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Abstract— This paper considers the minimum electricity cost
scheduling problem of smart home appliances. Operation char-
acteristics, such as expected duration and peak power consump-
tion of the smart appliances, can be adjusted through a power
profile signal. The optimal power profile signal minimizes cost,
while satisfying technical operation constraints and consumer
preferences. Constraints such as enforcing uninterruptible and
sequential operations are modeled in the proposed framework
using mixed integer linear programming (MILP). Several re-
alistic scenarios based on actual spot price are considered,
and the numerical results provide insight into tariff design.
Computational issues and extensions of the proposed scheduling
framework are also discussed.

I. INTRODUCTION

Electricity consumption varies between different hours of

the day, between days of the week, and between seasons of

the year, where the highest power demand typically occurs

when the outdoor temperature drops. In recent years, the

power demand has reached new peak levels and created extra

stress to balance demand and generation. Environmental and

economical reasons will, in the near future, require distri-

bution companies to consider more complex power balance

scenarios based on the introduction of large scale renewable

electricity generation, personal electrical vehicles (PEVs)

and distributed electricity generation in residential areas.

Intermittent renewable energy sources, such as wind, are

dynamic by definition and will require additional balancing

power to maintain quality of electrical supply to consumers.

Additionally, an increasing number of PEVs will introduce

high electricity consumption that is not always predictable.

Both the wind power’s dynamic contribution to electricity

generation and the PEVs’ random demand of electricity

require a balancing force in the electricity grid.

Load balancing of urban electrical loads, such as residen-

tial/industrial electricity consumption, can be accomplished

by minimizing the usage of non-renewable generation and

scheduling controllable loads to times when renewable en-

ergy generation is high. Particular ways to engage the con-

sumers in participating in load balancing is achieved through

economic incentives such as time-varying electricity tariff

(e.g. spot pricing [1]), or CO2 footprint for environmentally

concerned consumers (e.g. the Stockholm Royal Seaport

The authors are with the ACCESS Linnaeus Center and the Automatic
Control Lab, the School of Electrical Engineering, KTH Royal Institute of
Technology, Sweden. {sou,weimerj,hsan,kallej}@kth.se
This work is supported by the Swedish Energy Agency, the Swedish
Governmental Agency for Innovation Systems (VINNOVA), the Swedish
Foundation for Strategic Research (SSF) and the Knut and Alice Wallenberg
Foundation.

project [2]). An illustration of spot price is shown in Fig. 1.
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Fig. 1. Electricity tariff (spot price) for New York City on February 15th,
2011. Data taken from NYISO. The web address is www.nyiso.com.

References such as [3]–[5] have demonstrated the value

of time-varying electricity tariff in the management of the

power grid, especially in the reduction of peak power con-

sumption; however, such load balancing is feasible only if

the consumers are both able and willing to consider tariff

information. For instance, it is unrealistic to expect most

consumers to identify the most economical operation of their

appliances in the presence of dynamic tariff prices and peak

consumption penalties. Hence, an automatic decision support

system is highly desirable, that either directly takes control

of the appliance operation or provides simple advice to the

consumers.

Prior works exist for load balancing from both industrial

and residential consumers’ perspective. For example, [6]

describes the use of linear programming to schedule the

electricity use of an industrial consumer for product manu-

facturing. Under various assumptions and model restrictions,

[7] derives analytical formulas and scheduling strategies

for an industrial consumer. A reinforcement learning based

appliance scheduling framework for residential consumers

is introduced in [8], assuming that both the tariff and the

consumers’ requests for appliances operation follow some

Markov decision model.

In this paper, we also consider the problem of residential

appliances scheduling; however, unlike [8], the proposed

scheduling framework is deterministic and the cost calcu-

lation is based on the tariff, typically known 24 hours in

advance. In addition, this work aims to model the decision

problem as realistically as possible. Hence, simplified ana-

lytical and linear programming based analysis tools are not

sufficient for the purpose of this work. Instead, we intention-
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ally explore the full modeling power of mixed integer linear

programming (MILP). While the planning is 24 hours ahead,

in practical household applications “real-time” adjustments

are often required. Thus, this paper conducts a numerical

study and demonstrates that in a typical scheduling scenario,

prematurely terminating the MILP solving can result in very

good suboptimal schedules. At the same time, the solve time

can be reduced dramatically and is shown to be viable even

for real-time household applications.

The remainder of this paper is organized as follows.

Section II motivates and describes the appliance scheduling

problem. Section III formulates the appliance scheduling

problem into a MILP problem. Numerical studies using the

MILP framework is provided in Section IV.

II. SCHEDULING HOME APPLIANCES

In this section, we provide a written description of the

appliance scheduling problem which will be mathematically

formulated as a MILP problem in the following section. In

the proposed scheduling framework, an appliance operation

process is divided into a set of sequential energy phases. An

energy phase is an uninterruptible sub-task of the appliance

operation which uses a pre-specified amount of electric

energy. The energy phases are sequential since the next

appliance sub-task cannot begin until the previous sub-task

is completed (e.g. the washing machine agitator cannot start

until the basin is filled with water).

In addition to being uninterruptible and having a spec-

ified energy usage, each energy phase may have additional

manufacture-defined constraints. These constraints for a spe-

cific energy phase include bounding the instantaneous power

consumed (corresponding to the maximum operating power

and idle power) and achieving a maximum execution time.

While all energy phases associated with a single appliance

must be run sequentially, there can be delays between the

energy phases so long as the energy phase ordering is

preserved (e.g. the washing machine agitator must start

within ten minutes of the basin being filled).

Besides the technical requirements for an energy phase

specified by the manufacturer, there exist additional

appliance-level operational constraints. For instance, a cer-

tain appliance cannot start before some other appliance

finishes (e.g. washing machine and dryer). Moreover, for

safety reason the total power assigned to all appliances at

any moment cannot exceed a limit called peak signal. Finally,

there might be user specified time preferences, requiring that

certain appliances should be run within some particular time

intervals (e.g. washing dishes with the dishwasher between

4pm and 6pm).

To meet the appliance energy phase and operational

constraints, the proposed appliance scheduling framework

determines the power assignments, as functions of time over

the execution period (e.g. a day), to all energy phases of

all appliances. The time-dependent power assignments are

called power profiles and each corresponds to an appliance-

specific energy phase. The objective of the proposed sched-

uler is to find the least expensive set of power profiles,

while satisfying the necessary operational constraints. To

mathematically design the appliance scheduler, the following

section introduces a MILP problem based on the appliance

scheduling problem described in this section.

III. MIXED INTEGER LINEAR PROGRAM FORMULATION

The power profile scheduling decision problem in Section

II can be modeled as a MILP problem (e.g. [9]). To define a

MILP instance, a mathematical description of the problem

setup, decision variables, cost function and constraints is

provided below.

A. Problem setup

The appliances execution period is discretized into m

uniform time slots (e.g. 5 minutes per slot). The number of

appliances considered for scheduling is denoted N, and the

number of uninterruptible energy phases for each appliance

is denoted ni for i = 1,2, . . . ,N. Note that in this paper “ap-

pliance” and “energy phase” are abstractions. For instance,

a single oven for lunch and dinner can be treated as two

separate appliances.

B. Decision variables

The discretized power profiles are the output of the pro-

posed scheduler and are denoted pk
i j, corresponding to the

energy assigned to energy phase j of appliance i during the

whole period of time slot k. The typical unit for pk
i j is kWh.

The power profiles pk
i j are real (i.e., continuous) decision

variables.

In addition to pk
i j, auxiliary binary decision variables are

required to indicate whether a particular energy phase is

being processed or not. These binary decision variables are

denoted xk
i j ∈ {0,1}. xk

i j = 1 if and only if for appliance i,

energy phase j is being processed during time slot k. The

decision variables xk
i j are required, for instance, to model

the energy phase sequential operation constraint described

in Section II. In addition, two other sets of binary decision

variables are needed to model the decision problem. One

set is denoted as sk
i j , with a value of one indicating that, in

appliance i, energy phase j is already finished by time slot k.

The other set of auxiliary binary decision variables is denoted

as tk
i j. These decision variables are used to indicate whether

at time slot k, appliance i is making a transition between

running phase j− 1 to j. Hence, the index j ranges from 2

to ni only (i.e., the number of energy phases in appliance i

minus one).

More explanation regarding the use of the auxiliary binary

decision variables will be given in Section III-D.

C. Cost function

The objective of the proposed scheduler is to minimize

the total electricity cost for operating the appliances. In this

paper the cost calculation is based on a given 24-hour ahead

electricity tariff (e.g. USD per kWh). The tariff curve is

piecewise constant, with possible jumps at the start of each

hour. Fig. 1 shows an example of a typical tariff curve.
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Let ck denote the electricity tariff for time slot k. The total

electricity cost for running all appliances is

m

∑
k=1

ck

(

N

∑
i=1

ni

∑
j=1

pk
i j

)

(1)

D. Constraints

To ease the description, the constraints are organized into

two groups – energy constraints and timing constraints.

1) Energy Constraints:

Energy phase energy requirement: To make sure that the

energy phases fulfill their energy requirements, the following

constraint is imposed:

m

∑
k=1

pk
i j = Ei j, ∀ i, j (2)

where Ei j is the energy requirements for energy phase j

in appliance i. These are technical specifications from the

appliances.

Instantaneous energy phase power assignment bounds:

To model whether an energy phase is being processed during

time slot k, as well as the lower and upper limits of power

assignment to the phase, the following constraint is imposed:

Pk
i j xk

i j ≤ pk
i j ≤ P

k
i j xk

i j, ∀ i, j,k (3)

where Pk
i j and P

k
i j are appliance specific data characterizing

the lower and upper limits of power assignment to the energy

phases. Note that if xk
i j = 0, then the inequalities above

collapse to a single condition pk
i j = 0.

Power safety: The power safety constraint (i.e., upper

limit of the total energy assigned in any time slot) can be

modeled as
N

∑
i=1

ni

∑
j=1

pk
i j ≤ PEAKk

, ∀ k (4)

where PEAKk is the “peak signal” (i.e., total slot energy

upper bound) at time slot k. The peak signal is provided by

the external power grid operator, which can be a demand

response signal.

2) Timing Constraints:

Energy phase process time limits: To model the limits

on energy phase process time, the following constraint is

enforced:

T i j ≤
m

∑
k=1

xk
i j ≤ T i j, ∀ i, j (5)

where T i j and T i j are the lower and upper limits of the

number of time slots for energy phase j in appliance i to be

processed.

Uninterruptible operation: An energy phase being un-

interruptible means that it cannot be resumed. This can be

modeled by the constraint that, for all i and j, xk
i j = 0 if there

exists an earlier time slot k̃< k such that xk̃
i j = 1 and xk̃+1

i j = 0.

An alternative constraint can be imposed with the aid of the

auxiliary decision variables sk
i j introduced in Section III-B:

xk
i j ≤ 1− sk

i j ∀ i, j,k (6a)

xk−1
i j − xk

i j ≤ sk
i j ∀ i, j, ∀ k = 2,3, . . . ,m (6b)

sk−1
i j ≤ sk

i j ∀ i, j, ∀ k = 2,3, . . . ,m (6c)

In constraint (6a), if sk
i j = 1, then during time slot k energy

phase j in appliance i is already finished. Hence, the corre-

sponding xk
i j must be 0. The condition triggering sk

i j = 1 is

that xk
i j switch from 1 to 0 (i.e., the phase is just finished).

This is the situation in (6b). Then sk
i j should remain unity,

as (6c) imposes.

Sequential Processing: Sequential processing of the en-

ergy phases of an appliance means that an energy phase

cannot be processed unless its preceding phases have fin-

ished. This condition can be conveniently described using

the auxiliary decision variables sk
i j as follows:

xk
i j ≤ sk

i( j−1), ∀ i,k, ∀ j = 2,3, . . . ,ni (7)

Similarly, to model the sequential operation between appli-

ances, a constraint similar to above can be imposed:

xk
i1 ≤ sk

ĩnĩ
, ∀ k (8)

with ĩ being the index of the appliance which must be

finished before i can start. In above, sk
ĩnĩ

pertains to appliance

ĩ, energy phase nĩ (i.e., the last phase of appliance ĩ) and time

slot k.

Between-phase delay: To count the number of time

slots spent between the energy phases in an appliance, the

auxiliary 0-1 decision variables tk
i j defined in Section III-B

can be utilized. During any time slot k, tk
i j = 1 if and only if

that appliance i has finished processing energy phase j− 1,

and it is waiting to process the phase j (i.e., phase j is not

being processed or finished). The corresponding constraint

is

tk
i j = sk

i( j−1)−
(

xk
i j + sk

i j

)

, ∀ i,k, ∀ j = 2,3, . . . ,ni (9)

Note that xk
i j + sk

i j ≤ 1 because an energy phase cannot

simultaneously be processed and finished (cf. (6a)). Hence,

the equality in (9) is valid. With tk
i j defined, the constraint

enforcing the lower and upper limits of the number of

transition time slots (i.e., delay between energy phases) can

be written as

Di j ≤
m

∑
k=1

tk
i j ≤ Di j, ∀ i, ∀ j = 2,3, . . . ,ni (10)

In above, Di j and Di j are appliance technical specifications

describing the between-phase delay bounds (lower and upper,

respectively) in the number of time slots.

User time preference: The household user can set up the

time preference constraints, specifying the time interval a

particular appliance must be finished within. Alternatively,

this means that the appliances cannot be run outside of the

time preference interval. The constraints are written as

xk
i j ≤ TPk

i , ∀ i, j,k (11)
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where TPk
i characterizes the time preference interval. That is,

TPk
i = 0 if and only if none of the energy phases of appliance

i can be processed during time slot k.

E. MILP formulation

To sum up, the proposed minimum electricity cost appli-

ance scheduling problem can be summarized into

minimize
p, x, s, t

cost function (1)

subject to constraints (2) – (11)

pk
i j ∈ R, ∀ i, j,k

xk
i j ∈ {0,1}, ∀ i, j,k

sk
i j ∈ {0,1}, ∀ i, j,k

tk
i j ∈ {0,1}, ∀ i,k ∀ j = 2, . . . ,ni

(12)

The MILP problem such as (12) is a classical optimization

paradigm. It can be solved using algorithms such as branch-

and-bound and cutting-plane method (e.g. [9], Chapter 11).

Commercial (and academic) implementations of these algo-

rithms are available (e.g. CPLEX and Gurobi).

IV. NUMERICAL STUDIES

All experiments in this paper are performed on a laptop

with an Intel Core i5 2.53GHz CPU and 4GB of memory.

A. Two case studies based on tariffs in Sweden and NYC

In this experiment, two instances of the MILP scheduling

problem in (12) are solved using CPLEX (using the YALMIP

MATLAB interface [10]). In the first instance, the electricity

tariff (i.e., ck in (1)) is taken to be the spot price on Feb

15th, 2011 in Sweden. Fig 2 shows the Swedish tariff. On
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Fig. 2. Electricity tariff (spot price) for Sweden on February 15th,
2011. Data are taken from Nord Pool Spot. The web address is
www.nordpoolspot.com.

the other hand, the tariff in the second instance is the spot

price of New York City on Feb 15th, 2011 in Fig. 1.

The (planned) execution period is from 9am to the end of

the day. The length of the time slots is 5 minutes. There are

three controllable smart appliances including a dishwasher,

a washing machine and a dryer. The household user imposes

the following time preference (cf. (11) in Section III-D).

The dishwasher is run between the beginning of 7pm and

the end of the day. The washing machine and dryer can

be run anytime between the beginning of 9am and the end

of 11pm. However, the washing machine phases must be

finished before the dryer can start. The above specifies the

constraints in (8) and (11). The values of the technical

specifications in remaining constraints can be found in the

Appendix. Finally, the peak signal in (4) is assumed to be

constant, and is always equal to 5500 Wh.

After solving the first instance (with ck being the Swedish

spot price), the sum of energy assigned to all appliances in

each time slot, as well as the electricity tariff, are plotted

in Fig. 3, which verifies that the proposed scheduler assigns

electricity usage when it is cheap.
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Fig. 3. Total energy assignment (for each time slot) and the electricity
tariff, in the Sweden case. The minimum cost schedule assigns energy only
when the tariff is low, subject to the constraints from (2) through (4).

The analogous result for solving the instance with the

NYC tariff are shown in Fig. 4. Fig. 5 also shows the detailed
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Fig. 4. Total energy assignment (for each time slot) and the electricity
tariff, in the NYC case. The minimum cost schedule assigns energy only
when the tariff is low, subject to the constraints from (2) through (4).

power profiles achieving the minimum cost in the NYC case.

The optimal electricity cost in the Sweden case is 3.528

SEK (about 105 SEK a month if the schedule is applied

every day). On the other hand, the optimal electricity cost

in the NYC case is 0.3256 USD (about 9.767 USD a month

if the same schedule is applied every day). To understand

how much cost saving the proposed scheduling framework

can achieve, the optimal scheduling problem in (12) can be

turned into the worst case scheduling problem by changing

the cost function in (12) from minimization to maximization.

5147



8 10 12 14 16 18 20 22 24
0

1000

2000

3000
dishwasher

p
o

w
e

r 
(W

)

8 10 12 14 16 18 20 22 24
0

1000

2000

3000
washing machine

p
o

w
e

r 
(W

)

8 10 12 14 16 18 20 22 24
0

500

1000

1500
dryer

p
o

w
e

r 
(W

)

hour

Fig. 5. The minimum cost power profiles for the appliances in the NYC
tariff case. Different energy phases are painted with different colors.

For the Sweden case, the worst cost is 3.616 SEK (about

2.5% more than the optimal cost). The saving is quite

insignificant in this case. On the other hand, for the NYC

case, the worst cost is 0.4781 USD (about 47% more than

the optimal cost). The case studies here confirms the intuition

that tariff fluctuation needs to be large enough to motivate

changes of power consumption behavior. In the NYC case,

the ratio of the maximum and minimum tariff is 2.601. On

the other hand, in the Swedish case the ratio of the maximum

and minimum tariff is only 1.068. With the maximum saving

of only 2.5%, there is no motivation for the consumers to

change their behaviors.

B. Computation time experiment

For real-time household application, the solving of the

scheduling problem in (12) cannot be too time-consuming.

In (12), the tuning parameter which is responsible for the

tradeoff between computation time and model fidelity is

the length of the time slot. Table I shows the statistics

of solving the NYC instance with three different values

of time slot lengths. Table I suggests that while the time

TABLE I

SOLVING THE NYC INSTANCE WITH DIFFERENT TIME SLOT LENGTHS

time slot length min cost max cost max saving solve time
3 min $0.3257 $0.4801 47.43 % 860 sec
5 min $0.3256 $0.4781 46.84 % 83.6 sec

10 min $0.3251 $0.4780 47.05 % 15.4 sec

slot length has a significant impact on computation time,

its effect on the optimal cost is not very obvious. This

justifies the use of lower fidelity optimization models, so

long as the temporal constraints (e.g. process time bounds)

are reasonably captured.
The MILP solver CPLEX has the ability to prematurely

terminates the optimal solution search. In particular, CPLEX

can stop as soon as it finds a feasible solution of (12).

Also, CPLEX allows the user to specify a time limit upon

which the solving is terminated, irrespective of whether

a feasible/optimal solution has been found or not. In the

following experiment, CPLEX is used to first find a feasible

solution (this is the minimum requirement of using CPLEX

in the appliance scheduling problem). Then the feasible

solution is used as an initial guess for the next CPLEX runs,

with variable solve time limits. The costs of these runs are

then compared against the optimal cost obtained by a single

CPLEX solve (i.e., the second and third rows in Table I). The

results of the experiment with the NYC case with the time

slot lengths being 10 and 5 minutes are shown in Table II.

TABLE II

RELATIVE ERROR VS CPLEX ALLOWED RUNTIME. NYC CASE WITH

DIFFERENT TIME SLOT LENGTHS d (IN MINUTES). IN THE d = 10 AND

d = 5 CASES THE FIRST FEASIBLE SOLUTIONS ARE OBTAINED,

RESPECTIVELY, AFTER 1.19 AND 6.94 SECONDS

d = 10
runtime (s) 1.19 2.42 4.55 6.41 11.4 14.4
rel. err. % 0.46 0.46 0.058 0.051 0.051 ≈ 0

d = 5
runtime (s) 6.94 12.2 17.2 27.2 67.2 87.2
rel. err. % 0.34 0.34 0.34 0.20 0.20 ≈ 0

Table II suggests that the suboptimal power profiles re-

turned by prematurely terminating CPLEX are acceptable

substitutes for the true optimal profiles which are much more

time consuming to find. In particular, in the 10-minute time

slot case the 1-second feasible solution incurs no more than

0.5% of relative error (w.r.t. the true optimal cost 0.3251

in Table I). In the 5-minute time slot case the 7-second

feasible solution incurs no more than 0.35% of relative error.

The above experiment demonstrates that it is promising to

apply the proposed framework in the real-time household

appliances scheduling scenario.

C. Scalability Test

To test the limit of computation time and memory require-

ments for solving (12), hypothesis scenarios are considered

with increasing number of appliances (each appliance has

6 energy phases). In these scenarios, the energy and timing

constraints in Section III-D are randomly specified. The NYC

tariff is chosen, and the length of the time slots is 10 minutes.
The random scenarios are solved using (a) CPLEX to

optimality, (b) CPLEX for the first feasible solution as in

Section IV-B, (c) a simple strategy to run the appliances as

soon as possible (ASAP), provided that the constraints are

satisfied, and (d) the analogous as late as possible (ALAP)

strategy. CPLEX runs out of memory for solving the scenario

with 10 appliances. The method for finding the first feasible

solution fails with 20 appliances. This verifies the intuition

that (12) does not admit scalable solution algorithms, and it

should be restricted to the case of a single household with

a few appliances (e.g. less than five). Figure 6 shows the

experiment results for the scenarios with less than 9 appli-

ances. The solve time to optimality increases rapidly as the

number of appliances increases. On the other hand, for the

first feasible solution only the solve time remains reasonable

(about 40 sec for 9 appliances) with good approximation

quality (less than 5% of relative increase in electricity cost).

Note also that the ASAP strategy fares well, but the ALAP

one is inaccurate. Since the accuracy of the ASAP and ALAP

schemes depends sensitively on the tariff, the validity of these

schemes are questionable.
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Fig. 6. Computation cost and relative error for solving randomly generated
scenarios with different number of appliances. Blue solid line with circles:
solve time for CPLEX optimal; Blue dashed line with “x”: solve time
for CPLEX first feasible solution; Red dotted line with dots: CPLEX first
feasible solution relative error; Red dotted line with downward pointing
triangles: ASAP relative error; Red dotted line with upward pointing
triangles: ALAP relative error.

CONCLUSION

In this paper a MILP based smart appliance scheduling

framework is proposed, capturing all relevant appliance

operations. With appropriately defined tariff (e.g. the NYC

case), the proposed framework can result in a scheduling

achieving about 47% of maximum cost saving. In addition, it

is demonstrated that good quality approximate solutions can

be obtained in a reasonable amount of computation time (e.g.

in about 1 second an approximate solution with relative error

less than 0.5% can be obtained). Finally, the proposed frame-

work can be extended to incorporate renewable energies,

battery and the multi-objective optimization with respect to

energy consumption and CO2 footprint.
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APPENDIX

A. Technical specifications of the smart appliances

The number of energy phases in the dishwasher, washing

machine and dryer processes are, respectively, 6, 8 and 1.

The data of the scheduling problem are derived from the

technical specifications of the three appliances, which are

listed in Table III, Table IV and Table V respectively.

TABLE III

DISHWASHER TECHNICAL SPECIFICATIONS [11]

Energy phase Energy Min power Max power Nominal op.
(Wh) (W) (W) time (min)

pre-wash 16.0 6.47 140 14.9

wash 751.2 140.26 2117.8 32.1
1st rinse 17.3 10.28 132.4 10.1

drain 1.6 2.26 136.2 4.3
2nd rinse 572.3 187.3 2143 18.3

drain & dry 1.7 0.2 2.3 52.4

TABLE IV

WASHING MACHINE TECHNICAL SPECIFICATIONS [11]

Energy phase Energy Min power Max power Nominal op.
(Wh) (W) (W) time (min)

movement 118 27.231 2100 26
pre-heating 5.5 5 300 6.6

heating 2054.9 206.523 2200 59.7
maintenance 36.6 11.035 200 19.9

cooling 18 10.8 500 10
1st rinse 18 10.385 700 10.4
2nd rinse 17 9.903 700 10.3
3rd rinse 78 23.636 1170 19.8

TABLE V

DRYER TECHNICAL SPECIFICATIONS [11]

Energy phase Energy Min power Max power Nominal op.
(Wh) (W) (W) time (min)

drying 2426.3 120.51 1454 120.8

In terms of the optimization problem in (12), the energy

requirements Ei j are listed in the “Energy” column in the

tables. The lower and upper limits for energy assignment

in each time slot, Pk
i j and P

k
i j in (3), are listed in the “Min

power” and “Max power” columns in the tables, respectively.

The last column in the above tables list the nominal operation

time of all phases. In this paper, it is assumed that the

operation time of the energy phases can be between 80%

and 120% of the nominal time. The time slot limits T i j and

T i j in (5) are obtained by dividing the operation time limits

(in minutes) by the time slot length (i.e., 5 minutes), and

rounding is performed where necessary. Finally, the lower

limit for between-phase delay Di j in (10) for all phases is

assumed to be zero, while the upper limits Di j are 5, 10 and

0 minutes for the energy phases in the dishwasher, washing

machine and dryer respectively.
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