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1. INTRODUCTION

An important research issue is to give ad-
vice on how switched systems should be effi-
ciently simulated, because these systems are
often extremely hard to investigate by analyt-
ical methods. Therefore we need further un-
derstanding about the dynamics of switched
systems. Several phenomena, which are not
present in smooth control systems, may occur
in systems with switches. They include sliding
modes and arbitrarily fast switchings. Many
of the proposed hybrid system models in the
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literature have restrictions to prevent infinitely
fast switching between the discrete modes. If no
such restrictions are imposed on the control sys-
tem design, it is quite common to get infinitely
fast mode changes. The resulting dynamics are
then not always well defined, which may be an
indication that the modeling must be refined.
Fast switchings are always difficult to deal with
for simulation tools.

In this paper some fundamental properties of
switched control systems are pointed out. For
a background see Filippov (1988); Utkin (1992)
or Anosov (1959). Higher-order sliding modes
have only to some extent been studied. Switch-
ing control laws for tracking is studied in



Fridman and Levant (1996), see also Johans-
son (1997); Malmborg (1998).
Consider the non-smooth dynamical system

ẋ � f (x), (1)
where f : Rn @→ Rn is a piecewise continuous
function. The solution to this equation is inter-
preted as follows, see Filippov (1988):

Definition 1. (Filippov solution). An absolutely
continuous function x(t) is called a solution of
(1) on [t0 , t1] if for almost all t ∈ [t0, t1]

ẋ ∈
⋂
δ>0

⋂
µ N�0

co f
(
B(x,δ ) \ N

)
,

where
⋂

µ N�0 denotes intersection over all sets
N of Lebesgue measure zero, co denotes convex
closure, and B(x,δ ) is a ball with center in
x ∈ Rn and radius δ .

Consider the set S of discontinuity points of f .
A solution x(t) is called a sliding mode on the
interval [t0, t1], if x(t) ∈ S for all t ∈ [t0, t1].
It was shown in Johansson et al. (1999) that
a sliding mode can for instance be part of a
stable limit cycle. Switched systems can have
solutions close to a sliding mode and have very
fast switching. As is shown in Section 3, the
fast switchings can be stable or unstable in the
sense that the solution approaches the sliding
mode or not.

The outline of the paper is as follows: Section 2
illustrates the problem of non uniqueness of
sliding solutions. In Section 3 we present nec-
essary conditions for so called stable sliding of
order two. Section 4 illustrates that such sliding
can be part of the limit cycle of a linear system
under relay feedback.

2. SIMULATION OF SWITCHED SYSTEMS

Switched systems are often extremely hard to
analyze with analytical methods. Therefore ef-
ficient simulation methods are essential. How-
ever, several fundamental properties for solu-
tions of ordinary differential equations are not
valid if the vector field has jumps. This makes
it more challenging to derive robust simulation
tools for switched systems. The following is a
simple example that illustrates that switched
systems may have non-unique solutions.

Example 1. Consider the switched system

ẋ1 � − sgn(x1x2),
ẋ2 � −1.

The upper plot in Figure 1 shows its vector field.
Filippov’s definition of solution for the system
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Fig. 1. The upper plot shows the vector field for
system in Example 1. The lower plot shows
two trajectories simulated in Simulink.

does not give a unique solution for initial states
with tx1(0)t ≤ x2(0).
The lower plot shows two trajectories of the sys-
tem simulated with default routines in Simulink.
The initial points are close and marked with
dots. The trajectories of the simulation are close
to the sliding mode on the segment with x2 > 0.
At the origin the simulation routine happens to
choose the vector field in the third quadrant for
one of the trajectories, while for the other tra-
jectory it chooses the vector field in the fourth
quadrant. The simulation result is, of course,
due to that the signum function is approximated
in Simulink because of limited accuracy in the
numerical routines.

The example illustrates the importance for sim-
ulation packages to detect sliding modes and
ambiguities of solutions. Most simulation pro-
grams today give a chattering solution instead
of an exact sliding mode, due to limitations
in numerical accuracy. A small step size gives
an accurate solution close to the sliding mode.
However, small step sizes also mean long sim-
ulation times. A solution to this problem is
to introduce a state in the simulation routine
that represents the sliding mode and a mech-
anism that detects when the conditions for an
attractive sliding mode is fulfilled, see Malm-
borg (1998) and Mattsson (1996) for a discus-
sion

For the simple system in Example 1 it is easy
to predict the problem that will arise when the
solution reaches the origin. However, in many



applications it is far from trivial to detect such
ambiguity points and they may very well arise
from small errors in complicated models. It is
possible in a simulation program to incorporate
facilities to detect points with non-unique solu-
tions in a similar way to the detection of sliding
modes previously discussed.

3. FAST SWITCHING

In the following we only consider systems with
one switch

ẋ � f (x, u),
y � h(x), (2)
u � sgn y,

where f : Rn � R @→ Rn and h : Rn @→ R are
smooth functions and the differential equation
is interpreted in the sense of Definition 1. We
define sliding modes of order r for these systems
inspired by Fridman and Levant (1996).

Definition 2. (Higher-order sliding). Consider a
point x̄ ∈ Rn with h(x̄) � 0. Assume Lk

f h(x)
for k � 1, . . . , r − 1 are smooth functions in a
surrounding of x̄ and introduce

Hr(x) �
h(x) Lf h(x) . . . Lr−1

f h(x)
T

.

Assume that dHr(x̄)/dx has full row rank. The
rth-order sliding set is defined in a surrounding
of x̄ as the smooth set

Sr :�
{

x : Hr(x) �
0 . . . 0

T
}

.

A solution x(t) of (2) is an rth-order sliding
mode on [t0 , t1] if x(t) ∈ Sr for all t ∈ [t0, t1].

A first-order sliding mode is attractive if the
vector fields on each side of the switching sur-
face h(x) � 0 are pointing towards the surface.
Instead of an exact higher-order sliding mode,
it is common that a large number of fast switch-
ings occur. For example, this may happen if
the vector field is tangential to the switching
surface.

Definition 3. (Fast switching). A system has fast
switching if for every ε > 0 there exist two
points x0, x1 ∈ Rn with h(x0) � h(x1) � 0, such
that x(t) is a solution of (2) for t ∈ [t0 , t1] with
x(t0) � x0, x(t0 + ε) � x1, and h

(
x(t)) 6� 0 for

t ∈ (t0, t0 + ε).
A system has multiple fast switching if for every
ε > 0 there exist three points x0 , x1, x2 ∈ Rn and
ε ′ ∈ (0, ε) with h(x0) � h(x1) � h(x2) � 0, such
that x(t) is a solution of (2) for t ∈ [t0 , t1] with
x(t0) � x0, x(t0 + ε ′) � x1, and x(t0 + ε) � x2,
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Fig. 2. Fast switching close to second-order
sliding set.

where h
(
x(t)) 6� 0 for t ∈ (t0, t0 + ε ′) ∪ (t0 +

ε ′, t0 + ε).

In this section we study fast switching close to
a second-order sliding set. An example of such
a system is given by

Example 2.

ẋ1 � cos u
ẋ2 � − sinu
ẋ3 � −x3 + x2

y � x3

u � sgn y

see also Figure 2. The second order sliding set
is given by x1 � x2 � 0.

To follow the notation in Filippov (1988) we
transform the system so that the second order
sliding set is given by y � x � 0 and write the
dynamics as

ẋ
ẏ
ż

 �



P+(x, y, z)
Q+(x, y, z)
R+(x, y, z)

 , y > 0,


P−(x, y, z)
Q−(x, y, z)
R−(x, y, z)

 , y < 0,

where
(
x(t), y(t), z(t)) : R @→ R �R�Rn−2 and

P±, Q±, R± are smooth functions.

Assume that Q±(0, 0; z) � 0, ∀z, which is the
case when there can be non-transversal sliding
along the x � y � 0 subspace. With the sign
conditions

xQ+(x, 0; z) < 0, xQ−(x, 0; z) < 0, x 6� 0,
(3)

there is no sliding in the plane y � 0 unless
possibly along the subspace x � y � 0. Further
sign conditions assumed are

P+(0, 0; z) > 0, P−(0, 0; z) < 0. (4)
From Equation 3 follows that Q±x (0, 0; z) ≤ 0.
If this condition is sharpened to Q±x (0, 0; z) < 0
the following theorem can be proved.
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Fig. 3. The y − x-plane. The z-directions, z ∈
Rn−2, are omitted for simplicity. The inter-
sections with the y � 0 plane for x > 0 are
denoted ρ k.

Theorem 1. (Second order stable sliding). For the
system described above, the subspace x � y �
0 is locally stable around the point (0, 0; z) if
a2(z) � A+ − A− < 0, where

A± �
(

Px + Qy

P
− Qxx

2Qx
+ (QxPz − PQxz)R

QxP2

)±
,

where all functions are evaluated at (0,±0; z).
The dynamics on the set x � y � 0 defined as
in Definition 1 satisfies

ż � α+R+(0, 0; z)+ α−R−(0, 0; z), (5)
where α+ and α− are uniquely defined by

α+ +α− � 1
α+P+ � α−P−. (6)

Thus the convex definition is the natural solu-
tion if the dynamics on the subspace x � y � 0
should be the limit of dynamics just off it The
series of intersections with the y � 0 plane for
x > 0 is denoted [0,ρ k, zk]. The sequence ρ k is
monotonously decreasing with

ρ k+1 � ρ k + 2
3

a2(z)ρ 2
k+O(ρ 3

k). (7)

Proof The proof can be found in Malmborg (1998).

3.0.1. Remark In the two-dimensional case

A± �
(

Px + Qy

P
− Qxx

2Qx

)±
.

This expression was derived on pages 234–238
in Filippov (1988).

Linear systems

We now consider switched systems with linear
dynamics
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Fig. 4. Fast switching close to second-order
sliding set.

ẋ � Ax + Bu,
y � C x, (8)
u � sgn y.

It is well-known that this system has an attrac-
tive first-order sliding set if and only if C B < 0.
It was shown in Johansson et al. (1999) that
the system has multiple fast switching if and
only if the first non-vanishing Markov parame-
ter C Ar−1 B is negative. Systems with relative
degree two may have an attractive second-order
sliding set similar to the nonlinear case in pre-
vious section. This is illustrated in the following
example.

Example 3. Consider the system

ẋ �


−4 1 0 0
−6 0 1 0
−4 0 0 1
−1 0 0 0

 x+


0
1
−0.4
0.04

u,

y � −x1,
u � sgn y.

The linear dynamics have four poles in −1 and
two zeros in 0.2.

It is possible to derive accurate estimates for
fast switchings as the one shown in Example 3,
see Johansson et al. (1997). Let the dynamics
in (8) be given by

A �



−a1 1 0 . . . 0
−a2 0 1 0

...
. . .

...
−an−1 0 0 1
−an 0 0 ⋅ ⋅ ⋅ 0


, B �



0
1
b1
...

bn−2


,

C �
1 0 ⋅ ⋅ ⋅ 0

 .

Consider a solution of the closed-loop system
with x1(0) � 0, x2(t) small, and tx3(t)t < 1 for
t ∈ [0, T ] and T > 0. Then, x1 satisfies

1
tx2(0)t max

t∈[0,T ]
tx1(t)t → 0,

as tx2(0)t → 0. The envelope of the peaks of x2

is given by



x2(tk) � (−1)kx2(0) exp
[− (a1 − b1)tk/3

]
�
(

1− x2
3(tk)

1− x2
3(0)

)1/3
+ ε 1(x2(0); tk),

(9)

where ε 1(x2(0); tk)/x2(0) → 0 as x2(0) → 0 for
all k with switch times tk ∈ [0, T ]. If tx3t ≪ 1,
it follows from (9) that the amplitude of the
oscillation in x2 is decaying if a1 > b1. This local
stability result for the second-order sliding set
agrees with the condition given in Theorem 1,
because in the linear case

A+ − A− � 2
b1− a1 + x2

3(a1 + b1) − 2x3x4

(x2
3 − 1)2 .

4. LIMIT CYCLES

The sliding modes and the fast switching dis-
cussed in previous section can be part of stable
limit cycles. This was illustrated for linear sys-
tems with one switch in Johansson et al. (1999).
Stability results for limit cycles with a first-
order sliding mode as well as fast switchings
close to a second-order sliding mode were de-
rived in Johansson et al. (1997).
Next we show a nonlinear system with one
switch that gives a limit cycle with six parts
of fast switching every period.

Example 4. Consider the system

ẋ �


−4 1 0 0
−6 0 1 0
−4 0 0 1
−1 0 0 0

 x+


0
1
−0.4
0.04

u,

y � − sin(11π x1),
u � sgn y.

The linear dynamics have four poles in −1 and
two zeros in 0.2. Figure 5 shows the first two
states of the system together with the relay
output.

5. CONCLUSIONS

Fast switchings and sliding modes in switched
control systems have been studied. The motiva-
tion for this was that these phenomena cause
severe problems to simulation tools. Systems
with one relay nonlinearity were studied. A
stability result for second order fast switching
has been given and a more detailed result for
linear systems with relative degree two was also
presented.
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