provide a comprehensive study of the network flow

roblems with arc reversal capabilities. They conclude that the

ingle-level evacuation problem with arc reversal capability and

he problem of the total cost minimization resulting from arc

witching costs are inherently NP-hard. 

.1. Bilevel optimization 

A variety of metaheuristic methods has been proposed for the

P formulated as a bilevel problem, such as simulated annealing

 Lee & Yang, 1994 ) and genetic algorithm ( Zargari & Taromi, 2006 ).

l-Sbayti (2008) formulates the contraflow design problem while

ccounting for the traffic circulation as a DTA in the lower level

roblem for which an iterative heuristic solution method is de-

eloped. Meng and Khoo (2008) propose a genetic algorithm inte-

rated into a traffic simulator to find optimal direction for 18 roads

f a medium-sized traffic network. Xie, Lin, and Waller (2010) dis-

uss a dynamic evacuation network optimization problem that

ncorporates lane reversal and crossing elimination strategies to

omplement one another by increasing capacity in specific direc-

ions during the evacuation. In their study, the lower level is a dy-

amic traffic assignment formulation based on the CTM. As a solu-

ion algorithm, an integrated Lagrangian relaxation and tabu search

ethod is devised to approximate optimal solutions through an it-

rative evaluation process. Similarly, Xie and Turnquist (2011) ad-

ress the contraflow problem while attempting to eliminate cross-

ng movements at junctions, for which a heuristic approach based

n Lagrangian relaxation and tabu search is developed and applied
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o a medium-sized network. Karoonsoontawong and Lin (2011) ex-

end the CP to time-varying lane reversal design problem using

 CTM for which they apply a genetic algorithm to a medium-

ized network to decide on the direction of 14 roads. Afandizadeh

t al. (2013) employ a simulated annealing algorithm, consider-

ng the traffic assignment model (in the lower level) as a stochas-

ic user equilibrium. Hua, Ren, Cheng, and Ran (2014) develop a

ranch-and-bound algorithm mixed with a genetic algorithm to

olve the contraflow problem while giving priority to public trans-

ort modes. 

In evacuation related applications, a proper and speedy dam-

ge assessment of the road infrastructure is of highest importance

 Özdamar & Ertem, 2015 ). With today’s technology, satellite im-

ges and remote sensing can assist authorities in their operational

lanning and decision making ( Sakuraba et al., 2016 ). In particu-

ar, Artificial Intelligent (AI) plays a pivotal role to process satellite

mages as well as information derived from social networks and

edia aiming to provide accurate and real-time damage estima-

ion ( Holguín-Veras, Jaller, & Wachtendorf, 2012; Koyama, Gokon,

imbo, Koshimura, & Sato, 2016; Reddy, Reddy, & Reddy, 2017 ). Spa-

ial planning provides tools to government authorities that support

ntegrated response strategies as part of the disaster management

 Nakanishi, Matsuo, & Black, 2013 ). To this end, Bono and Gutiér-

ez (2011) develop a method to define the urban accessibility land-

cape in the aftermath of earthquake damage, by combining simple

raph theory concepts and GIS-based spatial analysis to assess how

he urban space accessibility decreases when the road network is

amaged. Moreover, in the wake of the devastating 7.0 earthquake

n Haiti, social media (twitter, facebook etc.) have become, for the

rst time, a major hub of information which was greatly exploited

y NGOs (non-profit organizations) to organize and plan their relief

perations ( Muralidharan, Rasmussen, Patterson, & Shin, 2011 ). The

I can tap into such precious source of data ( Kim & Hastak, 2018;

iddleton, Middleton, & Modafferi, 2014; Steiger, Albuquerque, &

ipf, 2015 ) and draw up a real-time picture of the disaster-hit ar-

as. Hence, in the aftermath of a disaster, it is possible to quickly

ssess damages to the road infrastructure. This information is then

assed on to disaster management authorities for a variety of op-

rations including evacuation plans. 

The findings of the literature review can be summarized as fol-

ows: 

• The CP, even formulated a single-level optimization problem, is

essentially NP-hard. 
• Some scholars resort to exact or approximation methods which

are hard to scale them to real-life cases. 
• A clear majority of the past research used CTM mainly to cap-

ture traffic dynamics better than the static model which limits

their applications to real-life and large-sized examples (due to

high computational costs). 
• As can be seen, the capability of addressing large-sized exam-

ples in the past research is a rare currency. 

To this end, the CP in this paper is formulated as a bilevel prob-

em for which a solution method applicable to large-sized traffic

etworks is developed. Although the CP is an NP-hard problem, it

oes not preclude us from formulating it as a bilevel problem, nor

oes it interdict searching for a heuristic problem tailored to large-

cale case-studies. Evidently, what has been proposed in this re-

earch is an aggregate model which sacrifices the detail-level anal-

sis of the CTM and DTA for the sake of practical applications. As

 result, the proposed model can be applied at a network level

onsidering an entire city which will then come handy to address

ther related network-wide problems such as identifying locations

f the aid centers. In other words, the proposed methodology will

et a foundation for strategic and macro-level-type problems re-
ated to the disaster management as well as traffic control schemes

or which CTM and DTA models come short. 

Often, as discussed in the literature review, to solve problems

ike the contraflow for large-sized examples, metaheuristic meth-

ds such as genetic algorithm (GA) are used. Instead of the GA, the

L-O is used which has numerically been proven to be superior

s discussed in ( Bagloee et al., 2018b ). However, given the nature

f the CP as a bilevel problem (and hence to be NP-hard), resort-

ng to heuristic methods when solving for large-sized examples is

nevitable and the ML-O is one of them. 

. Mathematical formulation of the CP 

To formulate the CP, consider a set of two-way roads as can-

idates to become one-way. In the optimal contraflow scenario, a

wo-way candidate road, connecting two nodes (denoted by i and

 ) may face three possible options: 

(i) to remain intact as it is, denoted by the binary decision vari-

able y 1 
i j 

= 1 (equal to 0 otherwise), 

(ii) to turn to a one-way road from i to j , hence the arc j → i

is disconnected and its capacity is added to the capacity of

the arc i → j , denoted by the binary decision variable y 2 
i j 

= 1

(equal to 0 otherwise), 

(iii) to turn to a one-way road from j to i , hence the arc i → j

is disconnected and its capacity is added to the capacity of

the arc j → i , denoted by the binary decision variable y 3 
i j 

= 1

(equal to 0 otherwise). 

Obviously, the above options can also be applied to a one-way

oad (one can consider a one-way road as a two-way road in which

he capacity of the other direction is zero). 

Each candidate road is associated with a cost accounting for

arking, signage, signal, and other external expenses. There exists

 budget based on which the aim is to select a subset of the candi-

ate roads and to assign proper directions such that the total tra-

erse time is minimized. Obviously, any changes to the setup of the

oad network (including the direction of the road) are conducive to

he drivers changing their usual routes which itself is an optimiza-

ion problem ( Beckmann, McGuire, & Winsten, 1956 ), known as the

raffic assignment problem (TAP). 

A definition of all the notations is first provided followed by

laborating on a formulation for the CP. 

otation 

 , A 

′ sets of existing roads and candidate two-way roads, re-

spectively, 

 budget to cover the expenses such as signage, marking

signals etc. to turn a two-way road to a one-way road 

 

1 
i j 
, y 2 

i j 
, y 3 

i j 
the trio binary decision variables of the directions of a

two-way road ( i, j ) ∈ A 

′ ; y 1 
i j 

= 1 : no change to the road’s

direction, y 2 
i j 

= 1 : make it one-way from i to j , y 3 
i j 

= 1 :

make it one-way from j to i . Note that, there always ex-

ists: y 1 
i j 

+ y 2 
i j 

+ y 3 
i j 

= 1 . 

 ij the implementation costs (such as marking, signage

etc.) pertaining to turn a candidate two-way road ( i, j )

∈ A 

′ a one-way road 

 ij a continuous variable denoting traffic flow on the road

( i, j ) ∈ A ∪ A 

′ , 
 ij ( x ij ) travel cost (or time or delay) of the road( i, j ) ∈ A ∪ A 

′ , de-

fined by a differentiable strictly increasing function of

road’s traffic flow x ij (also referred to as a delay func-

tion). The widely-used BPR function (Bureau of Pub-

lic Road ( BPR, 1964 )) is adopted in this study which

is t i j ( x i j ) = t 0 
i j 
(1 + . 15 ( x i j / v i j ) 

4 ) , where t 0 
i j 

is free-flow

travel time (minutes) and v ij the capacity (vehicles per

hour) of the respective road, 
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tation time. 
W set of origin-destination pairs, 

q w 

travel demand pertinent to origin-destination w ∈ W , 

P w 

set of paths between origin-destination w ∈ W , 

h p total flow on the path p ∈ P w 

, 

δ
i j,p 

link-path incident index, 1 if link ( i, j ) ∈ A ∪ A 

′ belongs

to path p and 0 otherwise, 

M a sufficiently large value, 

Z total travel time (the objective function), 

CP contraflow problem, 

TAP traffic assignment problem, 

DTA dynamic traffic assignment, 

CTM cell transmission model, 

MILP mixed integer linear program, 

UE user equilibrium, 

ML-O machine-learning and optimization, 

ILP integer linear programming, 

The bilevel CP can be written as follows: 

CP : Minimize 
x i j ,y 

1 
i j 
,y 2 

i j 
,y 3 

i j 

Z( x i j , y i j ) = 

∑ 

(i, j) ∈ A ∪ A ′ 
x i j . t i j ( x i j ) , (1)

subject to ∑ 

(i, j) ∈ A ′ 
c i j . (y 2 i j + y 3 i j ) ≤ B , (2)

⎧ ⎨ 

⎩ 

y 1 
i j 

+ y 2 
i j 

+ y 3 
i j 

= 1 

y l 
i j 

= { 0 , 1 } (i, j) ∈ A 

′ , l ∈ { 1 , 2 , 3 } 
(3)

Mini mize 
x ij 

∑ 

( i, j ) ∈ A ∪ A ′ 

x ij ∫ 

0 

t ij ( x ) dx (4)

subject to ∑ 

p∈ P w 
h p = q w 

, w ∈ W, (5)

x i j = 

∑ 

w ∈ W 

∑ 

p∈ P w 
h p δi j,p , (i, j) ∈ A ∪ A 

′ , (6)

x i j ≥ 0 , (i, j) ∈ A ∪ A 

′ . (7)

⎧ ⎨ 

⎩ 

x i j ≤ M. (y 1 
i j 

+ y 2 
i j 
) 

x ji ≤ M. (y 1 
i j 

+ y 3 
i j 
) 

(i, j) ∈ A 

′ , (8)

Eq. (1) is to minimize the total travel time in the upper level

Given a road denoted by start node i and end-node j , the num-

ber of people driving through ( x ij ) multiplied by their respective

travel time ( t ij ) is the total travel time spent on the road ( i, j ). By

summing them up over all the roads, the total travel time is cal-

culated. The notations beneath the “minimize” sign indicate all the

variables of the CP to be assigned values when the CP is solved.

Constraints (2) and (3) ensures the feasibility of the trio binary so-

lution ( y 1 
i j 
, y 2 

i j 
, y 3 

i j 
) with respect to the costs and the budget. Note

that in Constraint (2) the cost of turning a two-way road ( i, j ) to

a one-way road i → j is assumed identical to that of the cost of

j → i irrespective of the ultimate direction. However, this constraint

can be easily rewritten to include different costs for different direc-

tions. Furthermore, the sum of the term in the parentheses is ei-

ther 1 or 0 ( y 2 
i j 

+ y 3 
i j 

= { 0 , 1 } ). In the lower level (4) –(8) , the traffic

assignment problem (TAP) is formulated based on the Beckmann’s

user equilibrium (UE) traffic flow. Eq. (4) also known as the Beck-

mann function was introduced in 1956 which was a breakthrough,

in the sense that an equilibrium traffic flow is formulated as a
ractable convex optimization problem with seemingly unorthodox

hape (i.e. sigma and integral operands) Beckmann et al., 1956 ).

he main idea behind the UE traffic flow is that drivers always

hoose the shortest paths. Constraint (8) ensures that the traffic

ow of a particular direction complies with the respective decision,

hat is to comply with the three options discussed above (note M is

 sufficiently large value below): 

• y 1 
i j 

= 1 and y 2 
i j 

= 0 , y 3 
i j 

= 0 the respective road remains in-

tact, both directions are open x ij ≤ M = M (1 + 0) and x ji ≤
M = M (1 + 0) 

• y 2 
i j 

= 1 and y 1 
i j 

= 0 , y 3 
i j 

= 0 : direction i → j is decided to be open

while the opposite direction is closed x ij ≤ M = M (0 + 1) and

x ji ≤ 0 = M (0 + 0) 

• y 3 
i j 

= 1 and y 1 
i j 

= 0 , y 2 
i j 

= 0 : direction j → i is decided to be open

while the opposite direction is closed x ij ≤ 0 = M (0 + 0) and

x ji ≤ M = M (0 + 1) 

emark 3.1. It is important to have some insight about a commen-

urate value of M, for which, constraints (8) provide a valuable clue

hat is the total travel demand can be considered as an upper level

ound of M. In fact, M is the maximum possible traffic volume that

 road can process. 

emark 3.2. The above formulation can be interpreted as a leader-

ollower Stackelberg game ( Stackelberg, 1952; Yang, Zhang, &

eng, 2007 ). The leader (in this case disaster manager or traf-

c authority) first decides on the values of the triples variables

 y 1 
i j 
, y 2 

i j 
, y 3 

i j 
), that is, what two-way roads must be rewired to one-

ay and in what direction? The followers (in this case evacuees or

rivers) take the new changes in the directions of the roads into

ccount and change their routes to find the shortest paths (i.e., to

nd the UE traffic flow), which results in new values of the traffic

ows x ij derived from solving the TAP. It is postulated that evac-

ees will have a good spatial knowledge of the road closure con-

itions on real time basis which is not a far-fetched proposition

ith today’s technologies such as variable message signs, radio

raveler information, live google traffic map, Waze, smart and ad-

anced GPS, as well connected vehicle technologies (i.e. On-Board

nit and Road-Side Unit) ( Bagloee, Ceder, & Bozic, 2014; Bagloee,

ermanshah, & Bozic, 2013; Bahaaldin, Fries, Bhavsar, & Das, 2017;

delstein, 2018; Moon, 2017; Tran, 2018 ). Therefore, given a feasi-

le solution for ( y 1 
i j 
, y 2 

i j 
, y 3 

i j 
), the CP becomes simply a TAP which is

 convex problem and can be efficiently solved using off-the-shelf

ommercial software. Therefore, the crux of the problem is to find

 feasible solution for the triples ( y 1 
i j 
, y 2 

i j 
, y 3 

i j 
) for which the authors

esort to a machine-learning technique, discussed in the next sec-

ion. 

emark 3.3. The contraflow problem is modeled in a very simple

ay: should do nothing ( y 1 
i j 
) or should convert to opposite direc-

ion ( y 2 
i j 
, y 3 

i j 
). One may ask to split the decision at lane level in the

ense that to change the direction of the lanes. For example, for a

hree-lane road from i to j one may convert one lane into j to i and

se the remaining two for i to j. To this end, it is worth noting that,

or the sake of operation and practical implications, it is easier, less

xpensive and more doable for traffic authorities to close or re-

erse direction of a road rather than a lane of a road. Moreover,

ontraflow schemes are regarded as temporary policies to manage

raffic flow for which speedy implementation is of highest impor-

ance. Therefore, a detailed lane-based contraflow scheme is asso-

iated with special lane-marking, signage as well as serious traffic

afety concerns. Nevertheless, the proposed methodology can be

asily generalized to consider the lane-based contraflow cases just

y associating each lane with additional binary variables which re-

ult in more variables and constraints followed by higher compu-
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. ML-O solution algorithm 

In this section, a hybrid method composed of a supervised

earning technique and an integer program tailored to real-life ap-

lications is developed. To put the supervised learning technique in

erspective, consider that one wants to predict the height of peo-

le from their age, gender, and race. Hence, he does a survey to

ollect heights as well as age, gender, and race of a number of peo-

le. He then trains a machine learning model in which the inputs

re age, gender and race and the output is height. This is called

 supervised learning in the sense that the outcome was already

nown in the dataset. In contrast, for the unsupervised learning,

he outcome is not known for which one good example is to pre-

ict engine failure by just recording noisy trends in heat, pressure

nd sound data of the engine. 

The fact that the CP is a bilevel problem is enough to make

t NP-hard ( Ben-Ayed & Blair, 1990 ). Its computational complexity

an be addressed by decomposing it into two sub-problems cor-

esponding to two upper and lower bound values of the objec-

ive function. Such schemes usually become time-consuming for

arge-sized networks. As an alternative, the authors have developed

 hybrid method for general bilevel problems consisting of a su-

ervised learning technique and an integer programming problem

 Bagloee et al., 2018b ). This method denoted by ML-O is also em-

loyed here as a solution algorithm. 

The ML-O algorithm initiates with a feasible binary solution

 y 1 
i j 
, y 2 

i j 
, y 3 

i j 
) for which, the TAP is solved to calculate the value of

he objective function (1) . Sometimes, the do-nothing scenario (the

xisting situation) can be used as a feasible solution to launch the

lgorithm. In other words, given a feasible solution ( y 1 
i j 
, y 2 

i j 
, y 3 

i j 
), the

P is solved and the value of the objective function Z is computed.

hese data ( Z and y 1 
i j 
, y 2 

i j 
, y 3 

i j 
) are then used to train a multivariate

inear regression model as a function of the decision variables: 

¯
 = 

∑ 

(i, j) ∈ A ′ b 1 i j . y 
1 
i j + 

∑ 

(i, j) ∈ A ′ b 2 i j . y 
2 
i j + 

∑ 

(i, j) ∈ A ′ b 3 i j . y 
3 
i j (9) 

here Z̄ is a linear approximation or a surrogate function of the

riginal objective function Z and b 1 
i j 

, b 2 
i j 

, b 3 
i j 

, are parameters to

e calibrated. In other words, given a set of training data ( Z and

 

1 
i j 
, y 2 

i j 
, y 3 

i j 
) an estimate of the parameters ( b 1 

i j 
, b 2 

i j 
, b 3 

i j 
, ) is sought.

he calibration process is equivalent to solve for a quadratic mini-

ization of the gap between Z and Z̄ subject to several linear con-

traints. The gap function is in fact an error function defined as

( ̄Z − Z) 2 to be minimized. Considering that Z̄ is a function of pa-

ameters b 1 
i j 
, b 2 

i j 
, b 3 

i j 
. When the error index is minimized, the pa-

ameters are given appropriate values. This minimization problem

s a convex problem and hence easy to solve ( Greene, 2003 ). 

One may ask why linear approximation has been used in this

tudy. The main reason is the computational burden in the sense

hat the ensuing problem (as discussed below) will be an all-out

inear problem which is much easier to solve. Moreover, we have

umerically shown that the linear approximation is enough and

dequate for the contraflow problems. However, in some other

ilevel problems, depending on their level of complexities, such as

ater engineering ( Bagloee, Asadi, & Patriksson, 2018a ), a higher

rder of linearization might be needed. 

The next step is to arrive at a new feasible and possibly a better

inary solution for which the authors construct an integer linear

rogramming (ILP) problem as follows. The ML-O postulate that

he regression model, which is a linear function of decision vari-

bles, is an approximation of the original objective subject to all

he binary constraints of the original problem as follows: 

P −ILP : Z̄ = 

∑ 

(i, j) ∈ A ′ b 1 i j . y 
1 
i j + 

∑ 

(i, j) ∈ A ′ b 2 i j . y 
2 
i j + 

∑ 

(i, j) ∈ A ′ b 3 i j . y 
3 
i j 

(repeated-9) 
ubject to 

 

 

 

 

 

 

 

 

 

 

 

∑ 

l= { 1 , 2 , 3 } 
(i, j) ∈ Y 1 k 

y l 
i j 

− ∑ 

l= { 1 , 2 , 3 } 
(i, j) ∈ Y 0 k 

y a ≤ | Y 1 

k | − 1 

where : 

Y 1 

k = { (i, j) | y l, k 
i j 

= 1 }; l = { 1 , 2 , 3 } , (i, j) ∈ A 

′ , k = 1 .. α

Y 0 

k = { (i, j) | y l, k 
i j 

= 0 } 
(10) 

2) and (3) 

The mandate of the above CP-ILP is to render a new feasi-

le solution y l, α+1 
i j 

, l = { 1 , 2 , 3 } to be used for the next iteration

+ 1. To this end, Constraint (10) plays a vital role to guarantee

o find a new binary solution at the end of each iteration ( Balas

 Jeroslow, 1972 ). In Constraint (10) , Y 1 k , Y 0 k denote the binary

ariables that have taken values of 1 and 0, respectively, in past

terations until the latest iteration. 

It is worth noting that (9) embeds x ij , the drivers’ route choices.

n other words, when comparing the CP-ILP with the CP, the traffic

ows have been dropped which has resulted in much fewer vari-

bles and constraints that in turn improves the computational effi-

iencies. Just to give a glimpse of the size of the ensuing problem

onsider the Winnipeg case-study, when all the link’s traffic flow

ariables ( x ij ) are dropped, it results in 3383 fewer variables as

ell as 154 × 154 + 3383 fewer constraints (see Constraints (5) and

6) and the number of links and zones which are 3383 and 154, re- 

pectively). Furthermore, notice that variables of the CP-ILP are all

inary and the constraints, as well as the objective function, are

ll linear. This also expedites the problem’s runtime and make the

roblem in turn pliable to commercial optimization software to be

fficiently solved as an ILP problem. 

To have some insight of the extent of computational efficiency

f the ML-O, we refer to ( Bagloee et al., 2018b ) in which the nu-

erical results of a comparison analysis with an exact method

i.e. Branch and Bound hybridized with the Benders Decomposition

 Bagloee, Sarvi, & Patriksson, 2017 )), have shown that the ML-O is

.48 times faster 

To have some insight of the extent of computational efficiency

f the ML-O, numerical results of a comparison analysis with an

xact method (i.e. Branch and Bound hybridized with the Benders

ecomposition, ( Bagloee et al., 2017 )) have shown that the ML-O

s 2.48 times faster (see Table 3 in ( Bagloee et al., 2018b )). 

For the next step, the new binary solution ( y l, α+1 
i j 

, l = { 1 , 2 , 3 } )
s placed into the original CP (to simply transform it to a TAP) to

alculate the total travel time ( Z α + 1 ) which provides a new train-

ng record of ( Z α + 1 , y l, α+1 
i j 

, l = { 1 , 2 , 3 } ). The algorithm then pro-

eeds to carry out a new regression followed by the CP-ILP and

o repeat these steps. This process carries on until a pre-specified

aximum number of iterations is exhausted, hence, the binary so-

ution with the minimum value of the objective function is re-

orted as the best solution found. 

Maximum number of iteration is usually a dilemma with

meta)heuristic methods. For the ML-O, however, by tracking down

he calibration of the regression model, one can have some valu-

ble clue of when to terminate the algorithm. Numerical results of

he ML-O applied to several different use-cases (i.e. project man-

gement and water engineering ( Bagloee et al., 2018a; Bagloee,

arvi, Patriksson, & Asadi, 2018c )) suggest that as a rule of thumb,

0 times the number of binary variable is a commensurate maxi-

um number of iteration. 

The proposed algorithm can be summarized as follows: 

Step 0, initialization: set iteration counter α = 0, αmax as a

maximum number of iterations, and y l, 0 
i j 

= 0 , (i, j) ∈ A 

′ , l =
{ 1 , 2 , 3 } as an initial feasible solution. 
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Step 1, traffic assignment: given the current feasible solution

y l, α
i j 

= 0 , (i, j) ∈ A 

′ , l = { 1 , 2 , 3 } , solve the TAP and return

the value of the objective function Z α . 

Step 2, regression: given y l, k 
i j 

= 0 , (i, j) ∈ A 

′ , l = { 1 , 2 , 3 } s as

well as their corresponding Z k s being compiled till now

(i.e., k = 1.. α), calibrate a new regression function Z̄ α of

Eq. (9) . 

Step 3, update and run the integer problem: based on the cur-

rent binary solutions y l, α
i j 

= 0 , (i, j) ∈ A 

′ , l = { 1 , 2 , 3 } and

newly calibrated function Z̄ α , update the objective function

(9) and Constraint (10) in the CP-ILP and solve the updated

CP-ILP problem to find a new feasible solution y l, α+1 
i j 

=
0 , (i, j) ∈ A 

′ , l = { 1 , 2 , 3 } . 
Step 4, check out termination criterion: if α < αmax then,

set α = α + 1 and go to Step 1, otherwise, stop and re-

port the best solution found (i.e., y l, ∗
i j 

, Z ∗ where Z ∗ =
arg min k =1 .. αmax 

Z k ) �

4.1. Maximum number of iteration ( αmax ) as a termination criterion 

Two observations of the algorithm’s behavior can be regarded

as intuitive clues to arrive at a commensurate αmax . (i) Accord-

ing to the results reported by ( Bagloee et al., 2018b ), early itera-

tions are dedicated to consolidating the training of the regression

function which is equivalent to the number of binary variables in-

volved. Hence it is suggested to set the αmax greater than ten times

of the number of binary variables. (ii) One can observe the changes

in the calibration parameters being updated over successive iter-

ations, and stop the algorithm when these changes stabilize and

dampen to zero after a number of iterations. 

As noted above, the training involves updating the regression’s

parameters which happens at every iteration. Hence this is a pro-

gressive training procedure which carries on all the way till the

very last iteration. It is also worth highlighting the number of re-

gression’s parameter which is identical to the number of binary

(decision) variables. Given the fact that, every iteration adds only

an additional record to the training dataset, in early iterations

(when there are not enough records for training), one, in terms of

the values of the objective function, can expect chaotic outcomes.

With the same token, as the number of iterations increases, and

more training records are piled up, the outcomes visibly converge. 

5. Numerical tests 

In this section, the numerical results of the proposed method-

ology applied to two case studies: Sioux-Falls and Winnipeg are

discussed. The Sioux-Falls case study is a medium-sized network

designed as a challenging benchmark for which the authors have

already identified the optimal solutions via an exhaustive enumer-

ation. Hence, one can investigate the capability of the proposed

methodology to find an optimal solution. The Winnipeg case study

is a large-sized network to challenge the methodology in a realistic

application. Both datasets are made available to the research com-

munity via GitHub to be used as benchmark cases in future studies

( Bagloee, 2018 ). 

To arrive at a precise numerical result when solving a TAP, as

suggested by ( Boyce, Ralevic-Dekic, & Bar-Gera, 2004 ), the authors

set “relative gap” of the size of 0.0 0 01 as a termination criterion

(it is a very fine convergence rate between successive iterations).

Aa desktop computer with 64.0 GB RAM and CPU processor of In-

tel Xeon 3.70 GHz is employed. The algorithm is coded with Visual

Basic linked to MS-Excel as an interface as well as MS-Access a

database. The computer program is interfaced to EMME 3 an ef-

ficient commercial software to solve TAPs. The code also calls on

GAMS (Baron solver ( Tawarmalani & Sahinidis, 2005 )) to solve the
P-ILP and MATLAB ( MathWorks, 2016 ) for solving the multivariate

egression. 

.1. Sioux-Falls 

The Sioux-Falls network consists of 24 nodes and 204 direc-

ional links as shown in Fig. 1 . Fig. 1 shows the traffic flow corre-

ponding to the do-nothing scenario (when all roads are two-way)

n which the total travel time (value of the objective function) was

ound to be 3921.741. We consider 10 two-way roads as candidates

shown red-colored in Fig. 1 ) which results in 3 10 scenarios to be

rst enumerated by solving 3 10 TAPs. All these possible combina-

ions of feasible binary solutions take 30 hours, approximately. We

hose 10 just for computational convenience (to be able to enu-

erate all the possible scenarios within an affordable time span).

n additional two-way road (i.e. 11 two-way roads) would results

n 90 hours enumeration computation. 

It is assumed that the cost of turning each two-way road to

ne-way is 1 unit of cost which amounts to 10 unit of cost for all

he candidates. However, to challenge the methodology the authors

et the budget to 0, 1, 2, …, 10 units each, and compare the results

ith the enumeration as shown in Table 1 . 

With respect to Table 1 , it seems the values of the objective

unction (i.e. total travel time) over various budget levels are ap-

roximately the same. To this end, it is worth highlighting three

oints. (i) The size of the respective case-study (Sioux-Falls) does

ot invoke tangible differences in the total travel time, (ii) In con-

rast to massive civil engineering projects such as building new

ridges, new roads, etc. which can be called as hard schemes,

ontraflow can be considered as a soft scheme in traffic manage-

ent. For example, the force of several prodigious road construc-

ion projects would result in one or two percent decrease in the

otal travel time ( Poorzahedy & Rouhani, 2007 ). With the same

oken, the changes in the total travel time when only contraflow

chemes are involved are expected to be much less. (iii) This case-

tudy is in fact purposely designed to provide a challenging testbed

or the proposed methodology in the sense that with such narrow

arginal differences (of the values of the objective function) find-

ng the global optimal solutions will not be a no-brainer task. 

As can be seen in the table, the value of the objective func-

ion (4th column of the table) decreases till it reaches to 3919.353

at the budget value of 2) and it remains constant all the way to

he last budget, (i.e., 2, 3, …, 10). It means that in the optimal sce-

ario one-way solution, there exist only two (two-way) roads to be

urned to one-way roads. Note that the in the above setup, a sce-

ario of the budget of say X means that the maximum number of

wo-way roads that can be turned to one-way is X. For example, in

he scenario of the budget value of 10, though it is possible to have

0 roads turned to one-way, in the optimal scenarios, 2 (out of 10

ossible) roads are found to become one-way. This setup would

hallenge the capability of the proposed methodology to find the

lobal optimal solution in both tight and loose budget situations. 

Comparing the strings of the optimal scenario of the budget of

 unit to that of the budget of 2 units shows that the direction of

he one-way road (4,11) is reversed. In other words, the one-way

ink (11, 4) in the optimal scenario of the budget of 1 unit switched

o opposite direction in the budget of 2 units, showing the sensitiv-

ty of the outcome to the budget factors. The budget is a decisive

actor in the contraflow problem such that a tiny change in the

udget ought to change the roads’ directional settings. Neverthe-

ess, there exists one more one-way link (i.e. (6,2)) in the optimal

ne-way scenario of the budget of 2 units. In Fig. 2 , traffic flows

f two optimal scenarios corresponding to the budgets of 1 and 2

nits are shown. As can be seen in Table 1 , the value of the objec-

ive function (the 4th column) decreases till it reaches to 3919.353

at the budget value of 2) and it remains constant all the way to
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Fig. 1. Sioux-Falls network (The numbers on the links are the respective traffic flow. They are originated from solving the traffic assignment problem (TAP) for the existing 

scenario (i.e. no one-way scenario)). 
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Table 1 

Sioux-Falls case study, the numerical results. 

Budget Global optimal solution Solution found by the ML-O algorithm 

A string of the scenario Solution space (total 

number of possible 

combinations) 

Value of the 

objective 

function 

Rank of the 

solution found 

Iteration at which the 

best solution was 

found 

CPU time 

(sec) 

0 0 0 0 0 0 0 0 0 0 0 ∗ 1 3921.741 1 1 2 

1 0 0 0 0 0 0 020 0 21 3919.675 1 16 38 

2 020 0 0 0 010 0 201 3919.353 1 9 25 

3 020 0 0 0 010 0 1161 3919.353 1 24 55 

4 020 0 0 0 010 0 4521 3919.353 1 38 82 

5 020 0 0 0 010 0 12585 3919.353 1 36 78 

6 020 0 0 0 010 0 26025 3919.353 1 32 70 

7 020 0 0 0 010 0 41385 3919.353 1 33 72 

8 020 0 0 0 010 0 52905 3919.353 3 ∗∗ 50 107 

9 020 0 0 0 010 0 58025 3919.353 1 33 72 

10 020 0 0 0 010 0 59049 3919.353 1 26 58 

∗ This is a succinct way of denoting a one-way scenario as follows: the candidates are ordered as per their assigned number in Fig. 1 , if a two-way road remains the same 

(no change to the road’s direction) it is assigned the value of zero, if a two-way road (i,j) is assigned 1, it means the road has become one way from i to j (e.g.,see candidate 

(4,11), the third from end, in scenarios of the budgets 2–10), if a two-way road (i,j) is assigned 2, it means the road has become one way from j to i. 
∗∗ The string of the scenario is ’010 0 0 0 020 0’ and the value of the objective function is 3919.469. 

Fig. 2. Sioux-Falls case study, two optimal one-way scenarios. 
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the last budget, (i.e., 2, 3, …, 10). It means that in the optimal one-

way scenario, there exist only two (two-way) roads to be turned to

one-way roads. Note that in the above setup, a scenario of the bud-

get of X means that the maximum number of two-way roads that

can be turned to one-way is X. For example, in the scenario of the

budget value of 10, though we could have 10 roads turned to one-

way, in the optimal scenarios, only 2 (out of 10 possible) roads are

found to become one-way. 

Moreover, as can be seen in Fig. 2 , except the areas surrounding

the one-way roads, the sheer size of traffic flows across the net-

work in both scenarios does change significantly. This vindicates

the local (and not necessarily global) impacts of such schemes (let
s call them soft schemes) to address some locally-intense traffic

ssues such as traffic gridlock in peak hours at the CBDs, or traffic

ontrol of major events such as sport games, evacuations etc. 

As noted before a commensurate maximum number of itera-

ions is 300 (10 times the number of binary variables, 30). To make

t a challenging case, the proposed ML-O algorithm is run only for

 maximum of 50 iterations for various budget levels and it stops

hen the global optimal solutions are found. 

The results are reported in Table 1 (to the right of the table,

he grayed color columns). As can be seen from the table, in all

he budget levels except budget of 8 units, the algorithm manages

o find the global solutions in less than 1.5 minutes. Given the size
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Fig. 3. Winnipeg case study, road network and candidates roads of the CBD (the thickness of the roads indicates the relative size of their respective traffic volumes). 
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f the solution space (number of possible combinations at differ-

nt budget levels), the algorithm manages to find globally optimal

olutions in rather few iterations. For the budget level of 8, though

he global optimal solution was not found in the first 50 iterations,

he third best solution was found. 

.2. Winnipeg 

The road network of Winnipeg consists of 154 traffic analy-

is zones, 944 nodes, and 3383 directional links. The travel de-

and is a 154 by 154 matrix of 56,219 hourly trips in the morning

eak hour. In transport, travel demand is considered as the rate of

hourly) trips originated at an origin and heading to a destination,

hereas, zones represent the origins and destinations. Therefore,

he travel demand can be denoted as a square matrix of order 154

 Sheffi, 1985 ). 

The Winnipeg case-study is designed as a traffic management

ase, in which the aim is to provide easy access to the central

usiness district (CBD) enclosing vital premises such as universi-

ies, hospitals, commercial centers, police stations, banks, fire sta-

ions etc. In other words, the travel demand used in the case-study

ertains the city’s daily morning trips. Similarly, one can come up
ith totally different scenarios just by replacing the travel demand

ith that of intended scenarios such as evening travel demand.

y the same token, by replacing the travel demand with a post-

isaster evacuation travel demand (i.e. how many people are to

e transferred from their home or offices to shelter locations), the

ase study becomes an evacuation planning scenario. In all these

cenarios, for evaluation purposes as a practical scale, what is im-

ortant is the number of roads, nodes as well as the dimension of

he travel demand matrix. We select 83 two-way roads as candi-

ates from the CBD as shown red-colored in Fig. 3 (the thickness

hows the intensity of the traffic flows). For details of the candi-

ates, we refer to the GitHub link ( Bagloee, 2018 ). It is important

o note that cardinality of the candidate set (83) is a large num-

er which makes the case-study more challenging (given the car-

inality of the candidate set (83) the number of binary variables

ecomes 249 (i.e. 3 ∗83) which results in an astronomically large

olution space enclosing 2 249 solution points). 

Given the type of the BPR functions (the rods’ travel time func-

ion) which is in the unit of minutes, the unit of the objective func-

ion (i.e. the total travel time spent on the network by all vehi-

les) is also in minute. Since the total number of candidates is 83,

he total number of binary decision variables becomes 249 = 3 ∗83
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Fig. 4. Winnipeg case study, the CBD, traffic flow of the best contraflow (one-way) scenarios (the thickness of the roads indicates the relative size of their respective traffic 

volumes, the numbers indicate the traffic volumes in hourly rate). 
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Fig. 5. Winnipeg case study, variations of the value of the objective function over 2500 iterations. 
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note that each candidate is associated with three binary variables

 

1 
i j 
, y 2 

i j 
, y 3 

i j 
). Hence, following the rule of thumb discussed before,

he total number of iteration is set to be 2500 > 249 ∗10. The al-

orithm is then run while setting the budget to infinity to find the

est possible contraflow scenario irrespective of any budget con-

traint. 

In the end, the best contraflow scenario consists of 15 (out of

3 candidates) two-way roads turned to one-way which is shown

n Fig. 4 . As can be seen, this is a contraflow scheme to ease traf-

c circulation within the CBD during the morning peak hour. The

ignificance of this scenario is to turn a main road for a significant

ength (550 m), consisting of 3 out of 15 segments to a one-way

oad (see the road marked with an straight arrow in Fig. 4 ). Nev-

rtheless, there also exist 12 more segments scattered across the

BD turned to one-way roads. It is also important to note that a

lear majority of the candidate roads remain intact which shows

he merit of the proposed algorithm to find a few roads amongst

undreds. As a result, the proposed algorithm managed to create a

ycle flow (as shown in the figure) which obviates traffic conflicts

nd helps a smooth and uninterrupted traffic circulation. 

The values of the objective function over successive itera-

ions are depicted in Fig. 5 . The convergence profile shown in

ig. 5 seems strange in the sense that it is chaotic in the beginning

nd then stabilizes in the later iterations. To this end, it is worth

oting that the proposed algorithm is a heuristic (and not exact)

ethod based on the concept of training borrowed from machine
earning. In early iterations, as expected, when the training is being

onsolidated, the objective function varies drastically. However, as

he algorithm proceeds further, these variations stabilize and tend

o converge as shown in Fig. 5 (b). What is important to note is

hat, though the ML-O managed to find all the optimal solutions

f the Sioux-Falls example, as a heuristic method, it generally does

ot guarantee the reserving of the optimal solutions. Facing with

arge-scale bilevel and NP-hard problems, what is expected from a

euristic method is to provide “good solutions” at reasonable and

ffordable comput ational time. 

Fig. 5 can also provide a supportive argument of the termina-

ion criterion adopted in the ML-O. It can be argued that the ML-

 implicitly considers two termination criteria, one based on the

onvergence rate of the value of the objective functions and the

ther one is based on a maximum number of iterations. The latter

s a conservative criterion in the sense that the former criterion is

lso embedded in. In other words, as shown in Fig. 5 , the gap be-

ween the values of the objective functions in successive iterations

n the final stages of the computation is minuscule. However, in

ost of the (meta)heuristic algorithms including the Genetic Algo-

ithm, it is the number of iterations that decides when to termi-

ate the computation. 

The total computation time (CPU time) of 2500 iterations is

round 6.40 hours. The improvement pace of the value of the ob-

ective function as well as the gradual growth of the CPU time over

uccessive iterations is sketched in Fig. 6 . As can be seen, a clear
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Fig. 6. Winnipeg case study, best solution founds versus computational time over 2500 iterations. 
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majority of the improvement (in the value of the objective func-

tion) is gained in early iterations (say the first 500 iterations). The

algorithm starts with the value of 826,643 minutes (corresponding

to the existing do-nothing scenario) and delivers a scenario with

the total travel time of 825,854 minutes which is equivalent to 0.1%

improvement across the entire network including the trips pertain-

ing to the CBD. The fact that by changing the directions of a few

roads, traffic across the road networks improves (and does not de-

teriorate) is worthy of note. However, a question to ask is: is this

improvement (0.1%) negligible? To answer this question, it is im-

portant to compare a contraflow project which is relatively cheap

(affordable) as well as easy and quick to implement, with massive

investment in the road construction projects such as new roads,

tunnels, bridges, spaghetti interchanges. It is empirically proven

that in reality, these massive road construction projects are usu-

ally associated with only a few percent improvements in the total

traverse time (see Table 6 in ( Poorzahedy & Rouhani, 2007 ) and

( Bagloee et al., 2017 )). 

Hence, compared to the capital and labor-intensive road con-

struction projects, a contraflow strategy as an affordable and quick

scheme can be regarded as an effective and affordable way to al-

leviate traffic congestion, especially in dense CBD areas. As note

before, the main advantage of the contraflow schemes is to reduce

traffic conflicts which invokes a detailed microsimulation model-

ing. Perhaps, a combined macro (this study) and micro simula-

tion methodology can provide a better analysis of the contraflow

schemes. As discussed above, microsimulation and dynamic assign-

ment methods are computationally expensive, hence, by a macro

modeling method (this study), one can identify a much fewer roads

found out of a much larger area. These fewer roads can then be

passed on to a microsimulation model for further analysis. 

In large-scale applications, it is important to monitor the CPU

time. As shown in Fig. 6 , the gradual growth of the CPU time over

successive iteration is almost linear. In other words, despite accu-

mulating more constraints in the CP-ILP (see Constraint (10) ), the

additional computational burden is not significant. Therefore, the

proposed methodology is tailored to the real-life scenarios, in the

sense that the incremental computational time in successive itera-

tions conforms to a linear trend. 

This research is one of the few studies attempted to address

the contraflow for a large-sized network as a bilevel and NP-hard
roblem. The contraflow scheme can be used as an effective traffic

ontrol measure by traffic authorities and practitioners for which

 hours computational time is not an issue. In fact, nowadays,

iven the size of the traffic models of metropolitan cities, an over-

ight runtime is reasonable for practitioners ( Bliemer, Raadsen,

e Romph, & Smits, 2013 ). 

In post-disaster applications when it is the race against time,

ne can terminate the algorithm with a few iterations only af-

er the chaotic training part which is identical to the number

f candidate roads (i.e. | A 

′ |). As shown in Fig. 5 , the algorithm

uickly converges to some good solutions when it passes the early

haotic training segment (as discussed above), and the rest of

he iterations are the effort s to find a better solution. In other

ords, a premature termination does not have a detrimental effect

n the outcome. Moreover, we used a normal desktop computer,

owever, in such circumstances, one can employ higher compu-

ational technologies which results in much lower computational

ime. 

For emergency evacuation, the computation time can be fur-

her reduced using powerful computers and parallel computation.

olving the integer program (CP-ILP) and the traffic assignment are

ain sources of the computation and they can be made parallel

 GAMS, 2014; INRO, 2017 ). 

It is also worthwhile to investigate the fitness of the linear re-

ression model as the algorithm proceeds to further iterations. To

his end, Fig. 7 depicts the changes of the R-squared values of the

inear regression model versus the values of the objective func-

ion of the best solution found (note that, the R-squared values

f the iterations less than 250 are not reported. That is because

he number of training records is less than the number of inde-

endent variables, hence it is pointless to report their outcomes.

s evidenced by the figure, the regression model quickly gets fit-

ed to the training records. As the number of iterations increases

i.e. more training data) the R-squared values increase too. How-

ver, the pace of the growth diminishes at iteration 1250 onward.

t is also important to notice the correlation of the R-squared val-

es versus the values of the objective function of the best solution

ound. What is clear is that, no matter how good the linear regres-

ion model might be (as is the case after iteration 1250) the algo-

ithm still needs to carry on further (i.e. more iterations) to find

uch better solutions as found at iteration 2460. Consequently,
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Fig. 7. Regression training (R-squared) versus the best objective function found. 
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L

wo important conclusions can be drawn. (i) The algorithm can

nd a well-rounded fit for the linear regression model. (ii) Tracking

own the regression fitness is not a good clue to decide to termi-

ate the algorithm. 

. Conclusion 

The contraflow problem (CP) as a technique for traffic man-

gement and emergency evacuations was addressed in this study.

he main idea behind the contraflow is to change roads direc-

ions to provide better traffic circulation. The CP can be regarded

s an extension of the well-known Network Design Problem (NDP)

or which there exists a plethora of research. The authors formu-

ated the contraflow as a bilevel optimization problem to mini-

ize the total travel time in the upper level while accounting for

he drivers’ route choice in the lower level (as a traffic assignment

roblem). The bilevel problems are proven to be NP-hard, that is,

s the size of the road networks (number of roads) increase the

roblem becomes computationally prohibitive. The authors in this

tudy took on a challenging job of addressing the contraflow for

eal-life examples. Generally speaking, for the NDPs and CPs in

articular, given these computational complexities, analytically ex-

ct methods are not scalable to the real size examples. There ex-

st myriads of (meta) heuristic methods proposed to solve bilevel

DPs such as Genetic Algorithms, Simulated Annealing, Ant Colony

tc. Alternatively, a heuristic method aiming to find good solutions

n an affordable epoch of time is used. To this end, the authors use

 hybrid heuristic method based on a supervised technique bor-

owed from the machine-learning and an optimization algorithm.

he methodology was coded as a user-friendly software while syn-

hronized with GAMS (to solve the integer optimization problems),

ATLAB (for machine learning), EMME 3 (to solve the traffic as-

ignment problems), MS-Access (as a database) and Excel (as an

nterface). The proposed methodology was numerically tested us-

ng two case studies a medium-sized network (Sioux-Falls) and a

arge-sized network (Winnipeg). The results were found promis-

ng, to the extent, the algorithm managed to find optimal solutions

or Sioux-Falls and displayed efficient convergence when applied

o Winnipeg. Comparative analysis shows that the proposed hybrid

achine learning method by far outperforms some of the meta-

euristic algorithms. 

• An intuitive bilevel formulation for the contraflow problem (CP)

was proposed. 
• A machine-learning solution algorithm was proposed to solve

the CP. 
• The solution algorithm was tailored to large-sized networks, as

the computational time was found to be of a linear order (and

not exponential). 
• Compared to some alternative solution algorithms (e.g. meta-

heuristic methods) the proposed hybrid machine-learning

method was found more fit to the CP. 
• The proposed methodology considers the traffic simulation part

(i.e., the traffic assignment) as a black-box, which can then be

easily replaced with other alternatives such as a detailed meso

or micro traffic simulation model. 
• To further expedite the computation, the proposed methodol-

ogy is structured in a way that the algorithms can be executed

in multiple cores (i.e. parallel computation). 

There exist some avenues to improve the proposed methodol-

gy. In an emergency evacuation, uncertainty in different aspects

s a significant concern which is largely overlooked. Extending this

ethodology to a stochastic formulation is a worthwhile effort to

nhance the realism of the model. With the same token, the sen-

itivity of the parameters (such as the budget) to the outcomes

eeds to be further investigated, for which one way is to resort

o a robust optimization method. In the interest of computation

ime, the authors utilized the user-equilibrium traffic flow as a

raffic simulation model. In fluid situations, such as emergency

vacuation, it is a worthwhile endeavor to include a computation-

lly efficient dynamic traffic model into the methodology. The idea

f contraflow can be further improved if it is unified with other

etwork management measure such as intersections’ traffic signal

iming as well as turning movements design. In evacuation appli-

ations, communication with evacuees and broadcasting changes

f the transport infrastructure should also be integrated into the

ntology of evacuation ( Onorati, Malizia, Diaz, & Aedo, 2014 ). The

oncept of the contraflow can also be investigated for indoor evac-

ation ( Wagner & Agrawal, 2014 ). To this end, there is a grow-

ng body of research and technology concerning indoor evacua-

ion guidance using a variety of means including smart phones,

he internet of things, smart signages and lighting ( Bernardini, Az-

olini, D’Orazio, & Quagliarini, 2016; Cheng et al., 2017; Fujihara

 Yanagizawa, 2015; Ohta et al., 2015 ). The contraflow problem in

his study was solved based on the minimization of the total tra-

erse time as the only objective function. However, it is also an

ndeavor to expand the model to a multi-objective optimization

hich has more application in emergency evacuations ( Chang, Wu,

ee, & Shen, 2014 ). 
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People’s psychology and their behavior in disaster events and

panic conditions as well as the effects of emotional intelligence

and empathy have been topics of extensive research ( Kang, Lindell,

& Prater, 2007; Lindell, 2008; Lindell & Prater, 2007; Riad, Norris,

& Ruback, 1999 ). 

It appears, the complex and somewhat bewildering phe-

nomenon of people’s erratic behavior (e.g. to evacuating from a

dangerous situation) is influenced by a combination of individual

characteristics and basic social psychological processes such as risk

perception, social influence, and access to resources. ( Riad et al.,

1999 ). Delineating the weights of these factors will help authori-

ties to effectively plan for evacuation operations which desrve fur-

ther research. Beside, social scientists’ research on population’s be-

havior has been loosely integrated with transportation engineers’

development of evacuation models ( Lindell & Prater, 2007 ) which

warrants an interesting and yet timing line of research. 

Furthermore, it was postulated that when it comes to peo-

ple’s evacuation behavior, there is no difference between natural

and man-made disasters. In both, we assume that using modern

technologies (e.g. smart phone, radio, variable message sign etc.)

as well as law enforcement forces, when an evacuation plan (or

a traffic management scenario) is decided, people would largely

comply with. Nevertheless, investigating true nature of people’s

behavior in response to evacuation plans in anthropogenic and nat-

ural disasters is an interesting subject for further research 
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