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Abstract—Transportation service providers are pres-
surized to enable real-time logistics planning from
a constantly changing demand. This paper focus on
a real-time transportation service provider operating
along a one-dimensional highway. Transportation as-
signments arrive following a Poisson process, and the
transportation service provider is operating on this
road system with a fleet of vehicles, trying to minimize
the expected delivery time. Specifically, the optimal
locations for idle vehicles, and the optimal locations for
construction of distribution centers are considered. The
strategies are evaluated with numerical simulations
along a Swedish highway system.

I. Introduction
The transportation system is vital for the economical

development and functioning of our society, but it is fac-
ing great challenges adapting to increasing demands and
requirements. In the EU the road transportation system
consists of about 2 million trucks, and produces 18% of
the total greenhouse gases [1], thus there are strong social,
economical and sustainability motivations for making the
transportation industry more efficient.

Real-time data gathering has been proved to increase
the efficiency and flexibility in the planning of transport
assignments, and this has spurred an active field of re-
search into building automated highway systems [2, 3]
over the last twenty years. The transition towards Just-
in-Time supply chains, employed to minimize the waste
in the merchandise industry, is affecting the entire logis-
tics chain [4] and transforming the requirements for the
transportation industry. A consequence is the need for
real-time transportation planning and adaption of trans-
portation assignments [5, 6]. Large scale transportation
service providers are also interested in optimizing the
entire fleet management system [7], which also involves
the design of distribution center locations [8, 9]. Related
topics include the strategies for cruising taxis and dispatch
systems [10, 11], repositioning in bike-sharing systems [12],
and combinatorial pickup and delivery problems [13].

This paper focus on a real-time transportation service
provider operating along a one-dimensional highway. The
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goal is to minimize the time it takes from the reception of a
transportation assignment until delivery, and we especially
consider the performance pertaining to the idling vehicles
and the distribution center locations.
The outline of the paper is as follows. In section II, we

introduce the one-dimensional road transportation model.
In section III, we consider the optimal waiting locations
for idling vehicles, and derive an explicit solution for
uniformly random assignments. In section IV, we continue
with the optimal locations for building distribution centers
in order to minimize the traveling time, and similarly
derive an explicit solution for uniformly random assign-
ments, as well as an efficient algorithm for computing the
locations for discrete random distributions. In section V,
we evaluate the strategies with numerical simulations,
before concluding the paper in section VI.

II. Transportation Model

Consider a road freight transportation system between
two cities, for example the main highway connecting the
largest cities in Sweden as depicted fig. 1. A position along
this route can be represented with its relative position
in the interval [0, 1]. Also, as shown in fig. 1 there are
several major cities located along this road. Thus, using
this model, any position of a vehicle, or destination is given
by a number in the interval [0, 1]. Furthermore, positions
on the interval [0, 1] can be scaled such that the difference
|x1 − x2| between two positions x1 and x2 is proportional
to the transportation cost between these locations on the
map, in terms of either travel distance, travel time or fuel
consumption.
A real-time transportation provider is operating on

this road system with a fleet of vehicles. Transportation
assignments arrive randomly following a Poisson process
with rate λ, and the pickup location l1 and drop-off
location l2 are sampled from a joint probability density
function ρ(l1, l2) : [0, 1] × [0, 1] → R+, where we assume
the transportation providers have prior knowledge about
ρ. Each of the transportation provider’s vehicles cycles
through the states in fig. 2, where it starts in an idle
state waiting for an assignment. After being selected for an
assignment, it drives to the pickup location to collect the
goods. The assignment is then brought to a distribution
center, before being delivered to the drop-off location, after
which the vehicle is returned to an idle state.
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Figure 1. Map of southern Sweden, highlighting the main road
connecting the largest cities Stockholm and Göteborg, together with
the major cities along the road. (Map courtesy of OpenStreetMap)
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Figure 2. Flow chart of the states for each vehicle of a transportation
provider. In this paper, we focus on optimizing the idle vehicle
locations and the distribution center locations.

The transportation provider evaluates its performance
as the time it takes from receiving a transportation as-
signment until the delivery at the drop-off location. This
time can be divided into three parts, the time it takes
for a vehicle to arrive at the pickup location, the time
it takes to drive to the drop-off location, and the extra
time spent visiting the distribution center. Here, the time
taken to drive from the pickup location to the drop-off
location is given by the assignment and road conditions,
and is outside the control of the transportation provider,
but the time to pickup an assignment depends on the
location strategy for the idle vehicles, and the extra time

spent going to a distribution center depends on where the
distribution centers are built. In this paper, we consider
both of these optimization problems in the next sections.

III. Optimal Idling Location
In this section, the static optimization problem of decid-

ing where idle vehicles should wait for their next assign-
ment is considered. A transportation provider serving the
system withN vehicles would like to distribute the vehicles
to minimize the expected time to pickup its next assign-
ment, where the pickup location l1 is randomly chosen
from the probability density function ρ(l1) : [0, 1] → R+.
Let x1, . . . , xN denote the locations of the transportation
provider’s N vehicles, and E [·] the expected value. The
problem can then be formulated as

min
x1,...,xN

El1

[
min

i=1,...,N
|xi − l1|

]
= min

x1,...,xN

∫ 1

0

[
ρ(l1) min

i=1,...,N
|xi − l1|

]
dl1

Remark 1. In this formulation, the vehicles may stop at
any location along the road, i.e., xi ∈ [0, 1].

A. Uniform distributions
We will now derive an explicit solution for the locations

of the vehicles, when the transport assignments have a
uniform probability distribution.

Proposition 1. Assume that new transportation assign-
ments arrive at locations following a uniform distribution
U [0, 1] over the road system, i.e., ρ(l1) = 1 for all
l1 ∈ [0, 1]. The optimal locations of the N vehicles is then
equidistantly distributed over the line, with xi = 2i−1

2N ,
i = 1, . . . , N .

Proof. Without loss of generality, assume that x1 ≤ x2 ≤
· · · ≤ xN . Thus, the integral can be split into parts as

∫ 1

0

[
min

i=1,...,N
|xi − l1|

]
dl1

=
∫ x1

0
(x1 − l1) dl1 +

N−1∑
i=1

(∫ (xi+xi+1)/2

xi

(l1 − xi) dl1 +
∫ xi+1

(xi+xi+1)/2
(xi − l1) dl1

)

+
∫ 1

xN

(l1 − xN ) dl1

= 1
2x

2
1 +

N−1∑
i=1

1
4(xi+1 − xi)2 + 1

2(1− xN )2

︸ ︷︷ ︸
G

Thus, the vehicle locations x1, . . . , xN should be chosen
such that G is minimized, which happens when the gradi-
ent is zero. Solving this equation system yields the solution
where xi = 2i−1

2N for all i = 1, . . . , N .
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IV. Optimal Distribution Center Location
In this section, the static optimization problem of de-

ciding where to build distribution centers is considered.
Distribution centers are used to store and sort goods, and
to coordinate transportation assignments efficiently. We
assume that every piece of goods need to visit a distribu-
tion center before being delivered to its final destination.

A transportation assignment consists of a pickup loca-
tion l1 ∈ [0, 1] and a drop-off location l2 ∈ [0, 1], and
the goods is transported from the pickup location to any
distribution center before being delivered to the drop-off
location. The goal is to decide where to build M distribu-
tion centers such that the expected total transportation
cost is minimized. Let ρ(l1, l2) : [0, 1] × [0, 1] → R+ be
the joint probability density function for an assignment to
have the pickup location l1 and drop-off location l2, and
let d1, · · · dM be the locations for the distribution centers.
The optimization problem can be formulated as

min
d1,...,dM

El1,l2

[
min

i=1,...,M
(|di − l1|+ |di − l2|)

]
=

min
d1,...,dM

∫ 1

0

∫ 1

0

[
ρ(l1, l2) min

i=1,...,M
(|di − l1|+ |di − l2|)

]
dl2 dl1

A. Uniform distributions
Assume that the pickup and drop-off locations are i.i.d.

random variables with uniform probability distribution
l1, l2 ∼ U [0, 1], i.e., ρ(l1, l2) = 1. Let us first consider the
case with only one distribution center.

Proposition 2. The optimal location, d, for a single
distribution center, when the assignment locations have
uniform probability density ρ(l1, l2) = 1, is at d = 1

2 .

This is intuitively clear from a symmetry argument, but
we will none the less prove it here.

Proof. The distribution center location d is determined by
the following optimization problem.

min
d

El1,l2 [|d− l1|+ |d− l2|]

= min
d

∫ 1

0

∫ 1

0
(|d− l1|+ |d− l2|) dl2 dl1

= 2 min
d

∫ 1

0
|d− l|dl

= 2 min
d

(∫ d

0
(d− l) dl +

∫ 1

d

(l − d) dl
)

= 2 min
d

(
d2

2 + (d− 1)2

2

)
= min

d

(
2d2 − 2d+ 1

)
which has the solution d = 1

2 .

We now proceed to the general case, with M > 1
distribution centers.

x

t

l1 l2

di−1

di

di+1

Figure 3. A schematic representation for the trip between l1 and l2,
using three different possible distribution centers di−1, di or di+1. If
there exists a distribution center di between the locations l1 and l2,
then the direct path between them is optimal, otherwise a detour is
needed to visit a distribution center di−1 or di+1.

Theorem 1. The optimal locations d1, . . . , dM for M > 1
distribution centers, when the assignment locations have
uniform probability density ρ(l1, l2) = 1, are equidistantly
spaced at d1, d1 + ( 1−2d1

M−1 ), d1 + 2( 1−2d1
M−1 ), . . . , d1 + (M −

1)( 1−2d1
M−1 ) = 1 − d1, with the boundary distance d1 =

2−
√

2
6−4
√

2+2M(
√

2−1) .

Proof. The locations are determined by the following op-
timization problem.

min
d1,...,dM

El1,l2

[
min

i=1,...,M
(|di − l1|+ |di − l2|)

]
= min

d1,...,dM

∫ 1

0

∫ 1

0
min

i=1,...,M
(|di − l1|+ |di − l2|) dl2 dl1

Without loss of generality, we can assume that d1 ≤
d2 ≤ · · · ≤ dM . When considering using a distribution
center di for the assignment between l1 and l2, there are
three possibilities, as illustrated in fig. 3. If di is between l1
and l2, then it is an optimal distribution center, since it is
on the direct path between the two locations. Otherwise,
if both locations l1, l2 belong to an interval [di, di+1] for
some i, then we need to consider both di and di+1 as
possible candidates, and the additional travel distance is
2 · min(min(l1, l2) − di, di+1 − max(l1, l2)) for visiting a
distribution center. Using this property, we rewrite the
double integral as

∫ 1

0

∫ 1

0
min

i=1,...,M
(|di − l1|+ |di − l2|) dl2 dl1

=
∫ 1

0

∫ 1

0
|l1 − l2|dl2 dl1

+ 2
∫ d1

0

∫ d1

0
(d1 −max(l1, l2)) dl2 dl1

+2
M−1∑
i=1

∫ di+1

di

∫ di+1

di

min(min(l1, l2)−di, di+1−max(l1, l2)) dl2 dl1

+ 2
∫ 1

dM

∫ 1

dM

(min(l1, l2)− dM ) dl2 dl1
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Notice that the first double integral is the transportation
cost for driving between l1 and l2, which is independent
of the distribution center locations d1, . . . , dM , thus its
value will not affect the minimization problem. Let us now
compute the remaining three double integrals, that repre-
sents the extra traveling cost pertaining to the distribution
centers.

∫ d1

0

∫ d1

0
(d1 −max(l1, l2)) dl2 dl1

=
∫ d1

0

(∫ l1

0
(d1 − l1) dl2 +

∫ d1

l1

(d1 − l2) dl2

)
dl1

= 1
3d

3
1

Similarly,

∫ 1

dM

∫ 1

dM

(min(l1, l2)− dM ) dl2 dl1

=
∫ 1

dM

(∫ l1

dM

(l2 − dM ) dl2 +
∫ 1

l1

(l1 − dM ) dl2

)
dl1

= 1
3(1− dM )3

Finally,

∫ di+1

di

∫ di+1

di

min(min(l1, l2)−di, di+1−max(l1, l2)) dl2 dl1

=
∫ di+di+1

2

di

(∫ l1

di

(l2 − di) dl2+∫ di+1+di−l1

l1

(l1 − di) dl2+∫ di+1

di+1+di−l1

(di+1 − l2) dl2

)
dl1

+
∫ di+1

di+di+1
2

(∫ di+1+di−l1

di

(l2 − di) dl2+∫ l1

di+1+di−l1

(di+1 − l1) dl2+∫ di+1

l1

(di+1 − l2) dl2

)
dl1

= 1
6(di+1 − di)3

Hence, the optimization problem for the optimal loca-
tions d1, . . . , dM can be written as

min
d1,...,dM

(
2
3d

3
1 +

M−1∑
i=1

1
3(di+1 − di)3 + 2

3(1− dM )3

)
Minimizing this expression yields the results of theo-

rem 1.

Remark 2. Numerically, the locations of the distribution
centers for M = 1, . . . , 5 are

M Distribution center locations d1, . . . , dM

1 0.5
2 0.2929 0.7071
3 0.2071 0.5 0.7929
4 0.1602 0.3867 0.6133 0.8398
5 0.1306 0.3153 0.5 0.6847 0.8694

Remark 3. With uniform probability distribution, both
the idling vehicle locations and the distribution center
locations will be equidistantly spaced, but notice that they
have different boundary conditions.

B. Discrete distributions
In the transportation system in fig. 1 there are a discrete

number C of cities C = {c1, . . . , cC} located along the
road. We now assume that both the pickup and drop-
off locations are limited to the set of cities C, thus the
probability density function can be written as

ρ(l1, l2) =
∑
u∈C

∑
v∈C

pu,vδ(u− l1)δ(v − l2)

where δ(·) is Dirac’s delta function, u and v are positions
of cities, and pu,v is the probability mass function for
an assignment to be from city u to city v. The optimal
positioning of the distribution centers can be written as

min
d1,...,dM

El1,l2

[
min

i=1,...,M
(|di − l1|+ |di − l2|)

]
= min

d1,...,dM

∑
u∈C

∑
v∈C

[
pu,v min

i=1,...,M
(|di − u|+ |di − v|)

]
Proposition 3. The distribution centers can optimally
be built at a subset of the cities, i.e., only locations
d1, . . . , dM ∈ C need to be considered.

Proof. Assume without loss of generality that c1 ≤ c2 ≤
· · · ≤ cC , and further assume that d̃1, . . . , d̃M is an optimal
solution with d̃i ∈ (ck, ck+1) located between two cities, for
some i and k. Let D ⊆ C×C denote the set of assignments
using the distribution center d̃i, i.e., (u, v) ∈ D if i =
arg minj=1,...,M (|d̃j − u|+ |d̃j − v|).
Consider now if the set of assignments D instead was

handled by a distribution center located at ck. Since d̃i is
optimal, we know that∑
(u,v)∈D

pu,v(|d̃i−u|+|d̃i−v|) ≤
∑

(u,v)∈D

pu,v(|ck−u|+|ck−v|).

Notice that if u ≤ d̃i then also u ≤ ck, and if u ≥ d̃i

then u ≥ ck, since u ∈ C, and similarly for v. Thus∑
(u,v)∈D
u≤d̃i≤v

or
v≤d̃i≤u

pu,v(|d̃i−u|+|d̃i−v|) =
∑

(u,v)∈D
u≤d̃i≤v

or
v≤d̃i≤u

pu,v(|ck−u|+|ck−v|),
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so the inequality only needs to consider when u, v ≤ d̃i

or u, v ≥ d̃i. Expanding the left hand side gives

∑
(u,v)∈D
u,v≤d̃i

pu,v(|d̃i−u|+|d̃i−v|)+
∑

(u,v)∈D
u,v≥d̃i

pu,v(|d̃i−u|+|d̃i−v|)

=
∑

(u,v)∈D
u,v≤d̃i

pu,v(|ck − u|+ |ck − d̃i|+ |ck − v|+ |ck − d̃i|)

+
∑

(u,v)∈D
u,v≥d̃i

pu,v(|ck − u| − |ck − d̃i|+ |ck − v| − |ck − d̃i|)

≤
∑

(u,v)∈D
u,v≤d̃i

pu,v(|ck−u|+|ck−v|)+
∑

(u,v)∈D
u,v≥d̃i

pu,v(|ck−u|+|ck−v|)

Simplifying this inequality, we have∑
(u,v)∈D
u,v≤d̃i

pu,v ≤
∑

(u,v)∈D
u,v≥d̃i

pu,v

Repeating this argument with ck+1 instead of ck yields∑
(u,v)∈D
u,v≤d̃i

pu,v ≥
∑

(u,v)∈D
u,v≥d̃i

pu,v

Together, this means that the original inequality is
satisfied with equality, and hence that the location d̃i can
be moved to either ck or ck+1 without changing the value
of the optimization problem.

The locations of the distribution centers are thus given
by

min
d1,...,dM∈C

∑
u∈C

∑
v∈C

[
pu,v min

i=1,...,M
(|di − u|+ |di − v|)

]
Remark 4. It is clear that having M > C distribution
centers will not improve the transportation cost, since with
M = C, a distribution center could be built at every city.

Solving this optimization problem by brute force would
consider all

(
C
M

)
subsets of the cities, which grows expo-

nentially. Instead, we propose a dynamical programming
algorithm for solving this optimization problem in O

(
C4)

complexity. For notational simplicity, c ∈ C can denote
either the position of city c or its index, as should be
clear from the context. The key idea is to let cost[m][k]
denote the expected cost of transporting all assignments
with l1 ≤ k or l2 ≤ k, using at mostm distribution centers,
where the last distribution center is located at city k, i.e.,

cost[m][k] = min
d1,...,dm∈C

d1≤···≤dm=k

∑
u,v∈C
u≤k

or
v≤k

[
pu,v min

i=1,...,m
(|di − u|+ |di − v|)

]

Algorithm 1 produces the optimal cost? of the solution.
The optimal locations can be extracted by also memorizing
which location minimizes the expression in the inner loop.

Algorithm 1 Dynamical programming algorithm
for i ∈ C do {Pre-computations}

for j ∈ C, j ≥ i do
a[i][j]←

∑
u,v∈C
i<u,v

u or v≤j

pu,v min(|i−u|+|i−v|, |j−u|+|j−v|)

end for
b[i]←

∑
u,v∈C
i<u,v

pu,v(|u− i|+ |v − i|)

end for
for all k > 0 do {Initialize}
cost[0][k]←∞

end for
for all m ≥ 0 do {Initialize}

cost[m][0]← 0
end for
for m = 1 to M do

for k = m to C do
cost[m][k]← min

i=0,...,k
(cost[m− 1][i] + a[i][k])

end for
end for
cost? ← min

k=M,...,C
(cost[M ][k] + b[k])

V. Simulation Study
In this section, we exploit the previous static opti-

mal solutions in a dynamical transportation model with
numerical simulations. Recall that the vehicles operate
according the flow chart in fig. 2, and that the total time
to handle an assignment consists of the time it takes to
pickup the goods and the time it takes to deliver the
goods to the destination, including visiting a distribution
center. We thus simulate these steps independently in the
following subsections.

A. Idling vehicles with uniform distribution
First, we consider transportation assignments arriving

following a Poisson process with rate λ, i.e., the mean time
between assignments is 1/λ, and where the pickup and
drop-off locations are chosen uniformly over the interval
[0, 1]. The transportation assignments are served by N = 5
vehicles moving with a unit speed along the road, and the
objective is to minimize the average time it takes to pickup
each new transport assignment. Notice that we focus on
the waiting time, and ignore the fuel cost of transporting
the empty vehicles in this work, in comparison to [14].
Each time a new assignment arrives, all non-occupied

vehicles will be considered and the vehicle with the short-
est pickup time will be selected for the assignment. The
vehicle then becomes unavailable until it has completed
the transport assignment. In section III we computed the
optimal locations of the idling vehicles to be equidistantly
spread out over the road system. We now exploit this
solution as a control law for the unassigned vehicles,
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Figure 4. The average waiting time to pickup transportation assign-
ments arriving following a Poisson process with rate λ using 5 vehi-
cles. Two different strategies are compared, either the vehicles stays
at their drop-off location until next assignment, or they redistribute
according to the optimal locations.
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Figure 5. The improvement in the average waiting time by redis-
tributing the vehicles towards their optimal locations, compared to
staying at the drop-off location, as shown in fig. 4.

where they immediately start to redistribute themselves
according to the optimal locations. For example, when one
out of five vehicle is selected for a transport assignment,
the remaining four available vehicles will drive towards the
locations 0.125, 0.375, 0.625 and 0.875.
We compare this strategy to the base scenario, where

the vehicles simply stay where they are after completing
an assignment, waiting for a new assignment. The two
methods are evaluated for different arrival rates λ, and for
each arrival rate, the average waiting time is computed for
200 000 assignments. The results are shown in figs. 4 and 5.
Notice that by exploiting the optimal vehicle location
strategy, we are able to reduce the average waiting time
by between 10% and 23%. As seen in fig. 4, when the
arrival rate λ approaches 7 assignments per time unit, 5
vehicles will not be sufficient to handle all assignments,
which means that the waiting time starts to diverge.

B. Distribution center location with discrete distribution
Consider now the transportation stage between the

pickup location and the drop-off location, which is affected

City name Population Distance Relative position
Stockholm 923 516 0 km 0.00
Södertälje 93 202 34 km 0.07
Nyköping 54 262 101 km 0.21
Norrköping 137 035 160 km 0.34
Linköping 152 966 198 km 0.42
Jönköping 133 310 322 km 0.68
Borås 108 488 406 km 0.86
Göteborg 548 190 470 km 1.00

Table I
Major cities along the road in fig. 1. Population data

provided by SCB [15]. Distance given as the road distance
measured from Stockholm.
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Figure 6. The city population with their relative position on the road
system in fig. 1.

by the locations of distribution centers. We use the cities
for the Swedish main highway, shown in fig. 1, as a discrete
distribution for the assignment locations. Along this road
there are 8 major cities, see table I, and the transport
assignment location probabilities pu,v are selected propor-
tional to the population of the cities. The population mass
function is shown in fig. 6.
The optimal distribution center locations are computed

for each M = 1, . . . , 8 number of distribution centers,
and the cities for building distribution centers is indicated
in fig. 7. The range of mean traveling times is shown in
fig. 8, where the lower bound corresponds to the optimal
and selected distribution centers in fig. 7. As shown, the
locations of the distribution centers can significantly affect
the assignment transportation time.

VI. Conclusions

In this paper, we have considered a transportation
system along a major transportation route, modeled as a
one dimensional system. The goal of a real-time transport
service provider is to minimize the time from the reception
of a transport assignment until the delivery. This results
in two separate problems, a strategy for distributing idling
vehicles, and optimizing the travel time from the pickup
to the drop-off locations through the construction of dis-
tribution centers.
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Figure 7. The selected cities for building distribution centers, de-
pending on the number of distribution centers. The markers denote
where the distribution centers should be built.
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Figure 8. The range of mean traveling times for all possible choices
of distribution centers. The lower bound corresponds to the optimal
choice of distribution centers, shown in fig. 7.

We formulated these problems as stochastic optimiza-
tion problems, and provided explicit solutions for uniform
distributions, as well as an efficient algorithm for discrete
probability distributions. The methods were also evaluated
with numerical simulations from a Swedish highway.

Future research directions includes allowing a vehicle to
handle multiple concurrent assignments, and coordinating
multiple vehicles at the distribution centers.
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