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Abstract— This paper considers the problem of hub-based
platoon coordination for a large-scale transport system, where
trucks have individual utility functions to optimize. An event-
triggered distributed model predictive control method is pro-
posed to solve the optimal scheduling of waiting times at hubs
for individual trucks. In this distributed framework, trucks
are allowed to decide their waiting times independently and
only limited information is shared between trucks. Both the
predicted reward gained from platooning and the predicted cost
for waiting at hubs are included in each truck’s utility function.
The performance of the coordination method is demonstrated
in a simulation with one hundred trucks over the Swedish road
network.

I. INTRODUCTION

Truck platooning, which involves a group of trucks trav-
eling in a formation with small inter-vehicle distances, has
gained increasing popularity in modern transport systems [1].
Seeing that every follower truck in a platoon experiences less
aerodynamic drag than driving individually, platooning is
promising for reducing trucks’ fuel consumption, greenhouse
gas emission and transport cost. These benefits have been
recognized by numerous field experiments in, e.g., [2], [3].

The technological advances in e-commerce developed over
the past decade have made intelligent logistics a new applica-
tion field for truck platooning. In this direction, efficient dis-
patching strategies for facilitating the formation of platoons
while fulfilling delivery tasks attract more attentions. Specif-
ically, researchers start to focus on the issues of planning the
transport routes [4], controlling the velocity of a truck that
approaches to an intersection [5], and scheduling the waiting
times of a truck at hubs in transport networks [6], [7] in order
to maximize the benefit achieved from forming platoons. The
decision makers of a scheduling process can be, for example,
truck drivers, fleet managers, logistics companies, as well as
administrators of the whole transport system.

In recent years, the ever-increasing demand for online
shopping and economic globalization has led to significant
growth of the amount of freight transport, especially for
large-scale logistics companies with plenty of customers and
trucks. Under this situation, traditional centralized dispatch-
ing methods become inapplicable. Apart from enduring a
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heavy computational burden, the centralized schemes suf-
fer from a multi-fleet nature of the problem [8], where
every truck has its own utility to optimize. Moreover, the
centralized coordination approaches fail to efficiently deal
with various delivery mission variations in the real-world
application, for instance, adding new trucks to the system
or changing the path planned or the shipping destinations.
To handle these challenges, we aim to propose a novel
distributed framework for solving the hub-based platoon
coordination problem (i.e., platoons are formed at hubs) for
large-scale transport systems.

A. Related Work

The notion of truck platooning has been extensively in-
vestigated over the past few decades. In the literature, most
research concentrates on the cooperative platooning control
of vehicles from a physical layer, e.g., to form a platoon
with arbitrary initial conditions [9], maintain a constant speed
and inter-vehicle space [10], enable multi-brand truck pla-
tooning [11], apply vehicle-to-vehicle communication tech-
nique [12] and guarantee string stability [13], [14], etc. These
research efforts primarily dedicated to maintaining a reliable
running of truck platoons in the real traffic environment.

As platooning technology becoming mature, the develop-
ment of efficient coordination strategies in the planning and
scheduling layer has become a new active but challenging re-
search topic [15], [16]. In this layer, existing studies involve
exploring the frequent sub-routes in a network [17], modeling
the vehicle routing problem [18] and planning the speed [19]
or the departure times [20], [21] of vehicles to facilitate
forming platoons. Notwithstanding, most existing methods
are based on a centralized optimization and coordination
mechanism, which therefore can not be applied to cope with
massive networks with hundreds of vehicles.

To make the time scheduling problem in large-scale sys-
tems computationally tractable, the literature [22] proposes
to allocate virtual controllers at intersections and the pla-
toon formation can be promoted by slightly adjusting the
speed of vehicles approaching to intersections. This approach
indeed decreases the computation load in comparison with
centralized schemes, while as the platooning opportunities
of individual trucks are only considered at one intersection,
the platooning benefit at the following intersections may get
lost. Another closely related work is [23], in which a similar
waiting time scheduling problem is studied for trucks with
individual utility functions. In difference to our work, the
authors in [23] formulate the problem in a non-cooperative
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game theoretic framework and present Nash equilibrium as
solution concept, which requires a large number of iterations
to find an equilibrium solution for many trucks. In this paper,
we propose a solution that allows each truck to compute
its waiting times independently from others, making it more
efficient to compute than an equilibrium solution and more
suitable for handling massive transport networks.

B. Contributions

In this paper, we aim to present a novel distributed frame-
work for handling the truck platoon coordination problem
in large-scale transport systems, where individual trucks are
assumed to come from different commercial fleets and have
their own utilities to optimize. The scheduling of trucks’
waiting times at hubs is first formulated as an event-triggered
distributed model predictive control (MPC) problem. Using
this method, every truck optimizes its waiting times at
hubs independently based on limited information from other
trucks. The main contributions are as follows:
(i) A dynamical predictive model that characterizes trucks

traveling in the transport network is created;
(ii) A predicted utility function of individual trucks is

presented, which includes the predicted reward obtained
from platooning and the loss caused by waiting at hubs;

(iii) An event-triggered distributed MPC algorithm is pro-
posed to address the waiting time scheduling problem;

(iv) The effectiveness of the developed method is verified
through a platoon coordination simulation on one hun-
dred trucks in the transport system of Sweden.

The rest of the paper is organized as follows. Section II
formally formulates the platoon coordination problem and in-
troduces basic terms used for transport network descriptions.
Section III presents the main results of this paper, including
a dynamical predictive model, the utility function design and
an event-triggered distributed MPC algorithm. In Section IV,
a simulation illustrating the effectiveness of the developed
method is provided. Finally, Section V concludes this paper
with an outlook for the future work.

II. PROBLEM FORMULATION

Notations. Throughout this paper, R and N denote the set
of real numbers and non-negative integers, respectively. Rn

is the n-dimensional Euclidean space while Rn×m represents
the set of n×m real matrices. A zero vector with appropriate
dimension is denoted by 0. For any a, b∈N with a≤ b, let
[a :b]={a, a+1, . . . , b}. |N | stands for the cardinality of the
set N , i.e., the number of elements that in N .

As shown in Fig. 1, in this paper, we focus on a large-
scale transport system with M trucks from different fleets.
Every truck travels from its origin oi to its destination di to
achieve a certain delivery task, where i∈M := [1 :M ].

We make use of some assumptions to simplify the presen-
tation of the problem. For every truck i, its delivery route
from the origin oi to the destination di, the hubs alongside
the route, as well as the travel time on routes are assumed
to be fixed and known. The formation of platoons takes

place only at hubs. On this basis, we formulate the platoon
coordination problem at hubs as: optimize the waiting
times of every individual truck i at hubs alongside its delivery
route such that its utility is maximized.
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Fig. 1. A graph illustrating the platoon coordination problem considered
in this paper, where hubs in the transport network are denoted by red nodes.
Origins and destinations are marked by blue and green labels, respectively.

Remark 1: For simplicity, we assume all the origin and
destination pairs (namely, OD pairs) are selected from hubs.
In other words, every origin (and destination) in the transport
network corresponds to a hub in our consideration.

In the sequel, we present necessary definitions that will
be used in describing the transport network. We consider
that the route of truck i is partitioned by a group of hubs
Hi = [0 :Ni−1] into a finite number of road segments. The
origin oi is indexed by 0-th hub while the destination di is
indexed by (Ni−1)-th hub. For any hub k∈ [0, Ni−2] in the
route of truck i, we denote by ei(k,k+1) the directed route
segment of truck i from hub k to the next hub k+1. The
route of truck i, denoted by e(oi,di), is defined as a sequence
of directed route segments from oi to di, that is,

e(oi,di) := {ei(0,1), ei(1,2), . . . , ei(Ni−2,Ni−1)}. (1)

Meanwhile, we associate the global transport system with
a directed graph D(H, E) for route structure analysis, where
H is the set of hubs while E is the set of directed route
segments in the network. The total number of hubs is |H|=
N . Every physical hub in the transport system is represented
by hm with m∈ [1 :N ]. On this basis, H and E are denoted
as

H = {h1, h2, . . . , hN}, E = ∪Mi=1e(oi,di). (2)

Notice that the same hub index k in the routes of different
trucks may correspond to different real physical hubs. Here
we do not distinguish the hub indexes for brevity. To avoid
confusion, we make use of a map Hi(k) to represent the
corresponding physical hub. More specifically, the function
Hi: Hi→H maps any hub index k∈Hi in the route of truck
i into a real physical hub hm∈H in the transport network.

In line with the above notions, the common route segment
of two routes can be presented as follows. For any two route
segments ei(k,k+1) ∈ e(oi,di) and ej(k′ ,k′+1) ∈ e(oj ,dj) where
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i, j∈M and i 6=j, we say ei(k,k+1) =ej(k′ ,k′+1) is a common
route segment for the routes e(oi,di) and e(oj ,dj) if Hi(k)=

Hj(k
′
) and Hi(k+1)=Hj(k

′
+1).

III. EVENT-TRIGGERED DISTRIBUTED MPC FOR
PLATOON COORDINATION

This section introduces how one can solve the platoon
coordination problem at hubs through an event-triggered dis-
tributed MPC approach. To this end, we start by presenting
the dynamical predictive model of individual trucks.

A. Dynamical Model of Individual Trucks

The distributed MPC has been regarded as an advanced
control method for optimal control of networked systems due
to its capability of handling multiple constraints and improv-
ing system performance with limited local information [24],
[25], [26]. To employ the distributed MPC algorithm, a
dynamical subsystem model for prediction is required.

hub 0 (oi) hub Ni-1 (di)hub 1 

  

. . . hub Ni-2hub k hub k+1 . . .

Fig. 2. The route of truck i from the origin oi to the destination di.

Let us consider a large-scale distributed transport system
that consists of M trucks, where each truck is regarded as
a local subsystem. For every truck i∈M, its departure time
tdi (k) from hub k∈ [0 :Ni−2] is denoted as

tdi (k) = tai (k) + τwi (k), (3)

where tai (k) represents the arrival time of truck i at hub k
and τwi (k) denotes its waiting time at hub k. As shown in
Fig. 2, the arrival time of truck i at the next hub k+1 can
be depicted by

tai (k+1) = tdi (k) + τ ti(k,k+1), (4)

where τ ti(k,k+1) is the travel time of truck i on the route
segment ei(k,k+1). By substituting equation (3) in equation
(4), we have that

tai (k+1) = tai (k) + τwi (k) + τ ti(k,k+1), k∈ [0 :Ni−2]. (5)

In (5), we take tai and τwi as the state xi and the input ui
for truck i, respectively. Because the travel time τ ti(k,k+1) is
known in the problem setting, it can be denoted as a constant
ci. Therefore, the dynamical model of truck i is of the form

xi(k+1) = xi(k) + ui(k) + ci(k,k+1), k∈ [0 :Ni−2], (6)

where xi, ui ∈R are the arrival and waiting times of truck
i. Constrained by the delivery deadline, the input of every
subsystem, namely, the waiting time of a truck at each hub,
should satisfy that ui∈ Ui := {ui : τwi ≤ ui ≤ τ̄wi }.

The dynamical model (6) characterizes the dynamics of
every truck traveling in the transport network, which indi-
cates that one can predict the arrival time of a truck at the

next hub in accordance with the arrival and waiting times of
the truck at the current hub, as well as the travel time on the
route segment between the two hubs.

B. Utility Function

In a transport network system, trucks are assigned to
deliver goods from their own origins to destinations within
a preferred time range. We assume that each truck from a
different commercial fleet and thus has a different utility
function to optimize. The target of the platoon coordination
is to schedule the waiting times at hubs optimally for each
individual truck so that its own utility is maximized.

Typically, the utility function of a truck contains the re-
ward gained from forming platoons with other trucks and the
loss caused by waiting at hubs. According to the dynamical
model of individual trucks obtained above, the dynamics of
a truck at the future hubs become predictable. Therefore, the
predicted reward function and the predicted loss function of
every truck are presented as follows.

• The Predicted Reward Function:

The truck platooning technique is essentially a cooperative
behavior among a group of trucks, which requires all trucks
in the platoon to: (c1) start from a common hub and leave
for the next common hub; and (c2) have the same departure
time from the common hub. To denote all the trucks in the
transport system that can meet condition (c1), the potential
partner set of a truck is defined.

Definition 1: (Potential partner set) For two trucks i, j∈
M and i 6= j, given ei(k,k+1) ∈ e(oi,di) with k ∈ [0 :Ni−2],
if ei(k,k+1) ∈ e(oj ,dj) holds, we say truck j is a potential
platooning partner of truck i at hub k. The potential partner
set of truck i at hub k is denoted as

Pi(k)={j : ei(k,k+1)∈e(oj ,dj), j∈M, j 6= i}. (7)

If truck j belongs to the potential partner set of truck i,
truck j is also called a related truck of truck i. Here Pi(k)
represents all the trucks that may form a platoon with truck
i on the common route segment ei(k,k+1).

Remark 2: The potential partner set Pi(k) can be calcu-
lated offline based on the routes information of trucks. If a
truck j in Pi(k), it implies that truck i will consider truck
j as a potential platooning partner at its k-th hub since they
have the route segment ei(k,k+1) in common.

Next, to meet the condition (c2) for forming platoons, the
predicted partner set of every truck is given.

Definition 2: (Predicted partner set) For any hub k∈ [0 :
Ni−2] in the route e(oi,di), the predicted partner set of truck
i at the future hub k+h in e(oi,di) is denoted by

Ri(k+h|k)={j : j∈Pi(k+h) ∧ xi(k+h|k)+ui(k+h|k)

= x̂j(Hi(k+h))+ûj(Hi(k+h))}, (8)

with h∈ [0 :Ni−2−k]. In (8), xi(k+h|k) and ui(k+h|k)
denote the state and input of truck i at the future hub k+
h predicted by truck i at the current hub k, respectively.
Whereas x̂j(Hi(k+h)) and ûj(Hi(k+h)) denote the state
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and input of truck i’s related trucks j at the physical hub
Hi(k+h) predicted by truck j.

Regarding to the definition of the predicted partner set
Ri(k+h|k), we explain the following things. For clarity,
Fig. 3 is used in the explanation.

 
  

hub k+h
. 
. 
.

Truck i

Truck j1

Truck j2

Truck jPi,k+h

. 
. 
.

Fig. 3. The waiting time bars of truck i and j at hub k+h in the route
e(oi,di), where j∈Pi(k+h) and |Pi(k+h)|=Pi,k+h.

1). In (8), xi(k+h|k)+ui(k+h|k) represents the departure
time of truck i from the hub k+h predicted at hub
k. Its feasible range is marked by the blue time bar in
Fig. 3. Similarly, x̂j(Hi(k+h))+ ûj(Hi(k+h)) denotes
the departure time of truck i’s related trucks (as shown
by the yellow nodes in Fig. 3) from the real physical
hub Hi(k+h). Therefore, the equation in (8) indicates
that truck i is able to form a platoon with all the trucks
j∈Ri(k+h|k) at the hub k+h in e(oi,di) according to
the prediction of truck i at the current hub k;

2). The hub index k+h in the route e(oi,di) of truck i may
differ from the hub index in the route e(oj ,dj) of the
related trucks j. To denote the prediction of truck j at
the same hub k+h in e(oi,di), the function Hi(k+h) is
used to map the hub k+h to a real physical hub in the
transport network in (8). Meanwhile, at which hub in
e(oj ,dj) the state and input x̂j(Hi(k+h)), ûj(Hi(k+h))
are predicted by truck j is not important for truck i and
thereby is not included in the notations.

Extensive field experiments [27], [28], [29] have shown
that the follower trucks in a platoon have approximately the
same fuel savings, while the leader truck gets a significantly
smaller saving. The total benefit of a platoon is therefore
increasing with the number of followers and the platoon’s
duration. For this reason, the predicted reward function of
an individual truck i at its k-hub is defined by

Ri(k) :=

Ni−2−k∑
h=0

ξici(k+h,k+h+1)
|Ri(k+h|k)|
|Ri(k+h|k)|+1

, (9)

which includes the rewards achieved for forming pla-
toons on the remaining route segments of truck i, that
is, {ei(k,k+1), ei(k+1,k+2), . . . , ei(Ni−2,Ni−1)}. More specifi-
cally, ξi represents the monetary platooning benefit from
fuel savings per follower truck and per travel time unit,
and ci(k+h,k+h+1) is the travel time on the route segment

ei(k+h,k+h+1). The cardinality of Ri(k+h|k) is the predicted
number of follower trucks in the platoon forming at hub
k+h. For simplicity, we assume that the leader has zero fuel
saving and the total platooning benefit is shared equally in
the |Ri(k+h|k)|+1 trucks in the platoon.

Remark 3: Unlike Pi(k), the predicted partner set Ri(k+
h|k) includes the set of trucks that truck i predicts to form
a platoon at hub k+h according to the predicted arrival
times and waiting times of other related trucks. It is worth
mentioning that Ri(k+h|k) is a subset of Pi(k+h).

• The Predicted Loss Function:

The trucks can wait at hubs to form platoons and their
decisions to wait may incur benefit loss because of higher
cost for drivers and the penalties for delay in the transport
operation. Taking into account these factors, we define the
predicted loss function for truck i at hub k as

Li(k) :=

Ni−2−k∑
h=0

εiui(k+h|k), (10)

where εi denotes the monetary loss per time for waiting and
ui(k+h|k) denotes the waiting time of truck i at hub k+h
computed at hub k∈ [0 : Ni−2].

Then, the utility function Ji(k) of truck i at the k-th hub
in its route is comprised of its predicted reward function and
loss function, that is

Ji(k) = Ri(k)− Li(k) (11)

=

Ni−2−k∑
h=0

li
(
xi(k+h|k), ui(k+h|k),

x̂−i(Hi(k+h)), û−i(Hi(k+h))
)
, (12)

where x̂−i(Hi(k+h)) and û−i(Hi(k+h)) are the collection
of predicted states and inputs of potential platooning partners
of truck i. More precisely, x̂−i and û−i are denoted by

x̂−i(Hi(k+h))=[x̂j(Hi(k+h))]∀j∈Pi(k+h)

=[x̂1(Hi(k+h)),...,x̂Pi,k+h
(Hi(k+h))] (13)

û−i(Hi(k+h))=[ûj(Hi(k+h))]∀j∈Pi(k+h)

=[û1(Hi(k+h)),...,ûPi,k+h
(Hi(k+h))] (14)

with Pi,k+h = |Pi(k+h)|.

C. Event-triggered Distributed MPC for Platooning

In the hub-based platoon coordination problem considered
in this paper, every individual truck i∈M in the transport
network is allowed to make decisions only when it arrives at
hubs. The decision variables are the waiting times of truck i
at hubs, and the optimization target is its own utility function.
In this sense, the distributed platoon coordination problem
at hubs is in nature an event-triggered control problem. The
Event-triggering Condition can be depicted as

tsys =xi(k) and k 6=Ni−1, i∈M, (15)

where tsys is the system time of the whole transport system
and xi(k) is the arrival time of truck i at any a hub k except
for destination. That is, k 6=Ni−1.
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On the basis of the above descriptions and definitions, the
optimization problem of truck i at hub k∈ [0 : Ni−2] in its
route can be formulated as the following distributed MPC
problem

max
ui(k)

Ji(k) (16a)

s.t. xi(k) = tai (k) (16b)
xi(k+1|k) = xi(k) + ui(k) + ci(k,k+1) (16c)
ui(k+h|k) ∈ Ui, h∈ [0 :Ni−2−k] (16d)

xi(Ni−1|k)− tendi ≤ 0. (16e)

In problem (16), the utility function Ji(k) is given in (12),
which is dependent on the departure time predictions of truck
i’s related trucks. The optimization variable ui(k)∈RNi−1−k

has the specific form of

ui(k) := [ui(k), ui(k+1|k), . . . , ui(Ni−2|k)]. (17)

We denote the optimal solution of problem (16) as u∗i (k)=
[u∗i (k), . . . , u∗i (Ni−2|k)], where the elements are the optimal
waiting times at the hubs in truck i’s route. It is important to
point out that only the optimal waiting time u∗i (k) computed
for the current hub k will be implemented in the control of
truck i. The other waiting times will serve as predictions for
other related trucks to compute their optimal waiting times.

The constraints (16b)-(16e) are explained as follows: (16b)
represents the initial state of truck i at the current hub.
Particularly, there is tai (k)= tstarti when k=0, where tstarti

denotes the departure time of truck i from its origin. In
addition, (16c) is the dynamical predictive model of truck
i and (16d) is the restrictions on the waiting times. Finally,
(16e) implies that every truck respects its delivery deadline
at its destination. The developed distributed MPC method for
platoon coordination at hubs is organized as in Algorithm 1,
where Sd denotes the set of decision makers at time tsys.

Algorithm 1: Event-triggered Distributed MPC for
Platoon Coordination at Hubs

Input : D(H, E), tstarti , tendi , τ ti(k,k+1), τ
w
i , τ̄wi

Output: u∗i (k), {R∗i (k+h|k)}
1 Initialization: u∗i (0)← 0, obtain xi(k), x̂−i(Hi(k)),

û−i(Hi(k)), Pi(k);
2 Sd ← ∅;
3 tsys ← 0;
4 while tsys 6= maxi∈M {tendi } do
5 tsys ← tsys+1;
6 Sd ← {i∈M : tsys =xi(k) ∧ k 6=Ni−1};
7 for i∈Sd do
8 solve truck i’s distributed MPC problem

(16);
9 update x∗i (k+h|k),u∗i (k+h|k) at future hubs;

10 return u∗i (k), {R∗i (k+h|k)}.
11 end
12 end

Remark 4: With the knowledge of predictions x̂−i(Hi(k+
h|k)) and û−i(Hi(k+h|k)) of truck i’s related trucks, the
predicted partner set Ri(k+h|k) of truck i is a function
of ui(k) by (8). Therefore, in Algorithm 1, the optimal
predicted partner sets corresponding to the optimal u∗i (k)
are denoted by {R∗i (k+h|k)} with h∈ [0 :Ni−2−k].

IV. SIMULATION OVER SWEDISH ROAD NETWORK

This section provides a simulation over the Swedish road
network to demonstrate the effectiveness of the proposed
algorithm. The number of trucks in the simulation is 100,
and for each of the trucks we randomly select its origin and
destination from the 84 major hubs in the road network of
Sweden. The considered hubs are shown by the red nodes in
Fig. 4. The routes and travel times of individual trucks are
obtained from OpenStreetMap [30].

Fig. 4. The considered hubs are marked out on the map of Sweden.

We assume that each truck starts its trip at a random time
between 8:00 a.m. and 9:00 a.m. The total maximal waiting
time of the trucks along their entire trips is 1 hour, while
the maximal waiting time of each truck at a local hub is
30 minutes. Since the origins and destinations of individual
trucks are generated without restrictions on the total travel
times, to avoid fatigue driving, we assume that drivers will
be changed at hubs if the experienced travel times violate
the maximized driving time restrictions.

The platooning benefit is assumed to be the reduced fuel
consumption of follower trucks, and we assume that the fuel
consumption of follower trucks is reduced by 10 %. This will
lead to a monetary saving of 7.2 Swedish kronor (SEK) per
follower per kilometer. The velocity of trucks on motorways
is considered as 80 kilometers per hour, and thereby, the
platooning benefit is ξi = 57.6 SEK per hour. On the other
hand, the cost of waiting at hubs is assumed to be low since
the delivery deadlines are respected. In this example, we set
the cost of waiting as εi =45 SEK per hour.
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The simulation results of every individual trucks are
provided in Fig. 5–9. Fig. 5 shows the realized total utility of
each of the trucks and the truck indexes are sorted according
to trucks’ utilities. The figure shows that the utilities range
between 0-400 SEK, and that approximately 60% of the
trucks have a non-zero utility even though there were only
100 trucks in the transport network.

Fig. 5. The real utilities of individual trucks

The waiting times of the trucks are given in Fig. 6. It
is seen in the figure that the trucks with zero utility do not
wait, and the waiting times of the rest of the trucks are fairly
uncorrelated with their utilities. The average waiting time of
the trucks in their whole trips is 5.3 minutes.

Fig. 6. The total waiting times of individual trucks at hubs.

Subsequently, to evaluate the platoon coordination effi-
ciency, each truck’s time as alone driving is compared with
its time as a platoon member, and we define the platooning
rate for each truck i as

ri =
Total travel time of truck i in a platoon

Total travel time of truck i in the network
. (18)

The platooning rates of every individual trucks are shown
in Fig. 7, from which we can see the average platooning
rate of the 100 trucks is 0.34. In addition, around 45% of
the trucks have a higher platooning rate than the average
value. The total travel times in the network and the times in
a platoon of the trucks are shown in Fig. 8.

Fig. 7. The platooning rates of individual trucks.

Fig. 8. The total travel times of individual trucks.

Fig. 9 shows the average computation time of each truck
used to solve the distributed MPC problem at the hubs. As
is shown, the average computation time of the 100 trucks
at hubs is 0.05 seconds, which indicates a high efficiency
of the proposed algorithm. Moreover, Fig. 7 and Fig. 9
indicate that the computational time slightly correlates with
the platooning rate of a truck. The above simulation results
together demonstrate the effectiveness and characteristics of
the developed method.

Fig. 9. The computation time of individual trucks.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, an event-triggered distributed MPC approach
was developed to address the hub-based platoon coordination
in large-scale transport systems. The scheduling of waiting
times at hubs was formulated as a distributed MPC problem.
The utility of individual trucks consists of the predicted
reward from platooning and the predicted loss caused by
waiting at hubs. In this distributed framework, every truck
is able to make decisions independently according to limited
information and optimize its waiting times at different hubs.
The proposed distributed MPC method has the merits of
light computing load and is suitable for the optimization
of massive networks. Finally, the numerical example of one
hundred trucks in Swedish transport system verified the
effectiveness of the approach.

The distributed MPC framework for platoon coordination
carried out in this paper can be further extended in different
ways. One of the interesting directions will be the distributed
cooperative platoon for trucks from multiple fleets, and
another possible extension could be taking into account
stochastic travel times in the platoon coordination.
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