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Abstract— Truck platooning, where vehicles drive close to-
gether in order to reduce air drag, is a promising technology
that is slowly reaching maturity. In order to fully exploit its
potential, we will need to be able to efficiently form platoons en-
route, while driving on the road, by having the vehicles adjust
their speeds so that they catch-up and merge into a platoon.
Since this means that the participating vehicles will have to
deviate from their own optimal speed profiles, experiencing
unpredicted disturbances caused by the surrounding traffic
might lead to higher fuel consumption. Therefore, in order to
increase the fuel savings and improve their predictability, we
devise a control strategy that takes into account the traffic
conditions and yields optimal catch-up speeds for both the
leader and the follower vehicle. The control strategy is based
on minimizing total energy consumption, and it models the
vehicles as moving bottlenecks. We compare this strategy to
one that does not consider the influence of traffic, and show
that it achieves better results in terms of energy savings.

I. INTRODUCTION

Recent years have seen an accelerated push towards heavy-
duty vehicle platooning [1, 2]. Traditionally, such platooning
was primarily regarded as means of reducing the air drag
acting on the vehicles [3], and thus fuel consumption, but
there are also other benefits, like facilitating a higher level of
automation. There has been much work done on controlling
the vehicles inside a platoon [4], [5], and this technology
is slowly transitioning from academia to industry. There are
other aspects of platooning that still require more research,
including how truck platoons influence traffic, how platoons
should be formed, and how to make decisions on which
vehicles should platoon with which other vehicles [6].

Real-time platoon formation, where vehicles attempt to
form platoons en-route, is one of these open problems.
Dynamic planning strategies have been proposed [7], with
the platooning coordinator selecting vehicles to platoon and
sending them jointly fuel-optimal speed profiles and routes,
following which the vehicles catch up, merge into a platoon,
drive together for some time, and then diverge. However, this
also means that the participating vehicles will have to deviate
from their own optimal speed profiles, which entails higher
fuel consumption during the catch-up and merging phase that
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we hope to offset by fuel savings during the platooning phase
[8]. If the platoon merging fails or is delayed due to some
unpredicted disturbance [9], the net energy consumption
could be higher than expected, potentially leading to more
fuel being spent compared to the case when the vehicles
would continue driving at their individual optimal speeds. It
is therefore important to have a good prediction of when
the platoon merging will be completed, so as to be able
to calculate predicted energy savings and make a better
informed decision on whether to attempt to form a platoon at
all. This problem was studied in [10] and [11], as well as in
[12]. In these papers the authors did consider the influence
of traffic, but did not study how to compensate for it. We
identified two potential causes for deviating from nominal
platoon merging times in [13], the influence of road grade
and the influence of the surrounding traffic, and addressed
the first one.

The aim of this paper is to address energy-optimal platoon
catch-up, taking the surrounding traffic into account. In
Section II we formulate the problem and the cost function
we want to minimize. In Section III, we further build upon
an extension of the cell transmission model (CTM) [14] with
moving bottlenecks, presented in [15]. This addition enables
modelling long moving bottlenecks, and allows situations
with multiple moving bottlenecks in the same cell, and
moving bottleneck merging. Next, in Section IV we use
this framework to model the interaction between the heavy-
duty vehicles and the surrounding traffic. We formulate a
traffic-dependent cost function based on accurate prediction
of energy expenditure until the end of the platooning section.
Minimizing this cost function, we calculate energy-optimal
platoon catch-up speed pairs, taking the influence of traffic
into account. These speeds are applied as control inputs to
the vehicles. Finally, in Section V we test this control in
simulations and in Section VI conclude.

𝑥2(𝑡)
𝜒2(𝜏 |𝑡) 𝑥1(𝑡) 𝜒1(𝜏 |𝑡) 𝜒𝑚(𝑡)

Fig. 1: Platoon catch-up assisted by a controller in the
infrastructure. Traffic and other road data are collected and,
together with vehicle starting positions 𝑥1(𝑡) and 𝑥2(𝑡), used
to calculate optimal catch-up speeds 𝑢1(𝑡) and 𝑢2(𝑡), and
platoon merging position prediction 𝜒𝑚(𝑡).

2019 18th European Control Conference (ECC)
Napoli, Italy, June 25-28, 2019

978-3-907144-00-8 ©2019 EUCA 3674



II. PROBLEM FORMULATION

Most proposed large-scale platooning solutions involve
a layered control architecture [1]. At the higher layer,
platooning coordinator plans the transport assignments and
optimizes vehicle routes, including identifying and managing
potential platoons. At the middle layer, vehicles receive
their routes and generate their speed profiles, which the
lower layer control is tasked to follow. Platoon catch-up
coordination is handled at the middle layer.

Assume a potential platooning pair, driving along the
common stretch of road, has been identified (see Fig. 1).
We adopt the coordinate system so that at 𝜏 = 0, the leading
vehicle’s position is 𝜒1(0) = 𝜒0, and the following vehicle’s
position 𝜒2(0) = 0. Vehicles’ motion along the road is
described by

𝜒̇𝑖 = 𝑣𝑖(𝜏), 𝜏 ≤ 𝜏𝑚

where the dot denotes differentiation by 𝜏 ,
𝜏𝑚 = min (𝜏 ∈ R≥0|𝜒1(𝜏)− 𝜒2(𝜏) ≤ 𝑑𝑝)

is the time when the vehicles merge into a platoon, 𝑑𝑝 ≈ 0
is some predefined maximum distance between two vehicles
when in a platoon, and

𝑣𝑖(𝜏) = min (𝑢𝑖(𝜏), 𝑣max(𝜒𝑖(𝜏), 𝜏)) ,

where 𝑣max(𝜒, 𝜏) is the maximum speed at position 𝜒
at time 𝜏 imposed by some external influences. That is,
vehicles attempt to drive at constant reference speeds 𝑢1

and 𝑢2, respectively, until they have successfully merged into
a platoon. The platoon will then proceed to drive at speed
𝑣𝑝 = 𝑢𝑝, calculated so that it reaches the end of their shared
route segment 𝜒𝑓 at some specified time 𝜏𝑓 .

Although in reality, vehicles might have some degree of
flexibility with regard to timing, by only considering one
𝜏𝑓 , we ensure that the comparison between different pairs of
speeds (𝑢1, 𝑢2) is fair. Otherwise, the delay would have to be
reflected in the cost function and the optimization problem
will become more complicated. Instead, in order to negate
the ostensible energy savings by delaying the vehicle, we
will assume that both vehicles need to be at position 𝜒𝑓 at
time 𝜏𝑓 regardless of whether or not they platoon, and take
𝜏𝑓 so that it satisfies the most stringent constraints the two
vehicles have.

We focus on reducing the total work required to over-
come the resistive forces acting on the vehicles. The three
major external forces acting on vehicles are air drag, rolling
resistance and gravity. We assume that road grade is zero,
allowing us to focus solely on reducing air drag, since the
contribution of rolling resistance will be the same whether
or not the vehicles adjust their speeds and attempt to merge
into a platoon.

Air drag acting on a vehicle can be modelled as
𝐹𝑎𝑑(𝑣, 𝑑) = 𝑘𝑎𝜑𝑎(𝑑)𝑣

2,

where 𝑘𝑎 is a constant that depends on the air density, the
cross-section area of the vehicle, and the air drag coefficient,
𝑣 is the speed of the vehicle, and 𝜑𝑎(𝑑) ∈ [0, 1] is the portion
of air drag that acts on a platooning vehicle, with 𝑑 being the
inter-vehicular distance. Assuming 𝑑 is constant yields the

resistive force acting on the platoon leader 𝐹𝑎𝑑,𝑙(𝑣) = 𝑘𝑎𝑣
2

and on followers 𝐹𝑎𝑑,𝑓 (𝑣) = 𝑘𝑎𝑣
2𝜑𝑓 , 𝜑𝑓 = 𝜑𝑎(𝑑) < 1.

The cost function related to the air drag component of the
overall resistive force can therefore be written

𝐽(𝑣) =

∫︁ 𝜏𝑚

0

[︀
𝑣31(𝜏) + 𝑣32(𝜏)

]︀
𝑑𝜏 + 𝜑

∫︁ 𝜏𝑓

𝜏𝑚

𝑣3𝑝(𝜏)𝑑𝜏. (1)

In addition, to obey the timing and platoon merge constraints,
we require that∫︁ 𝜏𝑚

0

[𝑣2(𝜏)− 𝑣1(𝜏)] 𝑑𝜏 = 𝜒0,∫︁ 𝜏𝑚

0

𝑣1(𝜏)𝑑𝜏 +

∫︁ 𝜏𝑓

𝜏𝑚

𝑣𝑝(𝜏)𝑑𝜏 = 𝜒𝑓 − 𝜒0,∫︁ 𝜏𝑚

0

𝑣2(𝜏)𝑑𝜏 +

∫︁ 𝜏𝑓

𝜏𝑚

𝑣𝑝(𝜏)𝑑𝜏 = 𝜒𝑓 .

(2)

We also need to constrain the reference vehicle speeds to lie
within some range, 𝑢min ≤ 𝑢1 ≤ 𝑢max, 𝑢min ≤ 𝑢2 ≤ 𝑢max,
which will lead to similar constraints for the actual vehicle
speeds 𝑣1 and 𝑣2.

By 𝜑 we denote the total air drag coefficient of the
platoon, which is the sum of air drag coefficients of its
individual vehicles. Assuming there are two vehicles in a
platoon driving with intervehicular distance of about 20 m,
we typically have 𝜑 ≈ 1.7 [3].

Ideally, the metric that we would like to use to evaluate
the optimality of chosen catch-up speeds would be fuel
consumption. However, getting accurate fuel consumption
figures can be very difficult, and will depend on the proper-
ties of the vehicles in question. Instead, by using the required
energy, we obtain a more general result.

If we assume that the vehicles follow their refer-
ence speeds perfectly, 𝑣𝑖(𝜏) = 𝑢𝑖, 𝑣𝑝(𝜏) = 𝑢𝑝, we have
𝜏𝑚0

= 𝜒0

𝑢2−𝑢1
and 𝑢𝑝 =

𝜒𝑓 (𝑢2−𝑢1)−𝜒0𝑢2

𝜏𝑓 (𝑢2−𝑢1)−𝜒0
. We can then sim-

plify (1) and combine it with conditions (2) to get

𝐽0(𝑢) = (𝑢3
1 + 𝑢3

2)𝜏𝑚0 + 𝜑
(𝜒𝑓 − 𝜒𝑚0)

3

(𝜏𝑓 − 𝜏𝑚0
)2

=
(𝑢3

1+𝑢3
2)𝜒0

𝑢2−𝑢1
+𝜑

(𝜒𝑓 (𝑢2−𝑢1)−𝑢2𝜒0)
3

(𝑢2−𝑢1)(𝜏𝑓 (𝑢2−𝑢1)−𝜒0)2
.

This cost function is parametrized by 𝜒0, 𝜒𝑓 , 𝜏𝑓 and 𝜑, and
we seek to minimize it by choice of 𝑢1 and 𝑢2.

Denote by 𝑢10 =
𝜒𝑓−𝜒0

𝜏𝑓
and 𝑢20 =

𝜒𝑓
𝜏𝑓

the constant
speeds individual vehicles would need to keep in order to
reach 𝜒𝑓 at 𝜏𝑓 , and assume this is possible without violating
the constraints on minimum and maximum speed. Note that,
although possible, it will never be beneficial for the leader
to go faster than 𝑢10 ≤ 𝑢max nor for the follower to go
slower than 𝑢20 ≥ 𝑢min. Therefore, we can further tighten
the constraints to 𝑢min ≤ 𝑢1 ≤ 𝑢10 and 𝑢20 ≤ 𝑢2 ≤ 𝑢max.

The minimization problem that we solve to calculate
optimal 𝑢1 and 𝑢2 then becomes

minimize
𝑢1,𝑢2

𝐽0(𝑢)

subject to 𝑢min ≤ 𝑢1 ≤ 𝑢10

𝑢20 ≤ 𝑢2 ≤ 𝑢max.

(3)

This is a convex problem that can easily be solved numer-
ically. By solving this problem, we can calculate energy-
optimal platoon catch-up speeds when not taking traffic
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conditions into account, i.e., the speeds that would be energy-
optimal if the vehicles would not be affected by traffic.

However, since we assumed no interference from traffic
and other extraneous factors that might render it impossible
for the follower vehicle to maintain its optimal speed, we
might see discrepancies in behaviour that will make this
solution suboptimal. Consequently, the energy savings will
be lower than expected, further motivating including the
traffic conditions in the optimization problem.

To summarize, we are looking to calculate the optimal
catch-up speeds for two vehicles attempting to form a platoon
in traffic. The cost function that we minimize in order to
do this is given in equation (1), and it reflects the total
work the vehicles need to do in order to overcome the air
resistance during the whole process of catching up, forming
a platoon and driving together until the end of the common
road segment, taking the influence of traffic into account.
Next section gives the required model, which captures the
interaction between the vehicles in question and the rest of
the traffic. This model is then used in the following section
to solve this problem.

III. TRAFFIC MODEL WITH MOVING BOTTLENECKS

In this section we develop a traffic model with two moving
bottlenecks, where the bottlenecks represent the two trucks
forming a platoon in traffic. The traffic model used here is an
extension of CTM with moving bottlenecks from [15]. The
extension will be in two ways: we drop the assumption that
the length of the moving bottleneck is negligible compared
to cell lengths and introduce a way of handling multiple
moving bottlenecks in adjacent cells, as well as handling
their possible merging.

Following the notation from [15], we denote the traffic
density in cell 𝑖 at time 𝑡 by 𝜌𝑖(𝑡), and the flow from cell 𝑖
to 𝑖+1 by 𝑞𝑖(𝑡). Parameters 𝑉 , 𝑊 , 𝜎 and 𝑃 denote the free
flow speed, congestion wave speed, critical density and jam
density, respectively, and we write the flux function 𝑄(𝜌).
Parameters and variables for the moving bottleneck zone are
indicated by subscript 𝑏, and we denote the speed of the
moving bottleneck by 𝑢𝑏.

First, we define functions

𝑟𝑓 (𝜌𝑏, 𝑢𝑏) =
𝑄𝑏(𝜌𝑏)− 𝑢𝑏𝜌𝑏

𝑉 − 𝑢𝑏
,

𝑟𝑐(𝜌𝑏, 𝑢𝑏) =
𝑊𝑃 −𝑄𝑏(𝜌𝑏) + 𝑢𝑏𝜌𝑏

𝑊 + 𝑢𝑏
,

𝑟−1
𝑓 (𝜌, 𝑢𝑏) =

𝑄(𝜌)− 𝑢𝑏𝜌

𝑉𝑏 − 𝑢𝑏
,

𝑟−1
𝑐 (𝜌𝑏, 𝑢𝑏) =

𝑊𝑏𝑃𝑏 −𝑄(𝜌) + 𝑢𝑏𝜌

𝑊𝑏 + 𝑢𝑏
,

which give us intersections between the flux function
𝑄(𝜌) (𝑄𝑏(𝜌)) and a line with slope 𝑢𝑏 originating
from (𝜌𝑏, 𝑄𝑏(𝜌𝑏)) ((𝜌,𝑄(𝜌))), respectively, see Fig. 2.
It is easy to check that 𝑟−1

𝑓,𝑐(𝑟𝑓,𝑐(𝜌, 𝑢𝑏), 𝑢𝑏) = 𝜌 and
𝑟𝑓,𝑐(𝑟

−1
𝑓,𝑐(𝜌, 𝑢𝑏), 𝑢𝑏) = 𝜌.

The Riemann problems [16] for the moving bottleneck

Fig. 2: Default and reduced flux function 𝑄(𝜌) (black) and
𝑄𝑏(𝜌) (red).

boundaries can be written

𝜕𝜏𝜌+ 𝜕𝑥 (𝑄±(𝜌, 𝑥, 𝜏)) = 0,

𝑄±(𝜌, 𝑢𝑏, 𝑥, 𝜏) =

{︃
𝑄−(𝜌), 𝑥 < 𝑢𝑏𝜏,

𝑄+(𝜌), 𝑥 > 𝑢𝑏𝜏,

𝜌(𝑥, 0) =

{︃
𝜌−, 𝑥 < 0,

𝜌+, 𝑥 > 0.

We will consider two types of Riemann problems, for the
moving bottleneck head (its downstream end) and for the
moving bottleneck tail (its upstream end).

Consider first the Riemann problem for the moving
bottleneck head. In this case, we have 𝑄−(𝜌) = 𝑄(𝜌),
𝑄+(𝜌) = 𝑄𝑏(𝜌) and 𝜌− = 𝜌𝑏. Depending on 𝜌𝑏 and 𝜌+, the
entropy solution is:

∙ If 𝜌𝑏 ≤ 𝜎𝑏 and 𝜌+ < 𝑟𝑐(𝜌𝑏, 𝑢𝑏):

𝜌(𝑥, 𝜏) =

⎧⎪⎨⎪⎩
𝜌𝑏, 𝑥 < 𝑢𝑏𝜏,

𝑟𝑓 (𝜌𝑏, 𝑢𝑏), 𝑢𝑏 < 𝑥 < Λ(𝑟𝑓 (𝜌𝑏, 𝑢𝑏), 𝜌+)𝜏,

𝜌+, 𝑥 > Λ(𝑟𝑓 (𝜌𝑏, 𝑢𝑏), 𝜌+)𝜏.

∙ If 𝜌𝑏 < 𝑟−1
𝑓 (𝜌+, 𝑢𝑏+) and 𝜌+ > 𝑟𝑐(𝜎𝑏, 𝑢𝑏+):

𝜌(𝑥, 𝜏)=

⎧⎪⎨⎪⎩
𝜌𝑏, 𝑥<Λ𝑏(𝜌𝑏, 𝑟

−1
𝑐 (𝜌+, 𝑢𝑏+))𝜏,

𝑟−1𝑐 (𝜌+,𝑢𝑏+),Λ𝑏(𝜌𝑏, 𝑟
−1
𝑐 (𝜌+, 𝑢𝑏+))𝜏 <𝑥<𝑢𝑏+𝜏,

𝜌+, 𝑥>𝑢𝑏+𝜏,

where 𝑢𝑏+ = min(𝑢𝑏, 𝑣(𝜌+)) and Λ(𝜌-, 𝜌+) is the
Rankine-Hugoniot transition speed. If 𝑣(𝜌+) < 𝑢𝑏, the
speed of both the platoon head and tail are set to 𝑣(𝜌+).

∙ If 𝑟𝑓 (𝜌𝑏, 𝑢𝑏) < 𝜌+ < 𝑟𝑐(𝜌𝑏, 𝑢𝑏):

𝜌(𝑥, 𝜏) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝑏, 𝑥 < 𝑊𝑏𝜏,

𝜎𝑏, 𝑊𝑏𝜏 < 𝑥 < 𝑢𝑏𝜏,

𝑟𝑓 (𝜌𝑏, 𝑢𝑏), 𝑢𝑏𝜏 < 𝑥 < 𝑉 𝜏,

𝜌+, 𝑥 > 𝑉 𝜏.

We have a similar situation for the Riemann prob-
lem for the moving bottleneck tail. Now, 𝑄−(𝜌) = 𝑄𝑏(𝜌),
𝑄+(𝜌) = 𝑄(𝜌) and 𝜌+ = 𝜌𝑏. Again, we have three cases of
the entropy solution, depending on 𝜌𝑏 and 𝜌+:

∙ If 𝜌- < 𝑟𝑓 (𝜎𝑏, 𝑢𝑏) and 𝜌𝑏 ≤ 𝑟−1
𝑐 (𝜌-, 𝑢𝑏),

𝜌(𝑥, 𝜏) =

⎧⎪⎨⎪⎩
𝜌-, 𝑥 < 𝑢𝑏𝜏,

𝑟−1
𝑓 (𝜌-, 𝑢𝑏), 𝑢𝑏 < 𝑥 < Λ(𝜌-, 𝜌𝑏)𝜏,

𝜌𝑏, 𝑥 > Λ(𝜌-, 𝜌𝑏)𝜏.
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Fig. 3: The front tracking solution of two platoons merging.
Platoon boundaries are shown in red.

∙ If 𝜌- > 𝑟𝑓 (𝜌𝑏, 𝑢𝑏) and 𝜌𝑏 > 𝜎𝑏,

𝜌(𝑥, 𝜏) =

⎧⎪⎨⎪⎩
𝜌-, 𝑥 < Λ(𝜌-, 𝑟𝑐(𝜌𝑏, 𝑢𝑏))𝜏,

𝑟𝑐(𝜌𝑏, 𝑢𝑏), Λ(𝜌-, 𝑟𝑐(𝜌𝑏, 𝑢𝑏))𝜏 < 𝑥 < 𝑢𝑏𝜏,

𝜌𝑏, 𝑥 > 𝑢𝑏𝜏.

∙ If 𝜌- > 𝑟𝑓 (𝜌𝑏, 𝑢𝑏) and 𝜌𝑏 ≤ 𝜎𝑏,

𝜌(𝑥, 𝜏) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜌𝑏, 𝑥 < 𝑊𝜏,

𝑟𝑐(𝜎𝑏, 𝑢𝑏), 𝑊𝜏 < 𝑥 < 𝑢𝑏𝜏,

𝜎𝑏, 𝑢𝑏𝜏 < 𝑥 < 𝑉𝑏𝜏,

𝜌𝑏, 𝑥 > 𝑉𝑏𝜏.

Note that since the moving bottleneck can have length
comparable to the cell length, we need to keep track of the
traffic density inside its zone, in addition to keeping track of
the traffic density upstream of it.

The situation when there are multiple bottlenecks in the
same cell or in adjacent cells is handled by including all
bottlenecks and cells in question into a single composite
Riemann problem. If the tail of one and head of another
bottleneck collide, we say that those two bottlenecks have
merged, and take their speed to be the speed of the leader
bottleneck, as shown in Fig. 3.

To summarize, the traffic model including the moving
bottlenecks we propose can now be written as

𝜌𝑖(𝑡+1) = 𝜌𝑖(𝑡) +
𝑇

𝐿
(𝑞𝑖−1(𝑡)− 𝑞𝑖(𝑡)) ,

𝑞𝑖(𝑡) = min
(︁
𝑉 𝜌𝑖(𝑡), 𝑉 𝜎,𝑊 (𝑃 − 𝜌𝑖+1(𝑡)

)︁
+Δ𝑞𝑖(𝑡),⎡⎢⎢⎣

Δ𝑞(𝑡)
𝑥(𝑡+1)
𝜌𝑏-(𝑡+1)
𝜌𝑏(𝑡+1)

⎤⎥⎥⎦ = 𝒫 (𝜌(𝑡), 𝑥(𝑡), 𝑢(𝑡), 𝜌𝑏-(𝑡), 𝜌𝑏(𝑡)) ,

where the map 𝒫 encapsulate the procedure of solving
composite Riemann problems for cells in the vicinity of
moving bottlenecks by front tracking and calculating the
updates for 𝑞 and new values for 𝑥, 𝜌𝑏- and 𝜌𝑏, following
the formulation given in [15].

IV. PLATOON MERGING IN TRAFFIC

In this section we formulate the optimization problem
that we solve in order to calculate energy-optimal pla-
toon catch-up speeds taking traffic conditions into account.
First, we adopt the relative coordinate system so that
the follower starts at 𝜒2(0) = 0, and the leader starts at

𝜒1(0) = 𝜒0 = 𝑥1(𝑡)− 𝑥2(𝑡). The goal position and time are
then 𝜒𝑓 = 𝑥𝑓 − 𝑥2(𝑡) and 𝜏𝑓 = 𝑇𝑓 − 𝑡𝑇 .

The traffic model with moving bottlenecks formulated in
previous chapter can be used to predict the evolution of traffic
conditions and the motion of vehicles, depending on the
chosen reference speed pair (𝑢1, 𝑢2). However, this would
lead to a very large state space, which would in turn make
the optimization problem difficult. Instead, we assume that
we can split the initial traffic conditions between the two
vehicles into two zones. This assumption will lead to only
four traffic scenarios that need to be considered, from which
we will derive a scenario-dependent cost function.

Take 𝜌 ≈ 𝜌𝑓 , 𝑥 < 𝜒𝑐 and 𝜌 ≈ 𝜌𝑐, 𝑥 > 𝜒𝑐, where 𝜒𝑐 is the
minimal 𝑥 for which the average speed of the traffic is less
than the maximum reference speed. We calculate 𝜌𝑓 and 𝜌𝑐 as
average values of 𝜌 on [0, 𝜒𝑐] and [𝜒𝑐, 𝜒𝑓 ] respectively. The
follower vehicle can only be slowed down when it enters
the zone of density 𝜌𝑐, or the zone of density 𝑟𝑐(𝜎𝑏, 𝑢1),
originating from the leader vehicle. In further text, we denote
𝑟𝑓 (𝜎𝑏, 𝑢2) as simply 𝑟𝑓 and 𝑟𝑐(𝜎𝑏, 𝑢1) as 𝑟𝑐.

From the standpoint of cost function, the four cases of
traffic we need to consider are:

∙ Case 0: The follower is unaffected by traffic. This case
was already discussed and corresponds to using cost
function 𝐽0.

∙ Case 1: 𝜏𝜌𝑓 < 𝜏𝜌𝑐
, 𝜏𝜌𝑓𝑟𝑓 < 𝜏𝜌𝑓𝜌𝑐 , the 𝜌𝑓 zone vanishes

first, then 𝑟𝑓 . The follower vehicle first runs into 𝜌𝑐,
then into 𝑟𝑐.

∙ Case 2: 𝜏𝜌𝑓 < 𝜏𝜌𝑐
, 𝜏𝜌𝑓𝑟𝑓 > 𝜏𝜌𝑓𝜌𝑐 , the 𝜌𝑓 zone vanishes

first, then 𝜌𝑐. The follower vehicle runs into 𝑟𝑐.
∙ Case 3: 𝑡𝜌𝑓 > 𝜏𝜌𝑐 , the 𝜌𝑐 zone vanishes first, then 𝜌𝑓 .

The follower vehicle runs into 𝑟𝑐.
The latter three cases, in which the traffic affects the ve-
hicle speed, are shown on Fig. 4, and the front interaction
times are given in Table I. We denote the transition speeds
𝜆𝜌-𝜌+=Λ(𝜌-, 𝜌+) and the speed the follower vehicle maintains
in traffic of density 𝜌, 𝑢𝜌(𝑢2)=min(𝑢2, 𝑣(𝜌)). Finally, the
platoon merge will occur at

𝜏𝑚𝑖
=

𝜒0 − 𝜒𝑡𝑖

𝑢𝑟𝑐(𝑢2)− 𝑢1

𝜒𝑚𝑖
= 𝜒0 + 𝑢1𝜏𝑚𝑖

where 𝑖 = 1, 2, 3 is the case of traffic.
The criterion function is thus given by

𝐽(𝑢) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐽0(𝑢), 𝜏𝜌𝑓 <𝜏𝜌𝑐

, (𝜏𝜌𝑐𝜌𝑓𝑟𝑐 <𝜏𝑟3 ∨ 𝜏𝜌𝑐𝑟𝑐 <𝜏𝜌𝑐𝜌𝑓 ),

𝐽1(𝑢), 𝜏𝜌𝑓 >𝜏𝜌𝑐
, 𝜏𝜌𝑓𝑟𝑓 <𝜏𝜌𝑓𝜌𝑐 ,

𝐽2(𝑢), 𝜏𝜌𝑓 >𝜏𝜌𝑐 , 𝜏𝜌𝑓𝑟𝑓 >𝜏𝜌𝑓𝜌𝑐 ,

𝐽3(𝑢), 𝜏𝜌𝑓 <𝜏𝜌𝑐 , 𝜏𝑟3 <𝜏𝜌𝑐𝜌𝑓𝑟𝑐 , 𝜏𝜌𝑐𝜌𝑓 <𝜏𝜌𝑐𝑟𝑐 ,

where
𝐽1(𝑢)=𝑢3

1𝜏𝑚1 + 𝑢3
2𝜏𝜌𝑓𝑟𝑓 + 𝑢3

𝜌𝑐
(𝜏𝑟1−𝜏𝜌𝑓𝑟𝑓 )+. . .

· · ·+ 𝑢3
𝑟𝑐(𝜏𝑚1 − 𝜏𝑟1)+

(𝜒𝑓 − 𝜒𝑚1)
3

(𝜏𝑓 − 𝜏𝑚1)2
,

𝐽2(𝑢)=𝑢3
1𝜏𝑚2+𝑢3

2𝜏𝑟2+𝑢3
𝑟𝑐(𝜏𝑚2−𝜏𝑟2)+

(𝜒𝑓−𝜒𝑚2)
3

(𝜏𝑓−𝜏𝑚2)2
,

𝐽3(𝑢)=𝑢3
1𝜏𝑚3+𝑢3

2𝜏𝑟3+𝑢3
𝑟𝑐(𝜏𝑚3−𝜏𝑟3)+

(𝜒𝑓−𝜒𝑚3)
3

(𝜏𝑓−𝜏𝑚3)2
.

3677



(1) 𝜏𝜌𝑓<𝜏𝜌𝑐 , 𝜏𝜌𝑓 𝑟𝑓<𝜏𝜌𝑓𝜌𝑐 (2) 𝜏𝜌𝑓<𝜏𝜌𝑐 , 𝜏𝜌𝑓 𝑟𝑓>𝜏𝜌𝑓𝜌𝑐 (3) 𝜏𝜌𝑓>𝜏𝜌𝑐

Fig. 4: Front tracking prediction of traffic between the leader
(dashed blue) and the follower (dashed red).

TABLE I: Front interaction times and positions.

First
Case 1,2 𝜏𝜌𝑓 = 𝜒𝑐

𝜆𝑟𝑓 𝜌𝑓
−𝜆𝜌𝑓 𝜌𝑐

Case 0,3 𝜏𝜌𝑐 = 𝑥0−𝜒𝑐
𝜆𝜌𝑓 𝜌𝑐+𝑊

Second

Case 1 𝜏𝜌𝑓 𝑟𝑓 = 𝜏𝜌𝑓
𝜆𝑟𝑓 𝜌𝑓

−𝜆𝑟𝑓 𝜌𝑐

𝑢2−𝜆𝑟𝑓 𝜌𝑐

Case 2 𝜏𝜌𝑓𝜌𝑐 =
𝑥0+𝜆𝑟𝑓 𝜌𝑐𝜏𝜌𝑓 −𝜆𝑟𝑓 𝜌𝑓

𝜏𝜌𝑓
𝜆𝑟𝑓 𝜌𝑐+𝑊

Case 3 𝜏𝜌𝑐𝜌𝑓 =
𝜒𝑐−𝜆𝜌𝑓 𝑟𝑐𝜏𝜌𝑐−𝑊𝜏𝜌𝑐

𝜆𝑟𝑓 𝜌𝑓
−𝜆𝜌𝑓 𝑟𝑐

Case 01 𝜏𝜌𝑐𝑟𝑐 =
𝜆𝜌𝑓 𝑟𝑐𝜏𝜌𝑐−𝑥0+𝑊𝜏𝜌𝑐

𝜆𝜌𝑓 𝑟𝑐−𝑢1

Third

Case 1 𝜏𝑡1 =𝜏𝜌𝑓 𝑟𝑓𝜌𝑐 =
𝜒0+𝜏𝜌𝑓 𝑟𝑓

(𝑣𝜌𝑐 (𝑢2)−𝑢2)

𝑣𝜌𝑐 (𝑢2)+𝑊

𝜒𝑡1 =𝑥0−𝑊𝜏𝑡1

Case 2 𝜏𝑡2 =𝜏𝜌𝑓𝜌𝑐𝑟𝑓 =
𝜒0−𝜏𝜌𝑓 𝜌𝑐 (𝜆𝑟𝑓 𝑟𝑐+𝑊 )

𝑢2−𝜆𝑟𝑓 𝑟𝑐

𝜒𝑡2 =𝑢2𝜏𝑡2

Case 3 𝜏𝑡3 =𝜏𝜌𝑐𝜌𝑓 𝑟𝑓 =𝜏𝜌𝑐𝜌𝑓
𝜆𝑟𝑓 𝜌𝑓

−𝜆𝑟𝑓 𝑟𝑐

𝑢2−𝜆𝑟𝑓 𝑟𝑐

𝜒𝑡3 =𝑢2𝜏𝑡3

Case 02 𝜏𝜌𝑐𝜌𝑓 𝑟𝑐 =𝜏𝜌𝑐𝜌𝑓
𝜆𝑟𝑓 𝑟𝑐−𝜆𝑟𝑓 𝜌𝑓

𝜆𝑟𝑓 𝑟𝑐−𝑢1

To enforce speed and timing constraints on the vehicles,
we add two additional barrier terms to 𝐽𝑖, corresponding to
inequalities

𝜒𝑓 − 𝜒𝑚𝑖

𝜏𝑓 − 𝜏𝑚𝑖

≤ 𝑢max,

𝜏𝑚𝑖
≤ 𝜏𝑓 .

Finally, the optimization problem we solve in order of
finding the energy-optimal catch-up speeds for two vehicles
under constraints imposed by the surrounding traffic is

minimize
𝑢1,𝑢2

𝐽(𝑢)

subject to 𝑢min ≤ 𝑢1 ≤ 𝑢10

𝑢20 ≤ 𝑢2 ≤ 𝑢max

(4)

This problem is not convex, but it is unimodal, so it can still
be solved efficiently using numerical methods.

Having solved the optimization problem, we also obtain
the optimal predicted merge time 𝜏𝑚𝑖 .

Fig. 5: An example simulation run without disturbances.
Traffic density is colour-coded and “+” indicates platoon
merge locations 𝑥𝑚 and times 𝑡𝑚. Dashed black: vehicle
trajectories if they were not affected by traffic. Red: vehicle
trajectories using control law (2). Dashed white: vehicle
trajectories if control law (3) was used.

V. SIMULATION RESULTS

We will demonstrate the effectiveness of the proposed
method for calculating optimal catch-up speeds in simula-
tions. The simulation scenario in question is as follows:

1) 𝑡 < 𝑡1: The traffic is in free flow, with heterogeneous
traffic density. The leader vehicle enters the road
segment at 𝑡 = 𝑡1.

2) 𝑡1 ≤ 𝑡 < 𝑡2: The leader vehicle travels at speed 𝑣01,
at which it would reach 𝑥𝑓 at time 𝑡𝑓 . The follower
vehicle enters the road segment at 𝑡 = 𝑡2.

3) 𝑡2 ≤ 𝑡 < 𝑡𝑚: The leader and the follower adjust their
speeds according to the specified control law, until they
merge into a platoon.

4) 𝑡 ≥ 𝑡𝑚: The newly merged platoon proceeds and
adjusts its speed so that it reaches 𝑥𝑓 at time 𝑡𝑓 .

If the platoon merging fails for any of the control laws,
the vehicles proceed at their maximum speed until the end
of the segment, and that simulation run is not counted in
average cost calculations.

The initial background traffic conditions 𝜌𝑖(0) and inflow
into the first cell 𝑞0(𝑡) are randomly generated heterogeneous
free flow (see Fig. 5). We used three scenarios with different
traffic density ranges, light traffic [𝜎/5, 𝜎], medium traffic
[𝜎/3, 𝜎] and heavy traffic [𝜎/2, 𝜎], resulting in average traffic
density of 0.6𝜎, 0.66𝜎 and 0.75𝜎 respectively.

We are comparing three different control laws:
1) 𝑢1 and 𝑢2 are calculated by solving (3) once at 𝑡 = 𝑡2,

ignoring traffic conditions.
2) 𝑢1 and 𝑢2 are calculated by solving (3) periodically

during the catch-up phase, ignoring traffic conditions,
3) 𝑢1 and 𝑢2 are calculated by solving (4) periodically

during the catch-up phase, taking traffic conditions into
account.

We also considered the case when some disturbance is
acting on the vehicles. Namely, at a random time instant
between 5 and 10 minutes after the catch-up has begun,
the speed of the follower vehicle is decreased by 20 km/h
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Fig. 6: Relative energy consumption change

TABLE II: Relative energy consumption change without and
with a disturbance

𝜌
No disturbances With disturbance

(1) (2) (3) (1) (2) (3)
Light -2.46% -2.47% -2.65% -1.87% -1.92% -2.16%

Medium -2.04% -2.06% -2.40% -1.49% -1.55% -1.92%
Heavy -1.39% -1.42% -2.02% -0.75% -0.84% -1.52%

for 10 min. This causes the platoon merging to be delayed
and would result in reduced energy savings, so recalculating
optimal speeds is required.

There were 100 simulation runs for each combination of
control law and traffic density range, and the random seeds
used to generate traffic were the same for all control laws.
The average energy savings are shown in Fig. 6 and in Table
II. An example simulation result is shown in Fig. 5. We can
see that using control laws that take traffic conditions into
consideration improves average energy savings, especially in
heavy traffic. The improvement is especially apparent when
disturbances are present.

In addition to calculating optimal catch-up speeds, this
approach can also be used to predict when attempting to form
a platoon is not beneficial. In Table III we see the number of
"bad platooning attempts", i.e. in how many simulation runs
the vehicles failed to reach the goal position in time, or had
higher overall energy cost. If the calculated optimal catch-up
speeds are such that platoon merging is predicted to occur
very close to the end of the common road segment 𝑥𝑓 , we
know that attempting to form a platoon will not yield fuel
savings, and may abandon the attempt at the start, instead
continuing driving at vehicles’ own optimal speeds. We also
see the number of times the algorithm correctly predicted
this outcome (true positive), which could be used to pre-
emptively abort the platooning attempt, as well as the number
of times the bad outcome was not predicted (false negative)
and falsely predicted (false positive).

VI. CONCLUSION

In this paper, we further develop the framework for intro-
ducing platoons as moving bottlenecks into the CTM. We
derive a control strategy for energy-optimal catch-up of two
vehicles that are attempting to form a platoon while driving
on the road. It is shown in simulations that this strategy
achieves better results compared to the case when we do not
take traffic conditions into account. This approach has an
additional benefit of being able to indicate when attempting
to form a platoon would not yield improvements in fuel

TABLE III: Bad platooning attempt prediction
Light Medium Heavy

Total bad attempts 5 15 23
Correctly predicted 5 14 19

Not predicted 0 1 4
Falsely predicted 6 3 1

consumption, and thus prevent unnecessary deviations from
vehicles’ individual plans.

For future work, it would be interesting to also investigate
other platooning maneouvres, such as reordering the vehicles,
in a similar framework. Additionally, the control strategy is
derived for a macroscopic traffic model, and it would be
beneficial to test it in microscopic simulations.
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