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Abstract— Stop-and-go waves on freeways are a well known
problem that has typically been addressed using dynamic speed
limits. As connected automated vehicles enter the roads, new
approaches to traffic control are becoming available, since the
control actions can now be communicated to these vehicles
directly. It is therefore important to consider automated vehicles
independently from the rest of the traffic, using traffic models
with multiple vehicle classes. In this paper, we use a multi-class
CTM to capture the interaction between the controlled vehicles
and the background traffic. Exploiting the nonlinear nature of
the model, we are able to first collect enough controlled vehicles
into an area, and then use them to actuate the rest of the traffic
by acting as a controlled moving bottleneck. In this way, we
are able to dissipate stop-and-go waves quicker, improving the
throughput and homogenizing the traffic. The effectiveness of
the approach is demonstrated in simulations.

I. INTRODUCTION

Controlling the traffic flow when the demand is close
to road capacity is a very challenging and important task.
Maintaining free flow with very high traffic density leads
to an increased throughput, which reduces congestion levels
and total travel time of all vehicles. However, this is a
metastable situation, as small perturbations can often cause
traffic breakdown and emergence of stop-and-go waves, also
known as wide moving jams [1, 2] leading to a significant
reduction in throughput. Furthermore, since vehicles need to
decelerate or come to a full stop when entering the stop-
and-go wave, their fuel consumption is increased, while the
safety and comfort are decreased.

Resolving these stop-and-go waves enables the traffic to
go return to a more desirable state. There have been several
approaches dealing with this problem. In [3], a control law
was proposed that uses variable speed limits (VSL). Al-
though effective, this traffic control method requires variable
message signs to communicate its control actions, reducing
its flexibility and increasing its cost. With the introduction
of new technologies, we expect to have the possibility to
communicate control actions directly to the vehicles, either
through an in-car advisory system in case of human drivers
[4], or as commands to connected automated vehicles [5]. In
[6], the control algorithm was combined with car-following
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control system, where connected automated vehicles adjust
their behaviour based on nearby traffic conditions, leading
to further improvements.

However, the performance of all these control algorithms
suffers from low market penetration rate of connected au-
tomated vehicles, which is the situation that we are likely
to have on the roads for quite some time [7]. In case
variable message signs are not available at the location of
interest, the only way of actuating VSL controls would
be directly communicating it to the connected automated
vehicles, which is equivalent to having an extremely low
compliance rate. Therefore, there is an acute need to develop
control approaches that can be used in this intermediate
period when connected automated vehicles become available,
but not in large numbers. Microscopic approaches, where
we focus on the behaviour of individual vehicles and use
automated vehicles to dissipate stop-and-go waves, have re-
cently been proposed [8]. However, more detailed treatment
of this problem in a macroscopic setting is still needed. To
this end, there has been a decent amount of work on multi-
class or multi-commodity macroscopic traffic flow models
[9, 10]. Multi-class traffic models are typically inspired by
the introduction of autonomous and connected vehicles, but
can also provide a useful tool for capturing uncertainties in
the flow model, or to precisely model the routes that vehicles
take.

The problem we are addressing in this paper is stop-
and-go wave dissipation using a small portion of connected
automated vehicle that can be controlled directly from the
infrastructure. We present a multi-class extension of the Cell
Transmission model (CTM) and use it to model the inter-
action between connected automated vehicles and human-
driven vehicles. We also propose an addition to the model
that enables it to correctly model the behaviour of platoons
and stop-and-go waves. Using this model, we derive a control
law that uses the information about traffic density of each
class along the road to first select a point at which we begin
accumulating controlled vehicles, followed by accumulating
enough vehicles to be able to influence the rest of the
traffic, and finally controls the amassed moving bottleneck
to dissipate the stop-and-go wave faster faster and increase
the throughput of the road. In contrast to our previous work
[11], where we required a heavy-duty vehicle to be at suitable
position before using it as a controlled moving bottleneck,
this enables us to choose where we create an accumulation of
connected automated vehicles, offering us greater flexibility.

The outline of this paper is as follows. First, in Section II
we present the multi-class CTM, and model platoons and
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stop-and-go waves. Next, in Section III we devise a control
strategy that for use in low penetration rate scenarios. We
evaluate this control strategy in simulations in Section IV
and finally conclude in Section V.

II. MODEL

A. The Multi-class CTM

The model that is presented and used in this work is a
multi-class extension of the well-known CTM [12]. It is a
modification of the model used in [13]. Let 𝒦 be the set
of vehicle classes 𝜅 ∈ 𝒦. We express the contribution of
all vehicle classes to the overall traffic density in terms of
passenger car equivalents. The traffic density of vehicles of
class 𝜅 in cell 𝑖 at discrete time 𝑡 will be denoted 𝜌𝜅𝑖 (𝑡). The
model allows each of the classes to have a distinct free flow
speed 𝑈𝜅

𝑖 (𝑡) in every cell and at every time instant.
Assuming that the cells are of same length and that there

are no on- or off-ramps, the evolution of cell traffic densities
for each class is given by

𝜌𝜅𝑖 (𝑡+ 1) = 𝜌𝜅𝑖 (𝑡) +
𝑇

𝐿

(︀
𝑞𝜅𝑖−1(𝑡)− 𝑞𝜅𝑖 (𝑡)

)︀
,

where 𝑇 is the discretization step, 𝐿 = 𝑉 𝑇 is the cell length,
with 𝑉 being the default free flow speed, and the traffic flow
of each class is given by

𝑞𝜅𝑖 (𝑡) = min(𝐷𝜅
𝑖 (𝑡), 𝑆

𝜅
𝑖+1(𝑡)).

Due to shared road capacity, the demand and supply func-
tions of each class 𝐷𝜅

𝑖 (𝑡) and 𝑆𝜅
𝑖 (𝑡) also depend on vehicles

of other classes. We write the demand and supply functions

𝐷𝜅
𝑖 (𝑡) = 𝑈𝜅

𝑖 (𝑡)𝜌
𝜅
𝑖 (𝑡)min

⎛⎜⎝1,
𝐹𝑖(𝑡)∑︀

𝑘∈𝒦
𝑈𝑘
𝑖 (𝑡)𝜌

𝑘
𝑖 (𝑡)

⎞⎟⎠ ,

𝑆𝜅
𝑖 (𝑡) =

𝜌𝜅𝑖−1(𝑡)

𝜌𝑖−1(𝑡)
min (𝑊𝑖(𝑃𝑖 − 𝜌𝑖(𝑡)), 𝑉 𝜎𝑖) .

Here, 𝜎𝑖 and 𝑃𝑖 the critical density and jam density of
cell 𝑖, 𝑊𝑖 the base congestion wave speed, function 𝐹𝑖(𝑡)
models the cell capacity, and 𝜌𝑖(𝑡) =

∑︀
𝜅∈𝒦 𝜌𝜅𝑖 (𝑡) is the

aggregate traffic density. Where not stated otherwise, the
critical density 𝜎, jam density 𝑃 and base congestion wave
speed 𝑊 will be equal for all cells, and 𝑊 =𝑉 𝜎

𝑃9𝜎 , yielding
a triangular fundamental diagram.

Out of many ways of modelling capacity drop in first-
order traffic models [14], we chose to capture it as a linear
reduction of capacity, [15]. Denoting by 𝛼 the maximum
capacity drop ratio under jam traffic density, we have

𝐹𝑖(𝑡)=min

(︂
𝑉 𝜎𝑖,𝑊𝑖

𝜎𝑖+1

𝜎𝑖
(𝑃𝑖−(1−𝛼)𝜎𝑖−𝛼𝜌𝑖(𝑡))

)︂
. (1)

Note that because of this phenomenon, the actual speed of
the congestion wave will be different than 𝑊 .

B. Platoons, Moving Bottlenecks and Stop-and-go Waves

Due to the discretization of the spatial coordinate, cell-
based traffic models are often not adequate for capturing
some traffic phenomena that have clear upstream and down-
stream boundaries that move in time, e.g. long vehicle

platoons or stop-and-go waves. One way of dealing with
this problem is to allow cell interfaces to move [16] and
have these interfaces coincide with the boundaries. However,
the information about the boundary position can often be
encoded in traffic density of some classes. In this subsection,
we describe how these phenomena can be correctly modelled
in multi-class CTM.

Vehicle platoons consist of a number of vehicles driving
together in a line as a single unit. If the platooning vehicles
are connected and automated, this allows them to drive
with shorter inter-vehicular distances, increasing the capacity
of the road. In this work, we assume we will accumulate
connected automated vehicles at certain points along the
road, and model this accumulation as forming and joining a
platoon. Let platooning vehicles belong to class 𝑎 and back-
ground traffic to class 𝑏, and let the platoon move at speed
𝑢𝑝 ∈ [𝑈min, 𝑈max]. Note that simply setting 𝑈𝑎

𝑖 (𝑡) = 𝑢𝑝 in
cells where the platoon is would not be sufficient, since it
would not maintain crisp boundaries of the platoon, as some
vehicles would diffuse to the next cell. For example, for a
one cell long platoon travelling at 𝑢𝑝 = 𝑉/2, we have

𝜌𝑎𝑖 (0) = 𝜌𝑝, 𝜌𝑎𝑖+1(0) = 0, 𝜌𝑎𝑖+2(0) = 0,

𝜌𝑎𝑖 (1) =
𝜌𝑝
2
, 𝜌𝑎𝑖+1(1) =

𝜌𝑝
2
, 𝜌𝑎𝑖+2(1) = 0,

𝜌𝑎𝑖 (2) =
𝜌𝑝
4
, 𝜌𝑎𝑖+1(2) =

𝜌𝑝
2
, 𝜌𝑎𝑖+2(2) =

𝜌𝑝
4
,

whereas the correct behaviour would be

𝜌𝑎𝑖 (2) = 0, 𝜌𝑎𝑖+1(2) = 𝜌𝑝, 𝜌𝑎𝑖+2(2) = 0.

If we assume that platooning control maintains constant
headways between the vehicles, so that the density of pla-
tooned vehicles is 𝜌𝑝, the densities of platooning vehicles in
cells that contain the platoon would be

𝜌𝑎𝑖 (𝑡) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, 𝑖 < 𝑖𝑝𝑡 (𝑡) ∨ 𝑖 > 𝑖𝑝ℎ(𝑡),

𝜌𝑝
𝑥𝑝
𝑡 (𝑡)−𝑋𝑖

𝑝
𝑡 (𝑡)+1

𝐿 , 𝑖 = 𝑖𝑝𝑡 (𝑡),

𝜌𝑝, 𝑖𝑝𝑡 (𝑡) < 𝑖 < 𝑖𝑝ℎ(𝑡),

𝜌𝑝
𝑥𝑝
ℎ(𝑡)−𝑋𝑖

𝑝
ℎ
(𝑡)

𝐿 , 𝑖 = 𝑖𝑝ℎ(𝑡),

(2)

where by 𝑖𝑝ℎ(𝑡) and 𝑖𝑝𝑡 (𝑡) we denote the cells in which the
platoon head and tail (downstream and upstream end) are at
time 𝑡 respectively, by 𝑥𝑝

ℎ(𝑡) and 𝑥𝑝
𝑡 (𝑡) their exact positions,

and by 𝑋𝑖 the position of the upstream end of cell 𝑖. Since
the platoon moves at speed 𝑢𝑝, 𝑥𝑝

ℎ(𝑡+ 1) = 𝑥𝑝
ℎ(𝑡) + 𝑢𝑝𝑇

and 𝑥𝑝
𝑡 (𝑡+ 1) = 𝑥𝑝

𝑡 (𝑡) + 𝑢𝑝𝑇 , which the traffic densities
𝜌𝑎𝑖 (𝑡+ 1) should follow. We may use the cell free flow
speeds 𝑈𝑎

𝑖 (𝑡) to correctly model this behaviour by setting

𝑈𝑎
𝑖 (𝑡)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑉, 𝑖 < 𝑖𝑝𝑡 (𝑡),
𝑉

𝜌𝑎
𝑖 (𝑡)

(︁
𝜌𝑝−

𝑉−𝑈𝑎
𝑖+1(𝑡)

𝑉 𝜌𝑎𝑖+1(𝑡)
)︁
, 𝑖𝑝𝑡(𝑡)≤ 𝑖<𝑖𝑝ℎ(𝑡),

𝑉 − (𝑉 − 𝑢𝑝)
𝜌𝑝

𝜌𝑎
𝑖ℎ

(𝑡) , 𝑖 = 𝑖𝑝ℎ(𝑡),

0, 𝑖 > 𝑖𝑝ℎ(𝑡),

(3)

the traffic densities will both converge to (2) and evolve
according to it, thus correctly modelling the behaviour of
the platoon. Note that in case 𝜌𝑖(𝑡) = 𝜌𝑝, 𝑖𝑝𝑡 (𝑡) < 𝑖 < 𝑖𝑝ℎ(𝑡),
we have 𝑈𝑎

𝑖 (𝑡) = 𝑢𝑝, 𝑖𝑝𝑡 (𝑡) < 𝑖 < 𝑖𝑝ℎ(𝑡). This approach only
works if there are at least 𝑛𝑝

min = 𝜌𝑝𝐿 vehicles in a platoon.
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Let the remainder of traffic consist of human-driven ve-
hicles of class 𝑏, 𝑈 𝑏

𝑖 (𝑡) = 𝑉 , and 𝜎𝑖 = 𝜎. Under (3), the
maximum class 𝑏 traffic density flowing past the platoon will
be 𝜌𝑏𝑖ℎ𝑝 (𝑡)+1(𝑡) = 𝜎−𝜌𝑝. This is exactly the same result as we
get for the maximum traffic density flowing past the moving
bottleneck in the model described in [11] for 𝑉𝑏 = 𝑉 .

Similarly, in its basic form, the model cannot correctly
represent the dynamics of stop-and-go waves and discharging
traffic jams, even with capacity drop (1) included. For
example, if a road is closed for some time and then reopened,
discharging a traffic jam thus caused would evolve as
𝜌𝑖(0)=𝑃𝑖, 𝜌𝑖+1(0)=0,

𝜌𝑖(1)=𝑃𝑖9(19𝛼)𝜎𝑖+1, 𝜌𝑖+1(1)=(19𝛼)𝜎𝑖+1,

𝜌𝑖(2)= . . . 𝜌𝑖+1(2)=(19𝛼)𝜎𝑖+1

(︂
1+

𝛼𝜎𝑖+1

𝑃𝑖9𝜎𝑖

)︂
,

whereas 𝜌𝑖(2)=𝑃𝑖92(19𝛼)𝜎𝑖+1, 𝜌𝑖+1(2)=(19𝛼)𝜎𝑖+1 would
be the correct behaviour.

In general, the discharge flow from a zone of density
𝜌𝑐 > 𝜎𝑖 will cause a zone of density

𝜌𝑑 =
𝜎𝑖+1

𝑃𝑖 − 𝜎𝑖
(𝑃𝑖 − (1− 𝛼)𝜎𝑖 − 𝛼𝜌𝑐)

downstream. The wavefront separating the congestion from
the free flow discharging from it propagates upstream,

𝑥𝑑(𝑡+1) = 𝑥𝑑(𝑡) + 𝜆𝑑𝑇,

𝜆𝑑 =
𝑉 𝜌𝑑 −𝑊 (𝑃 − 𝜌𝑐)

𝜌𝑑 − 𝜌𝑐
. (4)

Denoting by 𝑖𝑐(𝑡) and 𝑖𝑑(𝑡) the cells in which the upstream
and downstream ends of the congestion zone are respectively,
the correct aggregate traffic density profile is given by

𝜌*𝑖 (𝑡) =

⎧⎪⎨⎪⎩
𝜌𝑐, 𝑖𝑐(𝑡)<𝑖<𝑖𝑑(𝑡),

𝜌𝑑+(𝜌𝑐−𝜌𝑑)
𝑥𝑑(𝑡)−𝑋𝑖𝑑(𝑡)

𝐿 , 𝑖 = 𝑖𝑑(𝑡),

𝜌𝑑, 𝑖 > 𝑖𝑑(𝑡).

This density profile can be achieved by setting appropriate
free flow speeds for all vehicle classes, setting

𝑈𝑖𝑑(𝑡) = 𝑉
𝜌*𝑖+1(𝑡+ 1)

𝜌𝑖(𝑡)
(5)

for the downstream end, and then recursing

𝑈𝑖(𝑡) =
𝑉

𝜌𝑖(𝑡)

(︂
𝜌*𝑖 (𝑡+ 1)− 𝑉 − 𝑈𝑖+1(𝑡)

𝑉
𝜌𝑖+1(𝑡)

)︂
(6)

for 𝑖𝑐(𝑡) ≤ 𝑖 < 𝑖𝑑(𝑡), same as in (3).
In summary, in this section we introduce the multi-class

CTM for a road with no on- and off-ramps, as well as
extensions that enable it to model platoons and stop-and-
go waves. The model is intended for the situation when we
have two vehicle classes, and can control one of them, but
it is straightforward to extend it to cover different vehicle
classes and other road networks.

III. CONTROL

Next we use the developed model to derive a control law.
Having detected a stop-and-go wave with downstream end
at 𝑥𝑑, we can start attempting to dissipate it. We assume that
there are two classes of vehicle, class 𝑎 of automated vehicles

that can be controlled from the infrastructure and class 𝑏
of human-driven background traffic that cannot be directly
controlled. Therefore, 𝑈𝑎

𝑖 (𝑡) is the control input that we can
change in some range 0 ≤ 𝑈min ≤ 𝑈𝑎

𝑖 (𝑡) ≤ 𝑈max ≤ 𝑉 , and
we set 𝑈 𝑏

𝑖 (𝑡) = 𝑉 except where a different free flow speed
is needed to properly model stop-and-go waves, where it is
set by (5) and (6).

In case the control region is in free flow, 𝜌𝑖(𝑡) < 𝜎, we will
have 𝑞𝜅𝑖 (𝑡) = 𝑈𝜅

𝑖 (𝑡)𝜌
𝜅
𝑖 (𝑡), and it is easy to show that 𝜌𝑏𝑖 is not

controllable by 𝑈𝑎
𝑖 . If class 𝑎 vehicles only represent a very

small portion of the traffic, the effect of solely controlling
these vehicles in free flow will be very small; instead, we
need to also indirectly control the background traffic by
creating a controlled congestion. Therefore, the control we
propose will consist of three phases:

1) selecting the initial point where we start accumulating
controllable vehicles

2) collecting enough controllable vehicles so that they can
affect the rest of traffic, and

3) using the collected controllable vehicles as a controlled
moving bottleneck.

The overall control structure is outlined in Figure 1.
The simplest way of creating an accumulation of vehicles

is to have a moving free flow speed gradient. Setting

𝑈𝑎
𝑖 (𝑡) =

{︃
𝑈max, 𝑖 < 𝑖𝑝(𝑡),

𝑈min, 𝑖 ≥ 𝑖𝑝(𝑡),

where 𝑋𝑖𝑝(𝑡)<𝑥𝑝(𝑡)≤𝑋𝑖𝑝(𝑡)+1 and 𝑥𝑝 evolves as
𝑥𝑝(𝑡+ 1)=𝑥𝑝(𝑡) + 𝑢𝑝(𝑡)𝑇 , with 𝑈min<𝑢𝑝(𝑡)<𝑈max

will cause class 𝑎 vehicles to accumulate in cell 𝑖𝑝(𝑡) until
they cause a congestion to emerge.

We are free to choose any point 𝑥0
𝑝 where we begin

accumulating vehicles, and the process of calculating it is
demonstrated in Figure 2. Denoting 𝜌𝜅(𝑥, 0)=𝜌𝜅⌊𝑥/𝐿⌋(0) and
setting 𝑈0

𝑝 =𝑈max=𝑉 , the number of accumulated vehicles
after time 𝜏𝑝 will be

𝑛𝑎
𝑥0
𝑝,𝑥

′
𝑝(𝜏𝑝)

(0) =

∫︁ 𝑥′
𝑝(𝜏𝑝)

𝑥0
𝑝

𝜌𝑎(𝑥, 0𝑇 )d𝑥,

where 𝑥′
𝑝(𝜏𝑝) = 𝑥0

𝑝+(𝑈max−𝑈min)𝜏𝑝, i.e. all vehicles start-
ing in

[︀
𝑥0
𝑝, 𝑥

′
𝑝(𝜏𝑝)

]︀
will have accumulated in one cell after

𝜏𝑝. Once more than 𝑛𝑎
𝑝,min = 𝜌𝑝𝐿 vehicles are collected,

where 𝜌𝑝 is the goal platoon density, we can transition to
the second phase of control and use the collected vehicles
as a controlled moving bottleneck.

Fig. 1: Control loop sketch. We use the traffic density
data and information about stop-and-go wave boundaries to
calculate reference speeds for controlled vehicles. Vehicles
upstream of 𝑥𝑝(𝑡) drive faster than those downstream, caus-
ing them to eventually accumulate at that point.
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Fig. 2: Calculating 𝑥0
𝑝 given 𝑢𝑝. We calculate 𝑥0

𝑝 so that we
accumulate enough vehicles after 𝜏𝑝, continue moving the
controlled bottleneck at speed 𝑢𝑝 and reach the stop-and-go
wave at time 𝜏𝑐, exactly as it dissipates.

The flow out of the zone between 𝑥𝑝 and 𝑥𝑑 is

𝑄out = (𝑉 − 𝜆𝑑)𝜌𝑑,

and the downstream end of the zone moves at speed 𝜆𝑑 given
by (4). During the accumulation phase, the flow into the
zone is zero with its upstream end moving at speed 𝑉 , and
assuming the controlled moving bottleneck moves at some
speed 𝑈𝑝 after the accumulation phase is complete, the flow
into the zone is

𝑄in = (𝑉 − 𝑈𝑝)(𝜎 − 𝜌𝑝).

Therefore, we choose 𝑥0
𝑝 so that

𝑛𝑥0
𝑝,𝑥

0
𝑑
(0)=

∫︁ 𝑥0
𝑑

𝑥0
𝑝

𝜌(𝑥, 0𝑇 )d𝑥=𝑄out𝜏𝑐−𝑄in(𝜏𝑐−𝜏𝑝),

𝑥0
𝑝 + 𝑉 𝜏𝑝 + 𝑈𝑝(𝜏𝑐 − 𝜏𝑝) = 𝑥0

𝑑 + 𝜆𝑑𝜏𝑐,

where 𝜏𝑝 is determined by

𝑛𝑎
𝑥0
𝑝,𝑥

′
𝑝(𝜏𝑝)

(0) = 𝑛𝑎
𝑝,min.

After collecting enough vehicles, we control them as if
they were in a platoon with density 𝜌𝑝, as described in
Section II-B. The control law is similar to the one from [11].
We now calculate the moving bottleneck speed 𝑢𝑝(𝑡) at each
time instant so that it arrives at the stop-and-go wave exactly
at the point when it dissipates,

𝑢𝑝(𝑡) =
𝑥𝑑(𝑡)− 𝑥𝑝(𝑡)

𝜏𝑐
+ 𝜆𝑑 (7)

where 𝜏𝑐 is calculated from

𝜏𝑐 =
𝑛𝑥𝑝,𝑥𝑑

(𝑡)− (𝑥𝑑(𝑡)− 𝑥𝑝(𝑡))(𝜎 − 𝜌𝑝)

(𝑉 − 𝜆𝑑)(𝜌𝑑 − 𝜎 + 𝜌𝑝)
. (8)

Substituting (8) into (7), we get

𝑢𝑝(𝑡) =
𝑉 (𝜌𝑑−𝜎+𝜌𝑝) + 𝜆𝑑(𝜌𝑥𝑝,𝑥𝑑

(𝑡)−𝜌𝑑)

𝜌𝑥𝑝,𝑥𝑑
(𝑡)−𝜎+𝜌𝑝

, (9)

where 𝜌𝑥𝑝,𝑥𝑑
(𝑡) is the average traffic density between 𝑥𝑝(𝑡)

and 𝑥𝑑(𝑡).
If any part of (9) is uncertain, it would be estimated from

the data that is available. In particular, calculating 𝜌𝑥𝑝,𝑥𝑑
(𝑡)

might be challenging, since it requires information about

traffic density in each cell. We may instead use the estimated
average traffic density between 𝑥𝑝(𝑡) and 𝑥𝑑(𝑡),

𝜌𝑥𝑝,𝑥𝑑
(𝑡) =

𝑛̂𝑥𝑝,𝑥𝑑
(𝑡)

𝑥𝑑(𝑡)− 𝑥𝑝(𝑡)
(10)

where 𝑛̂𝑥𝑝,𝑥𝑑
(𝑡) is the predicted number of vehicles between

𝑥𝑝(𝑡) and 𝑥𝑑(𝑡),

𝑛̂𝑥𝑝,𝑥𝑑
(𝑡) =𝑛̂𝑥𝑝,𝑥𝑑

(𝑡− 1)− (𝑉 − 𝜆𝑑)𝜌𝑑𝑇 + . . .

. . .+ (𝑉 − 𝑢𝑝(𝑡− 1))(𝜎 − 𝜌𝑝)𝑇,
(11)

and (11) is initialized at time 𝑡𝑝 when we transition from
phase 1 to phase 2,

𝑛̂𝑥𝑝,𝑥𝑑
(𝑡𝑝)=(𝑥𝑐(𝑡𝑝)− 𝑥𝑝(𝑡𝑝))𝜌+ (𝑥𝑑(𝑡𝑝)− 𝑥𝑐(𝑡𝑝))𝜌𝑐,

where 𝑥𝑐(𝑡) is the position of the upstream end of the stop-
and-go wave, and 𝜌 is the average overall traffic density,
which can be calculated from the inflow to the network, or
taken from historical data. Note that since we are not taking
in new measurements of traffic density, nor of stop-and-go
wave downstream and upstream ends, this variant essentially
corresponds to feedforward control. Since we assume we can
communicate with class 𝑎 vehicles, and know their positions,
we may use exact information about their density 𝜌𝑎𝑖 (𝑡).

The control algorithm can further be adjusted by selecting
the goal density 𝜌𝑝 ∈ [0, 𝜎] and the moving bottleneck tar-
get speed 𝑈𝑝 ∈ [𝑈min, 𝑈max]. Physically, the most plausible
choice is to select 𝜌𝑝 =

𝜂𝑝
𝑙

𝐻𝑙
𝜎, where 𝐻𝑙 is the total number

of lanes and 𝜂𝑝𝑙 the number of lanes we want the moving
bottleneck to occupy. By adjusting 𝑈𝑝, we influence at
which point we begin assembling the vehicles, with a lower
𝑈𝑝 leading to quicker dissipation of the stop-and-go wave,
but with less room for adjustment in case there are some
disturbances.

IV. SIMULATIONS

A. Simulation scenario

The parameters of the multi-class CTM model that
were used are 𝑉 = 110 km/h, 𝐿 = 0.5 km, 𝑇 = 𝐿/𝑉 ,
𝜎 = 60 veh/km, 𝑃 = 240 veh/km, 𝑊 = 𝑉 𝜎/(𝑃 − 𝜎), and
𝛼 = 0.1. The initial traffic density 𝜌𝑖(0) is randomly gen-
erated, with every 5 adjacent cells taking a uniformly dis-
tributed value from [0.8𝜎, 𝜎]. Similarly, the inflow into the
first cell 𝑞0(𝑡) is randomly generated in the same way, with
every 5 samples taking a uniformly distributed value from
[0.8𝑉 𝜎, 𝑉 𝜎]. The ratio of connected automated vehicles in
the initial traffic density, 𝑟0𝑖 , and in inflow, 𝑟𝑞(𝑡), also takes
an uniformly distributed random value from [0, 2𝑟], where 𝑟
is the average ratio. For example, the initial density of class 𝑎
vehicles in cell 𝑖 is 𝜌𝑎𝑖 (0) = 𝑟0𝑖 𝜌𝑖(0), while the initial density
of class 𝑏 is 𝜌𝑏𝑖 (0) = (1− 𝑟0𝑖 )𝜌𝑖(0), etc. We are considering
50 km of highway with no on- or off-ramps. At the beginning
of each simulation, a stop-and-go wave is induced by fully
closing the road for 2 minutes at a point close to the end of
the considered stretch, after which we proceed with phase
1 of the described control law. Since the average inflow is
equal to the discharge rate of the stop-and-go wave, it is
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Fig. 3: Box plots of TTT change compared to the base case.
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Fig. 4: Box plots of ATV change compared to the base case.

likely that unless some control action is applied, the wave
will remain until the end of the simulation run.

We choose 𝜌𝑑 = 𝜎
3 , i.e. the moving bottleneck will cover

one third of the lanes, and use 𝑈𝑝 = 60 km
h , 𝑈min = 50 km

h .
Two different versions of the control law described in
Section III will be compared. In the first one, we use
exact information about the current traffic density when
calculating (9), while in the second one we calculate 𝑢𝑝(𝑡)
approximately, using estimated average density (10).

We will use Total Travel Time (TTT) [veh h], i.e. the total
time all vehicles spend on the road,

TTT =

𝑡end∑︁
𝑡=0

𝑁∑︁
𝑖=1

𝜌𝑖(𝑡)𝑇𝐿,

as the traffic performance index to reflect the effect the
control has on throughput of the road. In addition to through-
put, we are also interested in how homogeneous the traffic
conditions are. Therefore, we consider the Average Total
Variation (ATV) of traffic density,

ATV =

𝑡end∑︁
𝑡=0

𝑁∑︁
𝑖=2

|𝜌𝑖(𝑡)− 𝜌𝑖+1(𝑡)|
𝑡end

,

as a measure of traffic homogeneity, where lower ATV
(higher homogeneity) is preferable to higher ATV (lower
homogeneity). Essentially, the existence of a stop-and-go
wave corresponds to high total variation of traffic density, so
if the stop-and-go wave is dissipated quicker, we can expect
the ATV to be lower.

B. Simulation results

We evaluate the two versions of the proposed control law
in 100 simulation runs, with different average ratios of class
𝑎 vehicles 𝑟𝑘. The box plots of relative change of TTT and
ATV, compared to the base case when no stop-and-go wave
is induced, ΔIndex𝑘𝑠 =

Index𝑘

𝑠−Index0

𝑠

Index0

𝑠

, with 𝑠 denoting the
number of the simulation run, are shown in Figure 3 and
Figure 4, respectively. The mean and median relative change
of these indices are also given in Table I and Table II.

We can see that applying either version of the control law
leads to improvements in both performance indices, even
with penetration rates as low as 3%, with higher penetration
rates leading to larger improvements, especially in case
we use exact traffic density data. Approximate feedforward
control is also more likely to fail to dissipate the stop-
and-go wave, since it can underestimate the amount of
vehicles between the controlled moving bottleneck and the
downstream end of the stop-and-go wave, as witnessed by a
higher spread or number of outliers in Figures 3 and 4.

To further illustrate the influence the ratio of controlled
vehicles has, as well as highlight the difference in perfor-
mance of the two control versions, in Figure 5 we compare
the execution of one simulation run for different penetration
rates and control law versions. In Figure 5a and 5b we
compare the exact and the approximate feedforward control
laws under penetration rate of 𝑟 = 5%. In the latter case, the
speed of the controlled moving bottleneck is too high due to
underestimating the traffic volume, causing it to arrive at the
stop-and-go too early and fail to dissipate it.

Additionally, by comparing Figure 5a and Figure 5c,
we see the benefit of having a higher penetration rate of
connected automated vehicles. In case 𝑟 = 10%, we are
both able to start collecting the vehicles closer to the stop-
and-go wave, and finish collecting enough of them much
quicker than in case 𝑟 = 5%. This allows us to dissipate the
stop-and-go wave quicker, leading to improvement in both
performance indices.

TABLE I: Mean and median change in TTT compared to the
base case with no stop-and-go wave formed.

𝑟𝑘 [%]
exact approximate

mean median mean median
0% 6.6% 6.49% 6.6% 6.49%
3% 4.51% 4.04% 5.22% 4.49%
5% 3.99% 3.64% 4.49% 3.78%
10% 3.58% 3.32% 3.82% 3.37%

TABLE II: Mean and median change in ATV compared to
the base case with no stop-and-go wave formed.

𝑟𝑘 [%]
exact approximate

mean median mean median
0% 331.13% 326.87% 331.13% 326.87%
3% 153.46% 142.76% 216.99% 167.01%
5% 127.73% 125.63% 169.84% 130.67%
10% 109.92% 107.99% 129.88% 111.45%
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Fig. 5: One example simulation run for different ratios of controlled vehicles and version of the control algorithm.

V. CONCLUSION

In this paper we deal with the problem of dissipating stop-
and-go waves by use of a small portion of vehicles that we
can control directly. We first accumulate enough of controlled
vehicles, increasing their share in the overall traffic at some
position, and once enough vehicles are gathered, use them
to restrict the traffic flow as a controlled moving bottleneck,
effectively starving the congestion of inflow and causing it
to dissipate sooner. Since the outflow from a stop-and-go
wave is lower than road capacity, this causes the throughput
to increase. The control law is evaluated using Total Travel
Time and Average Total Variation as performance indices,
and shown to lead to improvement in both. We also propose
an approximate feedforward control law that only uses aver-
age or historical information about traffic densities, resulting
in somewhat diminished improvements in TTT and ATV.

There are many other traffic control problems that can be
tackled using the presented multi-class CTM and similar con-
trol approaches. For example, vehicle trajectory optimization
at a signalized intersection or bottleneck decongestion are
typically studied in microscopic traffic model setting, which
necessitates simulating and considering a large number of
individual vehicles. However, the solutions often lead to
emergent behaviours with clear spatio-temporal patterns,
which may be captured by macroscopic models. By adapting
these solutions, we might be able to achieve similar results by
applying a more general control action to all vehicles within
a spatio-temporal region, instead of calculating separate
control for all individual vehicles, thus greatly improving
the tractability of the problem.
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[13] G. Piacentini, M. Čičić, A. Ferrara, and K. H. Johansson,
“VACS equipped vehicles for congestion dissipation in multi-
class CTM framework,” in European Control Conference,
2019.

[14] M. Kontorinaki, A. Spiliopoulou, C. Roncoli, and M. Papa-
georgiou, “First-order traffic flow models incorporating capac-
ity drop: Overview and real-data validation,” Transportation
Research Part B: Methodological, vol. 106, pp. 52–75, 2017.

[15] Y. Han, Y. Yuan, A. Hegyi, and S. P. Hoogendoorn, “New
extended discrete first-order model to reproduce propagation
of jam waves,” Transportation Research Record: Journal of
the Transportation Research Board, no. 2560, pp. 108–118,
2016.

[16] C. C. de Wit and A. Ferrara, “A variable-length cell road traffic
model: application to ring road speed limit optimization,” in
55th IEEE Conference on Decision and Control, 2016.

3151


