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Abstract—In this paper, we propose a game-theoretic framework
for improving the resilience of the consensus algorithm, under the
H2 performance metric, in the presence of a strategic attacker. In
this game, an attacker selects a subset of nodes in the network to
inject attack signals. Its objective is to maximize theH2 norm of the
system from the attack signal to the output of the system. The
defender improves the resilience of the system by adding self-
feedback loops to certain nodes of the network to minimize the
system’s norm. We investigate the interplay between the
equilibrium strategies of the game and the underlying connectivity
graph, using the H2 performance metric as the game pay-off. The
equilibrium of the (zero-sum) attacker-defender game determines
the optimal location of the defense nodes in the network. The
existence of a Nash equilibrium for consensus dynamics is studied
under undirected and directed network topologies. For the cases
where the attacker-defender game does not admit a Nash
equilibrium, the Stackelberg equilibrium of the game is studied
with the defender as the game leader. Our results indicate that the
equilibrium strategies of the game are characterized by graph-
theoretic notions such as network centrality metrics. In particular,
we show that the effective center of the graph, a new network
centrality measure, captures the optimal location of defense nodes
in undirected networks. In directed networks, however, the optimal
locations of defenders are those nodes with small in-degrees. The
theoretical results are applied to the design of a resilient formation
of vehicle platoons.

Index Terms—Security of Networked Systems, Game Theory,
H2 Performance, Network Centrality.

I. INTRODUCTION

A. Motivation

NETWORKED Control Systems are control systems

wherein the control loops are closed through a communica-

tion network. The communication network can be in the sensing,

control, or actuation part of the control loop. By increasing the

scale and the complexity of interactions in network control sys-

tems, they become more prone to adversarial actions [1]–[4]. A

suitable framework to model the battle between a cyber-attack

and the defense mechanism is the game theory [5]–[8]. In this

paper, we study a game between an attacker and a defender on

consensus dynamics in which the attacker tries to maximize its

impact on the systemwhile the defender tries to minimize it.

B. Related Work

Game-theoretic approaches to the security of networked sys-

tems have been investigated in the past decade [5], [6]. Various

approaches have been adopted, either based on the structure of

the cyber-physical system or the type of malicious actions.

According to the nature of adversarial actions, appropriate game

strategies, e.g., Nash or Stackelberg, have been studied [6], [9],

[10]. When games are defined on large-scale systems, the strate-

gies of the players, and consequently their equilibrium strategies,

depend on the structure of the underlying network. Thus, the

game equilibria have to be interpreted in terms of graph-theoretic

notions. In attacker-defender game on networked systems, the

attacker can target a subset of links in a network to disrupt, e.g.,

in the form of jamming attacks [11]–[13] or hijack a subset of

nodes and change their updating rules. In those problems, the

objective of the defender is to mitigate the impact of the attacker

or maximize the energy that the attacker needs to disrupt the sys-

tem [14], [15]. In similar problems, the attacker may target a sub-

set of nodes to inject stealthy and undetectable attacks. The

defender, thus, counteracts the attacker by deploying sensors on

some nodes to detect the attacks. These problems, known as net-

work monitoring games, have been investigated for both static

and randomized (mixed) strategies [7], [16], [17]. Although

game-theoretic approaches have been widely used in the security

of networked systems, their applications to the resilience of con-

sensus dynamics and its variations, e.g., formation control prob-

lems, have not been well studied.

Resilient consensus has attracted attention in recent years.

Several studies have been done to enhance the resilience of

consensus algorithms against attacks. In [18], an attack detec-

tion technique is proposed to detect and isolate the attacked

nodes in parallel to the averaging task. Another approach is to

calculate the true initial states of the agents, in the presence of

a limited number of adversaries, and then do the averaging

[19]. In those methods, the averaging has to be performed after
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gathering the true initial conditions of the agents. In [20]–[23],

an online resilient consensus method is proposed by filtering

the values of malicious agents, i.e., extreme values, while per-

forming the averaging. The former methods reach the exact

average of the initial conditions; however, demand extensive

computation. The latter requires much less computational

cost, while, it only guarantees that the final value will be in a

convex hull of initial conditions (and not necessarily the aver-

age). These methods, however, require that the underlying net-

work is well-connected. In most applications, the underlying

topology is given and can be sparse. In this case, alternative

approaches to counteract the adversarial actions have to be

proposed.

In a parallel research direction, the effect of the network

structure to mitigate or propagate communication disturbances

has been studied, usually referred to as network coherence

[24]. Given networks with arbitrary connectivity levels, the

objective is to identify the most effective nodes for placing

controllers to maximize the robustness of the network control

system [25]–[27]. In our paper, we use this framework to place

defense nodes to increase the resilience of consensus algo-

rithms against adversarial actions. We provide graph-theoretic

interpretations for the optimal locations of the defense nodes

which appear in the form of equilibrium strategies of a zero-

sum game between the attacker and the defender.

C. Contributions

In this paper, we introduce the attacker-defender zero-sum

game, for multi-agent consensus systems, wherein an attacker

selects a set of nodes to inject attack signals. In our set-up, to

reduce the impact of attack signals, the defender adds self-

feedback loops to the dynamics of certain nodes. We investi-

gate the interplay between the equilibrium strategies of the

attacker-defender game and the underlying inter-agent con-

nectivity graph when the game pay-off is characterized by the

system H2 performance metric. More specifically, the contri-

butions of the paper are:

� We introduce a zero-sum game between an attacker and

a defender in consensus dynamics. The game payoff is

the system H2 norm from the attack input to the states

of the agents. The equilibrium of the game determines

the optimal places of the defense nodes in the network.

� For the case where the underlying network is undirected,

we show that the game does not admit a Nash equilib-

rium (NE). Hence, we discuss the Stackelberg game

when the defender is the game leader. We show that the

equilibrium strategy of the defender is determined by a

new network centrality metric, called effective center of

the graph. This centrality reduces to the well-known

notion of graph’s center when the underlying graph is a

tree. We also discuss the extension of the result to a

second-order consensus on undirected graphs.

� For directed graphs, via using an approximation, we

characterize necessary and sufficient conditions for the

existence of an NE and discuss the Stackelberg game for

the cases where there is no NE.We show that the optimal

location of the defenders belongs to nodes with the

smallest in-degrees.

� We apply the theoretical results to the design of a resil-

ient formation control algorithm for k-nearest neighbor

vehicle platoons.

D. Notations and Definitions

A weighted undirected graph is denoted by Gu ¼ fV; Eg,
where V is the set of vertices (or nodes) and E is the set of

undirected edges. In particular, ðvi; vjÞ 2 E if an only if there

exists an undirected edge between vi and vj. Moreover, Gd ¼
fV; Eg denotes an weighted directed graph (digraph). Let

jVj ¼ n and define the adjacency matrix for G, denoted by A 2
Rn�n, to be a matrix where Aij ¼ wij if and only if there is an

edge with weight wij between vj and vi in Gu (or there is an

edge with weight wij from vj to vi in Gd). The neighbors of

vertex vi 2 V in the graph Gu are denoted by the set N i ¼
fvj 2 V j fvj; vig 2 Eg and in Gd are denoted by the set

N in
i ¼ fvj 2 V j ðvj; viÞ 2 Eg. We define the degree for node

vi as Di ¼
P

vj2N i
Aij. Respectively, the in-degree for node vi

in Gd as Di ¼
P

vj2N in
i
Aij. The Laplacian matrix of an undi-

rected graph is denoted by L ¼ D� A, where D ¼ diagðD1;
D2; :::;DnÞ. We use ei to indicate the i-th vector of the canoni-

cal basis. The distance between a pair of nodes vi and vj is the
weighted length of the shortest path between vi and vj. The
eccentricity �ðvÞ of a vertex v in a connected undirected graph

Gu is the maximum graph (weighted) distance between v and

any other vertex u 2 V. The center of a graph is a set of vertices
with minimum (weighted) eccentricity. The f-eccentricity of a
vertex v in a connected weighted graph Gu is the maximum

sum of graph weighted distances between v and any subset of f
vertices u1; u2; :::; uf 2 V. The f-center of a graph is a set of

vertices with minimum (weighted) f-eccentricity. The effective
resistance, Rij, between two vertices vi and vj in a graph is the
equivalent resistance between these two vertices when we treat

the resistance of each edge e as 1
we
, where we is its weight. The

effective eccentricity �fðvÞ of node v in a connected graph G is

the maximum graph effective resistance between v and any

other vertex u of G. The effective center of a graph is a set of

vertices with minimum effective eccentricity.

II. PROBLEM FORMULATION

Consider a network of interconnected agents, represented

by a connected undirected graph Gu ¼ fV; Eg.1 Each agent

vi 2 V has a scalar state xiðtÞ which evolves as

_xiðtÞ ¼
X
j2N i

wij xjðtÞ � xiðtÞ
� �

; (1)

where wij > 0 represents the positive communication strength.

There is a subset of agents, denoted by D, which use an addi-

tional feedback from their own initial state and evolve as 2

1 The model is the same for digraphs as will be discussed in Section IV.
2 This type of state evolution where agents used their initial states as feed-

backs is used in opinion dynamics literature [28].
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_xiðtÞ ¼
X
j2N i

wij xjðtÞ � xiðtÞ
� �þ uiðtÞ; vi 2 D; (2)

where uiðtÞ ¼ �kðxiðtÞ � xið0ÞÞwith k > 0 as the gain of the
self-feedback. The gain value k is constant and the same for all

agents who use this self-feedback loop. These pure state feed-

back terms are added to some agents’ dynamics to increase the

resilience of the consensus to attacks. Dynamics (2) in a matrix

form become

_xxðtÞ ¼ � �LxxðtÞ þKxxð0Þ; (3)

where �L ¼ LþK,K ¼ kDz, andDz ¼ diagðzzÞ in which zz ¼
½z1; z2; :::; zn�T is a binary vector. We have zi ¼ 1 if node i has
a self feedback and zi ¼ 0 otherwise. We refer to the nodes

with the self feedback loops as the defense nodes. When there

is no self-feedback loop, dynamics (3) converges to the aver-

age of the initial conditions [29]. If there exists at least a single

node with a feedback, then dynamics (3) converges to some

convex combination of agents’ initial conditions [25], [30].

A. Attack Model

There is an attacker which injects attack signals to a subset

of nodes in the graph. Let F ¼ fvi1 ; vi2 ; :::; vifa g denote the set

of fa nodes under attack. Since the exact number of attacked

nodes is unknown to the defender, fa is considered as a known

upper bound on the number of attacked nodes. The dynamic

of an attacked node is

_xiðtÞ ¼
X
j2N i

wij xjðtÞ � xiðtÞ
� �þ ziðtÞ; vi 2 F (4)

where ziðtÞ represents the attack signal on node vi. Dynamics

(3) with additive attack signal becomes

_xxðtÞ ¼ � �LxxðtÞ þKxxð0Þ þBzzðtÞ; (5)

where the matrix Bn�fa ¼ ½ei1 ; ei2 ; :::; eifa � specifies the nodes
selected by the attacker. We consider full state measurement

in (5). Note that the attacker only selects matrix B and the

attack signal zzðtÞ is not a decision variable.
Based on the above problem formulation, we define the

attacker-defender game.

B. Attacker-Defender Game

We now pose the decision-making problem between the

attacker and the defender as a zero-sum game. Let �xxðtÞ ¼
xxðtÞ � �L�1Kxxð0Þ be the error state and write the error dynam-

ics of (5). The resulting error dynamics becomes

_�xxðtÞ ¼ � �L�xxðtÞ þ BzzðtÞ: (6)

We use the system H2 norm of the transfer function GðsÞ ¼
ðsI þ �LÞ�1

from zzðtÞ to �xxðtÞ defined as

jjGjj2 ,
1

2p
tr

Z 1

0

G�ðjvÞGðjvÞdv
� �1

2

: (7)

The above H2 norm for state-space model (6) can be calcu-

lated by jjGjj2 ¼ trðBTWBÞ, where W is the observability

Gramian obtained from the the Lyapunov equation

�LTW þW �L ¼ I: (8)

When the network is undirected ( �L is symmetric) the solution

of (8) is easily obtained as W ¼ 1
2
�L�1. We drop factor 1

2 for

simplicity. Such a closed form solution for general directed net-

work does not exist. Based on the above discussion, the

attacker-defender game is defined. Attacker-Defender Game:

The attacker injects the vector of attack signals zzðtÞ to the set F
of fa nodes in the network to maximize the system H2 norm

from zzðtÞ to �xxðtÞ, while the defender places self feedback loops
on the set D of fd nodes to minimize this system norm. Thus

the game payoff becomes

JðB;DzÞ ¼ tr BTWB
� � ¼ X

i2F
wii: (9)

The attacker’s decision determines matrix B to maximize

JðB;DzÞ and the defender’s decision affects matrix Dz, and

consequently �L andW , to minimize JðB;DzÞ.
Remark 1: In our setting, the defender does not have any

information about the frequency content of the attack signal

zðtÞ. With this in mind, one of the main reasons for consider-

ing the H2 norm is that this system norm is calculated based

on all frequencies, i.e., (7).

The number of all possible combinations of fa attacked

nodes and fd defense nodes in a network of n nodes is n
fa

� �
�

n
fd

� �
. As a result, the game matrix will have n

fd

� �
rows, one

for each combination of defence nodes, and n
fa

� �
columns,

one for each combination of attack nodes. Let fF1;F2;
:::;F

n
fa

� �g and fD1;D2; :::;D
n
fd

� �g denote the sets of all pos-

sible subsets of V with fa and fd elements, respectively.

Matrix A, with size n
fa

� �
� n

fd

� �
, is defined as the payoff

matrix of the attacker-defender game where Aij ¼ JðFj;DiÞ
is the system H2 norm when the attacked nodes are in Fj and

the defense nodes are in Di.
3 The attacker, i.e., the maximizer,

is the column player and the defender, i.e., the minimizer, is

the row player. Fig. 1 is an example of the attacker and

defender decisions. Based on this figure, nodes 1 and 3 are

under attack, i.e., F ¼ f1; 3g, and the defender chooses nodes

1 and 2, i.e., D ¼ f1; 2g. The game matrix is shown in Fig. 1

whose rows determine the defender’s strategies and columns

determine the attacker’s strategies. In this example, based on

the attacker and defender’s decisions and (9), the game value

is A12 ¼ w11 þ w33, i.e., the summation of the first and the

third diagonal elements of the observability Gramian. If the

graph is undirected it becomes A12 ¼ �L�1
11 þ �L�1

33 .

We discuss the equilibrium of the above game for the cases

of single attacked-single defense nodes (SA-SD) and multiple

3 Since sets F andD correspond to matrices B andDz, respectively, in this
paper we use JðF;DÞ and JðB;DzÞ interchangeably.
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attacked-multiple defense nodes (MA-MD). Before that, we

define NE for game

Definition 1: The game (9) admits an NE if there exists

attacker and defender decisions F� andD� such that

JðF;D�Þ � JðF�;D�Þ � JðF�;DÞ; (10)

for all attacker and defender’s decisions F 6¼ F� and D 6¼ D�.

III. EQUILIBRIUM ANALYSIS FOR UNDIRECTED GRAPHS

In this section, we study the equilibrium of the attacker-

defender game on undirected graphs. We start by considering

trees (connected acyclic graphs) as they provide insights about

the optimal placement of defense nodes in the graph.

A. Undirected Trees: Single Attacked-Single Defense Nodes

Recalling that for undirected graphs, the observability Gra-

mian is W ¼ 1
2 ðLþ kDzÞ�1

, for the SA-SD case, the game

payoff simply becomes

JðB;DzÞ ¼ ½ðLþ keje
T
j Þ�1�ii; (11)

where i is the index of the node under attack and j is the index
of the defense node.

Proposition 1: The SA-SD game on undirected trees does

not admit a pure Nash equilibrium.

Proof: First, we need to find a graph-theoretic expression

for each diagonal element of �L�1. We have

½ �L�1�ii ¼
1

k
þ

X
h2Pij

1

wh
; (12)

where Pij is the set of edges in the unique path from vi to vj
and wh is the weight of the edge h. The proof of (12) is

straightforward as it is a special case of Lemma 1 which will

be discussed later in Section III-C. To prove the proposition

we use contradiction. Based on (12) we have

Aii ¼ 1

k
< Aij ¼ 1

k
þ

X
h2Pij

1

wh
; i 6¼ j:

Suppose there exists an NE for the game, denoted by ði�; j�Þ.
This must satisfy

½A�i�j � ½A�i�j� � ½A�ij� (13)

for all i 6¼ i� and j 6¼ j�. If i� ¼ j�, then the left inequality is

violated and if i� 6¼ j�, the right inequality is violated. &

When the game does not admit a Nash equilibrium, an alter-

native approach is to define a Stackelberg game between the

attacker and defender. In a Stackelberg game with two players,

the player who announces his strategy first is called the leader

and the other player who reacts to the leader’s decision is

called the follower.

Remark 2 (Stackelberg vs. Nash Equilibrium): The interac-

tion between an active attacker, e.g., a jammer, and a passive

defender can be reasonably captured by a Stackelberg game in

that the jammer is an active player who sends signals at an

intended level to interfere communication channels while the

legitimate user rationally defends itself from such an attack. In

the case where the defending behaves actively or either side

has information advantage, the Nash equilibrium becomes a

reasonable solution concept [6].

In security problems, the defender acts as the game leader of

the Stackelberg game formulation. In particular, the defender

solves the following optimization problem

J�ðDzÞ ¼ min
Dz

tr B�T ðDzÞ �L�1B�ðDzÞ
� �

: (14)

where Dz is chosen over all fd defense nodes in V (here

fd ¼ 1) and B�ðDzÞ is the optimal response of the attacker

when the strategy of the defender is Dz, i.e., B
�ðDzÞ is the

solution of

B�ðDzÞ 2 argmax
B

tr BT �L�1B
� �

; (15)

where B is chosen over all fa attacked nodes (here fa ¼ 1) in
V. The following theorem discusses the solution of the Stack-

elberg game on undirected trees.

Theorem 1: For the SA-SD Stackelberg game on the con-

nected undirected tree Gu, a solution belongs to the case where

the defender chooses the graph’s center. The attacker’s best

response is to choose the farthest node from the center.

Proof: We have Aij ¼ 1
k þ

P
h2Pij

1
wh

. The defender min-

imizes the maximum element of each row, over all rows

of A. The defender’s optimal strategy is then v� ¼
argminimaxj

P
h2Pij

1
wh

and this is the graph’s center. Since

the graph’s center may not be unique, the strategies of the

defender and attacker may not be unique. However, the game

value is unique. The attacker’s best response in this case is

the maximum element on the row which belongs to node v� and
that is a node with maximumweighted distance from v�. &

One can interpret the system H2 norm as the ability of the

networked system to propagate the attack signal throughout the

network. This property is denoted by network incoherence in

the literature [24]. From a graph-theoretic perspective, the lon-

ger the path between the attacked node and the defense node

results in a larger propagation of the attack signal throughout

the network. From this view, the result of Theorem 1 is intuitive

as it indicates that the optimal decision of the defender is to

choose a node in the graph whose largest distance from the

nodes in the graph is minimum.

Fig. 1. Example of a game between the attacker and the defender and its
game payoff.
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B. Undirected Trees: Multiple Attacked-Single Defense

Nodes

Now, we analyze the case where there are multiple attacked

nodes and a single defense node. As mentioned before, we

assume that the defender knows an upper bound on the num-

ber of attacks, fa. Thus, the optimal strategy of the defender

depends on the number of (assumed) attack nodes fa. The fol-
lowing proposition discusses this fact more formally. The

proof follows a similar procedure to that of Theorem 2 with

the exception that instead of weighted distances between pairs

on nodes, the game payoff is a function of effective resistan-

ces. The notion of graph’s f-center was defined in Section I-D.
Proposition 2: Consider the Stackelberg game with a single

defence node and fa attack nodes over connected undirected

tree Gu. Then, a defender’s equilibrium strategy is to choose

the fa-center of the graph. The attacker’s best response is to

choose the farthest fa nodes from the fa-center.
In graph theory and network analysis, indicators of central-

ity identify the most important vertices within a graph. There

are various network centrality metrics, such as degree central-

ity, closeness centrality, and eigenvector centrality [31]. Here,

we interpret the graph’s f-center as a new centrality measure

and compare it with other centrality metrics via examples.

The graph’s closeness center node (a node which has the mini-

mum summation of distances to all other nodes in the graph) is

the ðn� 1Þ-center node. The location of graph’s f-center in
the network is a function of f .
Example 1: Consider a tree formed by a star of size m

attached to a path of length m, as shown in Fig. 2ðaÞ for m ¼
7. In this graph, the closeness center node remains in the cen-

ter of the star by changing m; however, the graph’s f-center
moves to left through the path asm increases.

Example 1 shows that when the exact number of the attacks

is unknown to the defender, choosing an f-center of the graph
for some f results in a sub-optimal solution. In particular, with

a single defense node and (potentially) multiple attacked nodes,

if the known upper bound fa is considerably different from the

actual attacked nodes, it will have a large impact on the defend-

er’s decision. As an example, suppose that only one node is

attacked while fa ¼ 11. In this case, the defender chooses the

center of the star (node 8) whereas the true decision is to choose

node 11, i.e., the center of the graph. By increasing the scale of

the tree in Fig. 2 ðaÞ, i.e., adding nodes to the star and increas-

ing the length of the tail simultaneously, the gap between the

defender’s decision with and without the knowledge of the

actual attacked nodes become larger. However, distance-based

centralities, e.g., graph’s f-central nodes, are still among the

appropriate choices for the defender. In other words, degree-

based centralities, e.g., the degree center or the eigenvector

center of the graph [31], can lead to decisions which are arbi-

trarily far from the optimal one. This observation is discussed

in the following example.

Example 2: The degree center and eigenvector center nodes

in Fig. 2 (b) are located at the center of the stars; however, the

f-central node, for any f � n� 1, is in the middle of the path.

As the length of the path increases, the f-center becomes arbi-

trarily far from the degree center and the eigenvector center.

The following example shows the attacker and defender’s

equilibrium strategies and confirms the result of in Proposition 2.

Example 3: The game values for four sample defense nodes

(nodes 8, 9, 10, and 11 in Fig. 2) and for all possible choices of

the attacked nodes are shown in Fig. 3. The horizontal axis

shows the attacker’s decision.According to this figure, the best

response of the attacker to any defender’s decision is to select

the node in the end of the line (node 15). Thus, the optimal

value from the defender’s perspective is to choose node 11,

i.e., the graph’s center. The attacker’s best response to the

defender’s decisions is node 15.

C. General Undirected Graphs

Here, we discuss the MA-MD game on general undirected

graphs. Note that adding feedback loops to a set of nodes is

equivalent to connecting them to a virtual node ‘, as shown in

Fig. 4.Matrix �L is a submatrix of the Laplacian matrix

Lðnþ1Þ�ðnþ1Þ of an extended graph (including node ‘) in which

the row and the column corresponding to ‘ are removed. �L is

called the grounded Laplacian matrix in the literature [25].

The following lemma interprets the diagonal elements of �L�1

via graph-theoretic notions.

Fig. 2. (a) A graph in which the location of f-center changes with f . (b)
Deviation of f-centrality from degree-based centralities in a graph.

Fig. 3. The effect of choosing the center of the graph as the defender for
graph in Fig. 2 (a).
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Lemma 1 ([32]): For an extended graph Gu we have �L�1
ii ¼

Ri‘, where Ri‘ is the effective resistance between vi and the

virtual node ‘.
For trees, the effective resistance between two nodes reduces

to their physical distance. As an example of Lemma 1, consider

nodes 1 and 2 in Fig. 4 as defenders while 1 and 3 are the

attacked nodes. We have JðB;DzÞ ¼
P

i2B �L�1
ii ¼ R1‘ þR3‘.

Theorem 2: For the SA-SD Stackelberg game over the con-

nected undirected graph Gu, a solution belongs to the case

where the defender chooses the effective center of the graph

(defined in Section I-D), i.e., v� 2 argminv2V�fðvÞ, and the

attacker chooses the node with the largest effective resistance

from v�.
Proof: ElementAij in the game matrix is equal toRj‘ which

is the effective resistance from the attacked node vj to the vir-

tual agent connected to the defense node vi. Since the virtual

node ‘ is only connected to the defense node vi, we haveRj‘ ¼
Rij þ Ri‘ ¼ Rij þ 1

k . Thus, the term 1
k is shared over all ele-

ments ofA. The rest of the proof follows the similar procedure

as that of Theorem 1, except that the physical distance is

replaced with the effective resistance. &

The following theorem generalizes Theorem 2 to the MA-

MD case.

Theorem 3 (MA-MD): Consider the MA-MD Stackelberg

gamewith fd defense nodes and fa attack nodes, fa; fd � 1 over
the connected undirected graph Gu. The virtual agent corre-

sponding to the set of defense nodesD is denoted by ‘D. Then, a
solution of the game is when the defender chooses D� 2
argminD	VmaxF	V

P
j2F R‘Dj. The attacker’s best response is

F�ðD�Þ 2 argmaxF	V
P

j2F R‘D� j.

Remark 3 (Effect of Increasing Connectivity and Adding

Defense Nodes): The effective resistance between each pair of

nodes is a decreasing function of edge weights [32]. Thus,

increasing the weight of edges or adding edges to the network

decreases the diagonal elements of �L�1 which results in

decreasing H2 norm. Hence, increasing the network connectiv-

ity improves the resilience of the system to cyber-attacks. Fur-

thermore, adding a defense node vi, i.e., a self-feedback loop to
node vi, is equivalent to adding an edge between vi and ‘.
Hence, similar to the above discussion, adding defense nodes

results in decreasing the game value, i.e., increases the security

of the system.

D. Discussion on the Second-Order Consensus

In this subsection, we extend the results to the second order

consensus. The state of a node under attack evolves as

_xiðtÞ ¼ viðtÞ;
_viðtÞ ¼ uiðtÞ þ ziðtÞ; i 2 F;

(16)

where ziðtÞ is the attack signal as mentioned before. We use a

variation of the control law which is widely used in formation

control problems [33], [34]

uiðtÞ ¼ �
X
j2N i

aij xiðtÞ � xjðtÞ
� �� X

j2N i

bij viðtÞ � vjðtÞ
� �

� k xiðtÞ � xið0Þð Þ � kviðtÞ; k > 0:

(17)

In (17), we consider the same feedback gain value k for both

xi and vi to reach to a closed form expression for H2 norm.

Here aij and bij are communication weights and k is the addi-

tional control gain applied by the defender. Dynamics (16) in

vector form becomes

_xx

€xx

� 	
¼ 0n In

� �L � �L

� 	
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

A

xx

_xx

� 	
þ 0

KK

� 	
xxð0Þ þ 0

B

� 	
zzðtÞ;

(18)

where B, �L, andKK are the same before. A conventional output

of interest is _xx. Note that in the steady state (in the absence of

attacks) we have _xxð0Þ ¼ €xxð0Þ ¼ 0. Substituting these values

into (18), assuming zzðtÞ ¼ 0, we get � �LxxþKKxxð0Þ ¼ 0
which is exactly the same as the first order model (5) reaching

the steady state. Hence, in the absence of attack, the state of

each node converge to some convex combination of the initial

states.

Proposition 3: TheH2 norm of (18) from zzðtÞ to yy ¼ _xx is

jjG2jj22 ¼
1

2

X
i2F

�L�1
ii : (19)

Proof: We have to first calculate the observability Gramian

W for (18) with output yy ¼ _xx. We have

w11 w12

w21 w22

� 	
AþAT w11 w12

w21 w22

� 	
¼ 0n 0n

0n �In

� 	
: (20)

By solving (20) we get w11 ¼ 1
2 I, w22 ¼ 1

2
�L�1 and w12 ¼

w21 ¼ 0. Hence we have jjGjj22 ¼ trðBTw22BÞ ¼ 1
2 trðBT �L�1BÞ

which yields the result. &

The above proposition bridges the results of Sections III-A,

III-B, and III-C to the second order consensus and Theorems 2

and 3 can be readily applied to the game on dynamics (16).

IV. EQUILIBRIUM ANALYSIS FOR DIRECTED GRAPHS

In this section, we discuss the game when the underlying

graph has directed edges. The main challenge for digraphs is

that the observability Gramian (and consequently the H2

norm) can not be derived in closed-form. Thus, we use an

approximation by considering that each diagonal element of the

Gramian follows the behaviour of the in-degree of the corre-

sponding node. In Section V, we show that for specific topolo-

gies, this approximation yields the equilibrium strategies which

are compatible with those of the exactH2 norm of the system.

Fig. 4. Extended graph and the virtual agent.
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Due to some topological necessities for reaching a consen-

sus, we assume that the graph contains a directed spanning

tree. Based on the Lyapunov equation (8), the H2 norm is the

summation of some of the diagonal elements of W chosen by

the attacker. Solving the Lyapunov equation for a diagonal

element wii of matrixW yields

wii ¼ 1

Di

X
k2N out

i

wik þ 1

2

0
@

1
A; (21)

where Di is the in-degree of node i and N out
i ¼ fvj 2

V j ðvi; vjÞ 2 Eg are the out-neighbors of node vi. Unlike

undirected graphs, the relation between wii and the structure

of the underlying digraph is not clear. Thus, we make an

approximation by assuming that wii follows the behaviour of

the coefficient 1
Di

in (21), i.e., wii � wjj if Di � Dj. We will

show the applicability of this assumption later via examples.

By introducing matrix X whose i-th diagonal element is 1
Di
,

we define the game payoff for directed graphs as

JðB;DzÞ ¼ tr BTXB
� � ¼ X

i2FnD

1

Di
þ

X
i2F\D

1

Di þ k
: (22)

A. Directed Graphs: Single Attacked-Single Defense Nodes

The following theorem characterizes the NE for SA-SD

game on digraphs.

Proposition 4: The SA-SD game on digraph Gd has an NE if

and only if k � Dn�1 � Dn where Dn and Dn�1 are smallest

and second smallest in-degrees in the graph. An NE strategy

for both attacker and defender is to choose v 2 argmini Di,

i.e., a node with the smallest in-degree.

Proof: Based on (22), the game matrix A is of the following

form

Aij ¼ cases
1

Dj þ k
i ¼ j;

1

Dj
i 6¼ j:cases (23)

First, we prove the necessary condition. Suppose that the play-

ers decisions, i.e., the node with the smallest degree, yield an

NE. Then, we must have 1
Dnþk � 1

Dj
for all j ¼ 1; 2; :::; n which

results in having k � Dn�1 � Dn. Now, if k � Dn�1 � Dn,

then by changing the attacker’s strategy (unilaterally) from

the node with the minimum in-degree to some node vi, accord-
ing to (23), the game value becomes J ¼ 1

Di
� 1

Dnþk . More-

over, if the defender changes its decision to another node vi,
according to (23) as the minimum component of each column

is its diagonal element, it will get J ¼ 1
Dn

� 1
Dnþk . Thus, none

of the players tend to change their decisions unilaterally. &

Remark 4: For the cases where the node with the smallest

degree is not unique, there is no NE for any k > 0, because
Dn�1 � Dn ¼ 0. An example of such graphs is Fig. 5(a) where

nodes 1 and 2 both have the smallest in-degree Dn ¼ 1.
Similar to undirected graphs, for the cases where there is no

NE, the Stackelberg game approach with the defender as the

game leader is considered.

Theorem 4: For the SA-SD Stackelberg game on digraph Gd

with k > Dn�1 � Dn, an optimal decision of the defender is

v 2 argmini Di, i.e., a node with the smallest in-degree. In

this case, the attacker’s best response is the node with the sec-

ond smallest degree, i.e., v 2 argminvi 6¼v Di.

Proof: Since k > Dn�1 � Dn, for each row of the game

matrix A, i.e., defender’s action, the largest element is 1
Dn

. The

exception is the row of a node with the smallest degree for which

the maximum element is 1
Dn�1

. Thus, the defender’s optimal

decision is v ¼ argmini2V Di and the attacker’s best response

becomes v ¼ argminvi 6¼v Di. In this case, if argminiDi is

unique, the attacker’s best response is the node with the second-

smallest in-degree and if it is not unique, the attacker’s best

response will be a node with the smallest degree, other than the

one chosen by the defender. The game value is unique and given

by J� ¼ 1
Dþk where D ¼ minvi 6¼v Di, although the optimal strat-

egy of the players may be not unique. &

Example 4: An example of the dependency of the equilib-

rium strategies on the value k is shown in Fig. 5 (b). In this

graph, the smallest in-degree uniquely belongs to node 1.

The threshold in Proposition 4 is Dn�1 � Dn ¼ 1. In Fig. 5

(c), the game values for all attacker’s strategies when the

defender chooses node 1 are shown for two values of k (one

above and one bellow the threshold). Based on this plot, the

attacker’s best response changes from the node with smallest

in-degree (node 1) for k ¼ 0:5 to a node with the second

smallest in-degree (node 4) for k ¼ 1:5. This confirms the

results of Proposition 4 and Theorem 4. Note that the game

values are calculated from the observability Gramian W and

not from the approximation (22).

B. Directed Graphs:Multiple Attacked-Multiple Defense Nodes

In this subsection, we study the Stackelberg game for MA-

MD case.

Theorem 5: Consider a Stackelberg MA-MD game. If fa þ
fd � n and k � D1 � Dn, then an equilibrium decision of the

defender is vv 2 argmaxD	VjDj¼fd

P
vi2D

1
Di
, i.e., fd nodes

with the smallest in-degrees in the network. The best response

of the attacker is �vv 2 argmaxF6¼vvjFj¼fa

P
vi2F

1
Di
.

Fig. 5. A digraph with (a) non-unique Dn and (b) unique Dn. (c) The effect of
the threshold value on the equilibrium strategies for digraph (b).
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Proof: The game matrix A is

Aij ¼
P

h2Fj
1

Dhþk i ¼ j;

P
h2Fj\Di

1
Dhþk þ

P
h2FjnDi

1
Dh

i 6¼ j;

8<
: (24)

whereDi and Fj are defender and attacker’s decisions, respec-

tively. The defender chooses a row in A whose maximum ele-

ment is minimum over all other rows. When k � D1 � Dn,

considering a fixed set D, for the row corresponding D, the

maximum belongs to the set of attackers �F for which �F \D ¼
;. Thus, we must have n � fa þ fd. In this case, based on the

second term in (24), the maximum component in the row which

belongs toD is �M ¼ maxF	VnD
P

j2F
1
Dj
. Thus, the defender’s

optimal decision is �D ¼ argmaxD	V
P

j2D
1
Dj
. &

V. APPLICATIONS TO SECURE PLATOONING

In this section, we study the optimal location of controllers

on a directed and an undirected k-nearest neighbor platoon of

vehicles to mitigate the impact of cyber-attacks.

Definition 2 (k-nearest neighbor platoons): For positive

integers n; k � 1 where n > k, an undirected k-nearest neigh-

bor platoon, Pðn; kÞ, is a network comprised of vehicles v1;
v2; :::; vn in which vi communicates with vehicles vi�k; :::;
vi�1; viþ1; :::; viþk, for some k 2 N. Directed k-nearest neigh-

bor platoon has the same definition, except that vi only com-

municates with viþ1; :::; viþk.

An example of vehicle labeling in an undirected and a

directed 2-nearest neighbor platoon of 5 vehicles, Pð5; 2Þ, is
shown in Fig. 6 (a) and (b).

k-nearest neighbor platoons can be considered as a generali-

zation of well-known bidirectional and predecessor-following

topologies [35].

Let pi and _pi be the position and longitudinal velocity of vehi-
cle vi. Each vehicle’s objective is to maintain specific distances

from its neighbors. The desired constant distance between

vehicles vi and vj is denoted byDij. The control law for vi is [36]

€piðtÞ ¼ uiðtÞ þ wiðtÞ; (25)

where wiðtÞ models communication disturbances and uiðtÞ is
the control policy defined as

uiðtÞ ¼
X
j2N i

kp pjðtÞ � piðtÞ þ Dij

� �þ ku _pjðtÞ � _piðtÞ
� �

:

(26)

Here, kp; ku > 0 are primary control gains used for the stabil-

ity of the vehicle platoon formation. If node i is under attack
or is chosen as the defender, (25) becomes

€piðtÞ ¼ uiðtÞ þ ziðtÞ þ wiðtÞ vi 2 F;
uiðtÞ � k1piðtÞ � k2 _piðtÞ þ wiðtÞ vi 2 D;

�

(27)

where k1; k2 > 0 are secondary control gains used by the

defense node and ziðtÞ is the attack signal. Dynamics (27) in

matrix form become

_xxðtÞ ¼ 0n In
�kp �L1 �ku �L2

� 	
xxðtÞ þ 0n�1

kpD

� 	
þ 0n

In

� 	
wwðtÞ

þ 0n
½0:3em�B

� 	
zzðtÞ

(28)

where xx ¼ ½P _P�T ¼ ½p1; p2; :::; pn; _p1; _p2; :::; _pn�T, D ¼ ½D1;
D2; :::;Dn�T in which Di ¼

P
j2N in

i
Dij and wwðtÞ is the vector

of disturbances. Here �L1 ¼ LþK1 and �L2 ¼ LþK2 where

K ¼ k1Dz andK2 ¼ k2Dz in whichDz ¼ diagðzzÞ determines

the location of defense nodes (vehicles). Matrix B determines

the location of the attacked nodes. The game payoff is the sys-

temH2 norm of (28) from zzðtÞ to the velocity of vehicles _xxðtÞ.
Remark 5: As mentioned above, kp and ku are primary con-

trol gains and k1 and k2 are secondary control gains used to

increase the resilience of the dynamics against attacks. The

primary controller uses relative vehicle positions in the feed-

back whereas the secondary controller uses the pure position

and velocity. The relative position between consecutive

vehicles is easily measurable using low-cost sonar sensors.

However, accurate localization of vehicles in real-time (to cal-

culate their position) demands differential GPS which is costly

and infeasible to be used in commercial vehicles. Thus, the

measurement (or estimation) of vehicle longitudinal velocity

is usually more reliable than its position. With this in mind, it

Fig. 6. (a) undirected 2-nearest neighbor platoon. (b) directed 2-nearest
neighbor platoon.

Fig. 7. Game matrices for directed and undirected platoons. The game equi-
libria are shown in dark colors.
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is realistic to assume that the velocity has a larger contribution

to the secondary control policy, i.e., k2 > k1.
We calculate the game values for directed and undirected

platoons based on the exact value of the system H2 norm. We

will see that the equilibrium strategies follow those predicted

by Proposition 4 which are based on the approximation (22).

The game matrix for a directed and an undirected 2-nearest

neighbor platoons with position and velocity feedback gains

k1 ¼ 0:5 and k2 ¼ 2 are shown in Fig. 7. Based on these game

matrices, for a platoon with a directed topology, there is an NE

when both attacker and defender choose vehicle 1 whose in-

degree is minimum over all other nodes. This confirms the result

of Proposition 4. For the undirected platoon, a solution of the

Stackelberg game belongs to the case where vehicle 3, which is

the effective center of the platoon, is chosen as the defender and

the attacker chooses the farthest vehicles from vehicle 3, either

vehicles 1 or 5. This confirm the theoretical result of Theorem 2.

For a 2-nearest neighbor platoon with a directed topology,

we examine the threshold for the feedback parameter k men-

tioned in Proposition 4. For facilitate this comparison, we

assume that k1 ¼ k2 ¼ k. The responses of the attacker are

shown in Fig. 8 (a) when the defense vehicle is vehicle 1.

Based on this figure, for a value of k less than the threshold,

i.e., k < Dn�1 � Dn ¼ 1, the attacker’s best response is the

vehicle with the minimum in-degree. For k bigger than

the threshold, the attacker’s best response is to choose a vehi-

cle with the second smallest in-degree. Fig. 8 (b) belongs to

the case where the communication between vehicles 2 and 4

drops. Thus, the in-degree of vehicles 2 and 4 are the same,

i.e., Dn is not unique. In this case, the attacker’s best response,

for all positive values of k, is either of vehicles 1 or 4. Here,

similar to the game matrices in (7), the game values and con-

sequently equilibrium strategies are based on the exact H2

norm of (28) and not from the approximation (22).

VI. CONCLUSION

We discussed the resilience of consensus problems in the

presence of adversarial actions, using a game-theoretic frame-

work. It was shown that the optimal solutions of the game on

undirected graphs follows a specific network centrality measure,

called effective center of the graph. Moreover, for digraphs, the

optimal nodes are those with the smallest in-degrees. The theo-

retical results are validated with simulations on a formation con-

trol of vehicle platoons. Further research can be done in the

following directions:

� Studying graph-theoretic interpretations for the saddle-

point of mixed strategy for the attacker-defender game.

� Analyzing the equilibrium strategies for large scale ran-

dom networks with various degree distributions.

� Investigating a close form solution of the Lyapunov

equation to obtain the observability Gramian for spe-

cific classes of digraphs. This helps to find the exact

equilibrium strategies without using the approximation.

� Other measures, e.g., entropy and diversity, can be used

to quantify the attack impact. Incorporating these meas-

ures in the game payoff is an avenue for future research.

� Incorporating the attack visibility, along with the impact,

to capture a complete view of the attacker’s objectives.
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