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Abstract— In this paper, we develop a framework against
inference attacks aimed at inferring the values of the controller
gains of an active steering control system (ASCS). We first
show that an adversary with access to the shared information
by a vehicle, via a vehicular ad hoc network (VANET), can
reliably infer the values of the controller gains of an ASCS. This
vulnerability may expose the driver as well as the manufacturer
of the ASCS to severe financial and safety risks. To protect
controller gains of an ASCS against inference attacks, we propose
a randomized filtering framework wherein the lateral velocity
and yaw rate states of a vehicle are processed by a filter consisting
of two components: a nonlinear mapping and a randomizer. The
randomizer randomly generates a pair of pseudo gains which
are different from the true gains of the ASCS. The nonlinear
mapping performs a nonlinear transformation on the lateral
velocity and yaw rate states. The nonlinear transformation is
in the form of a dynamical system with a feedforward-feedback
structure which allows real-time and causal implementation of
the proposed privacy filter. The output of the filter is then shared
via the VANET. The optimal design of randomizer is studied
under a privacy constraint that determines the protection level
of controller gains against inference attacks, and is in terms of
mutual information. It is shown that the optimal randomizer is
the solution of a convex optimization problem. By characterizing
the distribution of the output of the filter, it is shown that the
statistical distribution of the filter’s output depends on the pseudo
gains rather than the true gains. Using information-theoretic
inequalities, we analyze the inference ability of an adversary
in estimating the control gains based on the output of the filter.
Our analysis shows that the performance of any estimator in
recovering the controller gains of an ASCS based on the output
of the filter is limited by the privacy constraint. The performance
of the proposed privacy filter is compared with that of an additive
noise privacy mechanism. Our numerical results show that the
proposed privacy filter significantly outperforms the additive
noise mechanism, especially in the low distortion regime.
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I. INTRODUCTION

A. Motivation

VEHICULAR communication systems play a critical
role in intelligent transportation systems by enabling

vehicles-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications. Information exchange via vehicular net-
works enables services such as cooperative collision warn-
ing, incident management, platooning, and traffic information
notification. The information of individual vehicles, includ-
ing vehicle’s kinematic, dynamic, and geometric parameters,
are disseminated through the vehicular network in order to
enhance the active safety of vehicles (e.g., collision detection,
lane changing warning, and cooperative merging), increasing
the traffic throughput, as well as infotainment applications
(e.g., interactive gaming, and file and other valuable infor-
mation sharing). All these tasks can be easily done among
vehicles in proximity, or vehicles multiple hops away in a
vehicular ad hoc network (VANET) without the assistance of
any built infrastructure.

Although information exchange via V2V and V2I systems
provides numerous benefits, it exposes the control systems of
vehicles at the risk of privacy breach via inference attacks.
More precisely, one can identify the parameters of control
systems, e.g., controller gains of vehicular control systems,
based on the shared information. The privacy breach of control
parameters exposes the system designers to serious risks.
Each vehicle manufacturer dedicates numerous theoretical and
experimental efforts to designing and optimizing vehicular
control systems. Thus, from the manufacturers’ perspective,
it is vital to keep the design parameters private in order to
protect the right of usage and a privacy breach of sensitive
parameters exposes them to severe financial risks.

Privacy breaches of control parameters might have danger-
ous consequences for the drivers. It has been demonstrated
experimentally in [1] and [2] that modern vehicles are highly
vulnerable to cyber-physical attacks. An attacker can launch
detrimental attacks on vehicles using the knowledge of the
parameters of its control systems. An example of such model-
based stealthy attacks is the zero dynamics in which the adver-
sary conceals the attack signal in the so-called output-nulling
space, even if a large amount of false data are injected into
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the plant [3]–[6]. With this in mind, any privacy breach of the
vehicle’s dynamical model, including controller gains, exposes
the drivers to highly impactful cyber-physical attacks.

The active steering control system (ASCS), a safety critical
control unit of a vehicle, ensures the vehicle’s lateral stability
during maneuvers such as lane keeping. Under the existing
communications standards, e.g., SAE J2735, the states of
the ASCS and the driver steering command are shared via
vehicular communication networks which may result in the
privacy breach of controller gains of a vehicle’s ASCS. Con-
sequently, the ASCS can be compromised by a malicious agent
using model-based attacks (via CAN Bus) which is severely
dangerous especially in obstacle avoidance at high speeds.
Motivated by these observations, this paper investigates the
privacy aspect of controller gains of ASCSs under vehicular
communications.

B. Related Work

The leakage of private information via sensor measurements
as well as various solutions for ensuring privacy in such sce-
narios have been investigated in the literature, e.g., [7]–[10].
Li and Oechtering in [11] considered a multi-sensor hypothesis
testing problem and proposed a privacy-aware decision fusion
rule that minimizes the Bayes risk subject to a constraint on
the inference capability of an adversary with access to the local
decisions of a subset of sensors. The authors in [12] studied
the optimal privacy-aware design of the Neyman-Pearson test
under a set-up similar to that of [11].

Information-theoretic approach to data privacy has been
extensively studied in the literature, e.g., [13]–[17] and refer-
ences therein. In this line of work, the privacy filter is designed
such that the distortion between the input and output of the
filter is minimized subject to a privacy constrained captured by
information theoretic notions such as conditional entropy. The
authors in [18] considered a discrete-time Markov chain which
carries public information and is correlated with a private
Markov chain. They studied the optimal design of privacy filter
for the public chain when the filter has access to the outputs
of both chains. The author in [19] studied the optimal control
of a Markov decision process in presence of an adversary that
is curious about the state of the process and has access to
the input and output of the process. The interested reader
is referred to [20] for an overview of information-theoretic
approaches to privacy in estimation and control.

Variations of differential privacy have been used in the
literature to develop privacy-aware solutions for estimation,
filtering and average consensus problems. In this approach,
a randomized mechanism perturbs privacy-sensitive data, typ-
ically by adding noise, prior to sharing the data with an honest-
but-curious adversary. Ny and Pappas in [21] proposed the
notion of differentially private filtering to ensure the privacy of
the measurements of a dynamical system. The authors in [22]
studied the state estimation problem in a distribution power
network under the privacy constraints of the consumers. The
authors of [23] and [24] proposed privacy-aware algorithms
for the average consensus problem to ensure the privacy of
initial states of agents.

Wang et al. considered a distributed multi-agent control
problem in [25] and developed a differential privacy scheme
to ensure the privacy of the initial state and the preferred target
way-points of each agent. The privacy filter design problem
for the output measurements of a linear Gaussian system was
studied in [26]. It was shown that the nonlinear transformation
entails two one-step ahead Kalman predictors and requires the
knowledge of all the past inputs and outputs of the privacy
filter. Different from [26], we study the privacy filter design
problem when the privacy filter has access to the states of
a linear system (rather than its outputs) when the process
noise is arbitrarily distributed. We show that, in our set-up,
the nonlinear transformation is in the form of a dynamical
system where the output of the filter at each time-step depends
only on its last output rather than all the past outputs. This
significantly reduces the computational cost of implementing
the privacy filter, compared with [26], as the Kalman filtering
computations are not required.

C. Contributions

To highlight the vulnerability of the vehicular control
systems against inference attacks, this paper investigates an
inference attack on the controller gains associated with the
lateral velocity, yaw rate and the driver steering command of
an active steering control system (ASCS), a control system
commonly implemented in modern vehicles to improve the
lateral stability. In our set-up, a curious-but-honest adversary
receives the lateral velocity, yaw rate and driver steering com-
mand of a vehicle via a vehicular ad hoc network (VANET)
and attempts to infer the control gains of the ASCS.

To demonstrate the potential privacy breach of controller
gains, we use the least squares estimator to infer the gains
based on the yaw rate, lateral velocity, and driver steering
command. According to our numerical analysis, an adversary
with access to this information can reliably infer the controller
gains. We next propose a randomized filtering approach for
protecting the controller gains against inference attacks. In this
approach, the privacy is ensured by means of a filter that
consists of two components: a randomizer and a nonlinear
transformation.

The randomizer randomly generates a vector of pseudo
gains which are different from the true gains of the ASCS
system. The nonlinear transformation alters the lateral velocity
and yaw rate measurements such that the statistical distribution
of the output of the filter is characterized by the pseudo gains
rather than the true gains. The nonlinear transformation has
a feedforward-feedback structure which enables real-time and
causal computation of the pseudo measurements. The output
of the nonlinear transformation is then shared via the VANET.
In our set-up, the randomization probabilities of the random-
izer are designed by solving a convex optimization problem
which minimizes the distortion due to the filter subject to
a constraint on the privacy of gains. The privacy constraint
determines the protection level of the controller gains against
inference attacks by imposing an upper bound on the mutual
information between the true gains and the pseudo gains.
Using information-theoretic inequalities, we show that the
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TABLE I

VEHICLE SPECIFICATIONS

performance of any estimator, that uses the output of the filter
to estimate the gains, is limited by the privacy constraint. The
performance of the proposed privacy filter is compared with
that of an additive noise privacy mechanism. Our numerical
results show that the proposed privacy filter significantly
outperforms the additive noise mechanism, especially in the
low distortion regime.

D. Outline

The rest of this paper is organized as follows. Section II
introduces the active steering system. Section III describes the
attack model against the controller gains of the active steering
control system. The proposed randomized filtering framework
is introduced and analyzed in Section IV. The performance of
the proposed filtering scheme is numerically investigated for
an active steering system in Section V. Section VI concludes
the paper.

II. ACTIVE STEERING CONTROL SYSTEM

One of the main aspects of a vehicle’s stability is to provide
reliable lane keeping. The objective of the lane keeping
problem is to control the vehicle such that its center of gravity
follows a specified path. More precisely, the vehicle’s yaw
angle must follow the path heading while there should be
no lateral drift from the path. For lateral maneuvers, the
control input is the steering wheel angle which is designed
based on the yaw rate and lateral velocity, measured by
an Inertial Measurement Unit (IMU), and the driver’s feed-
forward command. The vehicle’s lateral offset, measured by
a vision system as the distance between the road centerline
and a virtual point at a fixed distance from the vehicle, has
also been used in the design of control action. However, such
a vision-based measurement does not exist in all passenger
vehicles.

In this section, we first discuss the steering control for
vehicle lane keeping problem. We next discuss the controller
gain privacy in the active steering system.

A. Active Steering for Vehicle Lane Keeping

We use a conventional two degrees of freedom bicycle
model for vehicle handling dynamics, shown in Fig. 1 (a).
Based on this model, the yaw rate and vehicle’s lateral velocity
evolve based on the following state-space form [27]

ẋ(t) = Ax(t) + B Mz(t) + Eδ (t) + w (t) , (1)

Fig. 1. (a) Plan view of vehicle dynamics model. (b) Vehicle handling control
loop.

where x (t) = [v (t) , r (t)]�, v (t) and r (t) are the lateral
velocity and yaw rate at time t , respectively, Mz is the yaw
moment which acts as the control input, δ (t) is the driver
steering commands, w(t) is the process noise, and

A =
⎡
⎣−2
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um 2
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⎤
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Table I shows the description of various parameters affecting
the evolution of the yaw rate and lateral velocity. The control
law consists of a linear combination of the feed-forward driver
steering command δ (t) and the two state-feedback terms based
on r(t) and v(t). According to the current state of technology,
the direct measurements of the yaw rate r(t) and the steering
angle δ (t) are quite feasible. Direct measurement of the
lateral velocity v(t) might be impractical. However, it can
be accurately estimated using various estimation techniques,
e.g., see [28]. Thus, we use the estimated lateral velocity v̂(t).
The control law Mz , as shown in Fig. 1 (b), takes the following
form

Mz(t) = κvv(t) + κr r(t) + κδδ(t), (3)

where κv , κr , and κδ are the lateral velocity feedback gain, the
yaw rate feedback gain and the steering angle feed-forward
gain, respectively. In (3), we assumed that the lateral velocity
can be estimated accurately, i.e., v̂(t) ≈ v(t). Substituting (3)
into (1) we get

ẋ(t) = Ax(t) + B [κv , κr ] x (t) + (κδ B + E) δ (t) + w (t) .

Discretizing the equation above with the step-size Ts ,
we obtain the following discrete-time model

xn+1=(I + Ts A + Ts B [κv , κr ]) xn + Ts(κδ B+E)δn + wn,

(4)

where n = 1, 2, . . . , is the time index, I is a two-by-two
identity matrix, δn is the driver steering command at time-step
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Fig. 2. The information sharing between an ASCS and a vehicular ad hoc network (a) without the randomized filtering scheme, (b) with the proposed
randomized filtering scheme.

n and xn = (vn, rn)� is the state of the ASCS at time-step n
where vn and rn denote the lateral velocity and the yaw rate
at time-step n, respectively.

B. Notations and Standing Assumptions

We use κ = (κv , κr , κδ) to denote the controller gains
associated with the yaw rate and lateral velocity measurements
where κ takes values in the set K = {κ1, . . . , κm} with
probability Pr (κ = κi ) = pi . This assumption is motivated
by the fact that the gain scheduling technique is commonly
used to design controllers for ASCSs, e.g., see [29] and [30].
In this approach, a set of gains are designed for an ASCS
and depending on the operating point of the system one of
the gains is implemented. The realization of κ is denoted
by κ = (κv , κr , κδ). We assume that the gains are fixed
over a horizon of length T . The process noise {wn} in (4)
is modeled as a sequence of independent and identically
distributed (i.i.d.) random variables. The common distribution
of {wn}n is assumed to be absolutely continuous with respect
to Lebesgue measure on R

2. Let x1:n denote the sequence of
the ASCS’s states over the horizon 1, . . . , n. A realization of
x1:n is denoted by x1:n. Let pκ (x1:n; δ1:n) denote the joint
probability density function (p.d.f.) of x1:n when the vector of
true gains κ is equal to κ and δ1:n = δ1:n . Note that the joint
p.d.f. of the states of the ASCS is parameterized by the control
gains. Thus, it belongs to the set M = {pκ (x1:n; δ1:n)}κ∈R3 .

The conditional cumulative distribution function (c.d.f.) of
vn+1 given the event {vn = vn, rn = rn, δn = δn, κ = κ} is
denoted by Fv (· |vn, rn, δn, κ ) which is defined as

Fv (z |vn, rn , δn, κ )=
� z

−∞
pκ,v (z |vn, rn, δn ) dz,

where pκ,v (x |vn, rn, δn ) is the conditional p.d.f. of vn+1
given the event {vn = vn, rn = rn, δn = δn, κ = κ}.
Similarly, the conditional c.d.f. of rn+1 given
{vn+1 = vn+1, vn = vn, rn = rn, δn = δn, κ = κ}, is denoted
by Fr (· |vn+1, vn , rn, δn, κ ) and is defined as

Fr (z |vn+1, vn, rn, δn, κ ) ==	 z
−∞pκ,r (z |vn+1, vn, rn, δn ) dz,

where pκ,r (x |vn+1, vn , rn, δn ) is the conditional p.d.f. of rn+1
given the event {vn+1 = vn+1, vn = vn, rn = rn, δn = δn,
κ = κ}. We also follow the convention that

Fv (x |v0, r0, δ0, κ ) = Fv (x),

Fr (x |v1, v0, r0, δ0, κ ) = Fr (x |v1 ) .

where Fv (x) is the c.d.f. of the initial lateral velocity v1 and
Fr (x |v1 ) is the conditional c.d.f. of initial yaw rate r1 given
the initial lateral velocity {v1 = v1}. In the rest of the
paper, we assume that the sequence of random variables
{vn = vn, rn = rn, δn = δn}n has a continuous joint probabil-
ity distribution which is absolutely continuous with respect to
the Lebesgue measure.

III. INFERENCE ATTACK MODEL

Consider a vehicular ad hoc network (VANET) wherein
a vehicle may exchange information with other vehicles as
well as the transportation infrastructure, e.g., connected traffic
lights. In a VANET, each vehicle transmits various pieces
of information including (but not limited to): temporal ID
of the vehicle, time of transmission, latitude, longitude and
elevation of the vehicle, longitudinal and lateral velocities and
acceleration of the vehicle, yaw rate, and steering and break
status of the vehicle [31], [32]. This information is then used
to improve safety and efficiency levels of the transportation
systems.

In an intelligent transportation system, the computing units
of certain vehicles (or infrastructure equipment) might be
compromised, e.g., via malware, to act as honest-but-curious
adversaries, i.e., the adversarial agents that have lawful access
to the shared information by vehicles via VANETs, and may
attempt to infer the parameters of control systems of vehicles
based on the shared data. The privacy breach of control
parameters exposes the manufacturers as well as the system
designers to severe financial risks due to the sheer monetary
values of the design parameters of vehicles. Additionally,
such privacy breaches might also be exploited by adversarial
agents, e.g., cyber-attackers, to launch detrimental model-
based attacks on vehicles [3]–[6].
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Fig. 3. Normalized estimation error of k̂v (a), κ̂r (b), and κ̂δ (c) as a function of time. Percentage of the normalized MSE of the least squares estimator as
a function of time (d).

In this paper, we study the privacy filter design problem
for protecting the control gains of an ASCS against inference
attacks. To this end, we first discuss the attacker model in the
next subsection. We then present the numerical results of an
inference attack on an ASCS.

A. Attacker Model

In this paper, we model the attacker as an honest-but-curious
adversary that attempts to infer the controller gains of the
ASCS of a vehicle based on the yaw rate, lateral velocity
and the driver steering command of that vehicle, as shown
in Fig. 3.(a). Note that yaw rate, lateral velocity, and the
driver steering command are continuously shared via VANETs
under different vehicular communication standards such as
SAE J2735 [31], [32]. Through this paper, we assume that
the attacker has knowledge of the control system structure
and uses a least squares estimator to infer the control gains of
the ASCS.

B. An Inference Attack on an ASCS

In this subsection, we show that the adversary is able to
reliably infer the controller gains. To this end, we simulated

an ASCS using equation (4) (see Section V for the parameters
of the ASCS). A least squares estimator was used to infer the
control gains based on the states of the ASCS. Let κ̂v , κ̂r ,
and κ̂δ denote the least squares estimator of the κv , κr , and
κδ, respectively. Fig. 3(a)-3(c) show the normalized estimation
error of κ̂v , κ̂r , and κ̂δ as a function time for a realization of
(x1:T , δ1:T ). The normalized estimation error is defined as the
ratio of the estimation error to the true gain. As these figures
show, the least squares estimator is able to accurately identify
the values of controller gains when the states of the ASCS are
directly shared via a VANET.

Fig. 3(d) shows the percentage of the normalized means
square error (MSE) of the least squares estimator as a function
of the number of samples where the normalized MSE is
defined as

E

�

κ̂v − κv

κv

�2

+



κ̂r − κr

κr

�2

+



κ̂δ − κδ

κδ

�2
�

.

The normalized MSE is computed using 1000 realizations of
(x1:T , δ1:T ). Based on this figure, the least squares estimator
can reliably infer the controller gains for all the considered
realizations. These observations indicate that directly sharing
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Fig. 4. The structure of the proposed randomized filtering scheme.

the states of the ASCS via a VANET exposes the controller
gains to the risk of inference attacks.

IV. THE RANDOMIZED FILTERING FRAMEWORK

In Section III, we demonstrated that an adversary with
access to the states of the ASCS (x1:T ) and the driver
steering command (δ1:T ) can reliably infer the controller gains.
To overcome this problem, in this section, we propose a ran-
domized filtering framework to ensure that the controller gains
cannot be reliably estimated based on the shared information.
In the proposed framework, a filter at each time-step n takes
xn , δn and κ as input, and generates an output denoted by x̃n ,
as shown in Fig. 2(b). Then, the output of the filter (x̃n) and
δn are shared via a vehicular ah hoc network (VANET).

The filter is designed to achieve the following three
objectives:

1) The filter’s output should accurately represent the states
of the ASCS.

2) The output of the filter should not be an informative
source for estimating the controller gains.

3) The statistical distribution of the states of the ASCS
(x1:T ) and that of the filter’s output (x̃1:T ) should belong
to the same family of distributions.

Note that, given κ = κ , the joint probability density function
(p.d.f.) of x1:T belongs to the family of density functions
M = {pκ (x1:T ; δ1:T )}κ∈R3 . The objective 3 guarantees that
the joint p.d.f. of the filter’s output over the horizon 1, . . . , T
also belongs to M. Hence, the proposed randomized filtering
scheme preserves the structure of the statistical model of the
states of the ASCS.

Remark 1: In a VANET, the shared information by a vehi-
cle is used in the control, prediction and estimation algorithms
in other vehicles. The complexity of these algorithms depends
on the complexity of the model of the shared information,
i.e., a highly complex model demands complicated signal
processing and control algorithms. Without objective 3, the
statistical model of the filter’s output might become overly
complex which results in highly complicated algorithms.

To achieve these objectives 1-3, a randomized filtering
framework is proposed which consists of two components:
a nonlinear transformation and a randomizer as shown in
Fig. 4. The randomizer takes the true controller gains (κ =
(κv , κr , κδ)) as input and randomly generates the vector of
pseudo gains κ̃ = �

κ̃v , κ̃r , κ̃δ


which takes values in the set

K̃ = {κ̃1, . . . , κ̃m̃}. At each time-step n, the nonlinear trans-
formation takes κ , κ̃ , xn and δn as input. Then, it generates

the vector of pseudo states x̃n = �
ṽn, r̃n

� where ṽn and
r̃n are the pseudo lateral velocity and the pseudo yaw rate,
respectively.

In the remainder of this section, we will first discuss the
structure of the nonlinear transformation followed by the
optimal design of the randomizer and the privacy analysis of
the controller gains under the proposed framework.

A. Nonlinear Transformation

In this subsection, we will describe the objective and the
structure of the nonlinear transformation. To this end, suppose
that the vector of true controller gains is equal to κi and the
randomizer has selected κ̃ j as the vector of pseudo gains.
Thus, the joint p.d.f. of the true measurements is given by
pκi (x1:T ; δ1:T ). The nonlinear transformation ensures that the
joint p.d.f. of the output of the filter over the horizon 1, . . . , T
is given by pκ̃ j (x̃1:T ; δ1:T ).

Let x̃n = �
ṽn, r̃n

��
denote a realization of the output of

the filter at time-step n. Then, given κ = κi and κ̃ = κ̃ j , the
filter, at time-step n, first generates the pseudo lateral velocity
according to

ṽn = F−1
v

�
d1

n

��ṽn−1, r̃n−1, δn−1, κ̃ j

�
, (5)

where d1
n is given by

d1
n = Fv (vn |vn−1, rn−1, δn−1, κi ) ,

Next, the filter generates the pseudo yaw rate according to

r̃n = F−1
r

�
d2

n

��ṽn, ṽn−1, r̃n−1, κ̃ j

�
, (6)

where d2
n is given by

d2
n = Fr (rn |vn, vn−1, rn−1, κi ) .

The structure of the nonlinear transformation is shown in
Fig. 5. Next theorem studies the statistical distribution of the
output of the filter over the horizon 1, . . . , T .

Theorem 1: Consider the nonlinear transformation specified
by equations (5) and (6). Given κ = κi and κ̃ = κ̃ j , the joint
probability density function of the pseudo states x̃1:T is given
by pκ̃ j (x̃1:T , δ1:T ), for all i, j .

Proof: See Appendix A.
According to Theorem 1, the nonlinear transformation ensures
that the joint p.d.f. of the output of the filter is parameterized
by the vector of pseudo gains κ̃ rather than the true gains.
Theorem 1 also implies that, given κ̃ , the joint p.d.f. of the
output of the filter belongs to the family of density functions
M = {pκ (x1:T ; δ1:T )}κ∈R3 . Hence, the proposed transforma-
tion ensures that the input and output of the filter belong
to the same family of distribution functions (objective 3 of
Section IV).

A unique aspect of the proposed privacy is the feedforward-
feedback structure of the nonlinear transformation as shown in
in Fig. 5. The feedforward component of the filter computes
d1

n and d2
n whereas the feedback component computes ṽn and

r̃n using the last output of the filter. Moreover, the recursive
structure of the proposed privacy filter allows causal (real-
time) generation of the pseudo measurements. Thus, ṽn and
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Fig. 5. The structure of the nonlinear transformation at time-step n.

r̃n are causally generated using the sensor measurements up
to time n rather than r1, v1, . . . , rT , vT .

B. Randomizer

The randomizer generates the vector of pseudo gains κ̃

based on the true values of gains according to the stochastic
kernel π (· |· ):

π
�
κ̃ j |κi

 = Pr
�
κ̃ = κ̃ j

�� κ = κi

, ∀i, j.

That is, π
�
κ̃ j |κi


specifies the probability that the randomizer

selects κ̃ j as the vector of pseudo gains when the vector
of true gains is equal to κi . The randomization probabilities�
π

�
κ̃ j |κi

�
i, j are the design parameters of the randomizer.

To discuss the optimal choice of the randomization probabil-
ities, we define the total average distortion between the true
and pseudo states over the horizon 1, . . . , T as

1

T

T�
n=1

E
���xn − x̃x

��2
�
.

Note that due to the filter, the true yaw rate and lateral
velocity might be different from the pseudo yaw rate and
lateral velocity. Thus, the total average distortion captures the
average deviation of the output of the filter from its input.

The optimal randomization probabilities are obtained by
minimizing the total average distortion subject to a constraint
on the privacy of controller gains that determines the pro-
tection level of the controller gains against inference attacks.
In this paper, we use the mutual information between the true
gains and the pseudo gains as the privacy metric which is
defined as

I
�
κ; κ̃

�=
�
i, j

Pr
�
κ =κi , κ̃ = κ̃ j


log

Pr
�
κ = κi , κ̃ = κ̃ j


Pr (κ = κi ) Pr

�
κ̃ = κ̃ j

 .

This privacy metric captures the amount of information that
can be inferred about the true gains by observing pseudo gains.
A small value of I

�
κ; κ̃

�
indicates a low level of leakage of

private information as the true gains cannot be reliably inferred
using the pseudo gains when I

�
κ; κ̃

�
is small. A large value

of I
�
κ; κ̃

�
implies a large level of information leakage. Hence,

on can reliably infer the true gains by observing the pseudo

gains when I
�
κ; κ̃

�
is large. Thus, a low level of I

�
κ; κ̃

�
is

desirable for ensuring privacy.
The optimal randomization probabilities are the solution of

the following optimization problem:

minimize{π(κ̃ j |κi )}i, j

1

T

T�
n=1

E
���xn − x̃n

��2
�

π
�
κ̃ j |κi

 ≥ 0, ∀i, j�
j

π
�
κ̃ j |κi

 = 1 ∀i

I
�
κ; κ̃

� ≤ I0, (7)

where the second constraint ensures the law of total proba-
bility and the last constraint imposes an upper bound on the
mutual information between the input and the output of the
randomizer. We refer to the last constraint in (7) as the privacy
constraint since it limits the amount of information that can be
inferred about the true gains by observing the pseudo gains.
We also refer to I0 as the level of information leakage. In the
next subsection, we show that the privacy constraint limits the
ability of any adversary in estimating the true gains based on
the output of the filter. Next theorem studies the structure of
the optimization problem (7).

Theorem 2: The objective function in the optimization
problem (7) is linear in the randomization probabilities. More-
over, the privacy constraint is convex.

Proof: See Appendix B.
According to Theorem 2, the optimization problem (7) is
convex. Thus, the optimal randomization probabilities can
be obtained by solving a convex optimization problem using
efficient numerical techniques. Note that the optimal design of
randomization probabilities ensures that the total distortion is
minimized while a certain privacy level for the controller gains
is guaranteed. Thus, the proposed filtering scheme achieves the
objectives 1 and 2 in Section IV.

C. Privacy Level of Control Gains

In this subsection, we study the privacy level of con-
troller gains under the proposed filtering scheme. To this
end, consider an adversary with access to x̃1:T , δ1:T and K.
The adversary is interested in inferring the controller gains

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 19:26:08 UTC from IEEE Xplore.  Restrictions apply. 



NEKOUEI et al.: RANDOMIZED FILTERING STRATEGY AGAINST INFERENCE ATTACKS ON ASCS 23

employed by the ASCS over the horizon 1, . . . , T . With
an abuse of notation, let κ̂

�
x̃1:T , δ1:T


denote an arbitrary

estimator of the true gains based on the output of the filter
where the estimator is defined as a mapping from x̃1:T , δ1:T
to the set K. To evaluate the privacy level of gains under the
proposed framework, next theorem establishes a lower bound
on the error probability of the estimator κ̂

�
x̃1:T , δ1:T


.

Theorem 3: Let Pr
�
κ 	= κ̂

�
x̃1:T , δ1:T


denote the error

probability of the estimator of the controller gains
κ̂

�
x̃1:T , δ1:T


. Then, we have

Pr
�
κ 	= κ̂

�
x̃1:T , δ1:T

 ≥ H [κ] − I0 − 1

log |K| . (8)

where |K| is the cardinality of K, I0 is the upper bound on
the privacy constraint in (7) and H [κ] is the discrete entropy
of κ .

Proof: See Appendix C.
Theorem 3 establishes a lower bound on the performance
of any estimator that uses the output of the filter over the
horizon 1, . . . , T to recover the true gains employed by the
controller. This lower bound depends on the discrete entropy
of κ , I0 and the cardinality of the set of gains. According
to Theorem 3, the lower bound on the error probability of
any estimator of gains increases as I0 becomes small. Thus,
a small value of I0 ensures that even an adversary with access
to the set of controller gains K cannot reliably estimate the
true gains employed by the ASCS over the horizon 1, . . . , T .

In Appendix C, we show that the mutual information
between the true gains and the shared information can be
upper bounded by the mutual information between the true
and pseudo gains. That is, we have

I
�
κ; x̃1:T , δ1:T

� ≤ I
�
κ; κ̃

�
. (9)

Note that I
�
κ; x̃1:T , δ1:T

�
quantifies the amount of information

which can be inferred about the true gains based on the output
of the filter. Thus, the inequality (9) implies that the privacy
constraint in the optimization problem (7) essentially limits
the leakage of information about the true gains via the filter’s
output.

Remark 2: To prove Theorem 3, we establish the Markov
chain κ → �

κ̃, δ1:T
 → x̃1:T in Appendix A. Then, the

data processing inequality [33] and this Markov chain are
used to derive the inequality (9). Finally, the lower bound
in Theorem 3 is established using Fano’s inequality and the
inequality (9).

Remark 3: An attacker with access to the filter’s output can
reliably infer the pseudo gains. If the true gains of the system
and the pseudo gains are close, then the attacker obtains a
good estimate of the true gains by inferring the pseudo gains.
However, when the difference between the true gains and
pseudo gains is large, the knowledge of pseudo gains will not
provide a good estimate of the true gains. During the design
process of the privacy filter, the designer can ensure that the
attacker cannot obtain an accurate estimate of the true gains
by inferring the pseudo gains. This objective can be achieved
by designing the set of pseudo gains such that pseudo gains
and true gains are far enough from each other.

TABLE II

PARAMETERS OF THE ACTIVE STEERING SYSTEM

Fig. 6. The percentage of the normalized MSE and MAE error of the gain
estimator versus the level of information leakage I0.

V. NUMERICAL RESULTS

In this section, we will numerically investigate the perfor-
mance of the proposed framework in ensuring the privacy of
the controller gains of an ASCS. To this end, we consider
an active steering system with the dynamics in (4) where the
disturbance {wn}n is a sequence of independent and identically
distributed Gaussian random vectors. For each time-step n, the
entries of wn = �

w1
n,w

2
n

�
are assumed to be independent

Gaussian random variables with zero mean and variance equal
to 10−2. In our set-up, the vector of true controller gains
κ = (κv , κ r , κδ)

� takes values in the set

K =
⎧⎨
⎩

⎡
⎣777.9

39727
10000

⎤
⎦ ,

⎡
⎣477.9

29727
15000

⎤
⎦

⎫⎬
⎭

with equal probabilities. The vector of pseudo gains κ̃ takes
values in

K̃ =
⎧⎨
⎩

⎡
⎣677.9

34727
5000

⎤
⎦ ,

⎡
⎣377.9

24727
10000

⎤
⎦

⎫⎬
⎭

The efficiency of the proposed privacy mechanism is exam-
ined by constructing a least squares estimator of controller
gains based on

�
x̃1:T , δ1:T


. To estimate the controller gains,

we generated the pseudo states x̃1:T for longitudinal velocities
of 20, 40, and 50. Then, the pseudo states along with the
driver steering commands were used as input to the estimator.
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Fig. 7. Average total distortion versus the level of information leakage I0.

The horizon length was set to 1000 samples. We then com-
puted the normalized means square error (MSE) defined as

E

�

κ̂v − κv

κv

�2

+



κ̂r − κr

κr

�2

+



κ̂δ − κδ

κδ

�2
�

,

where κ̂v , κ̂r and κ̂δ are the least square estimates of the
gains associated with the lateral velocity, yaw rate and the
driver steering commands. Table II shows the parameters of
the ASCS in our numerical analysis.

Fig. 6 shows the percentage of the normalized mean square
error (MSE) and mean absolute error (MAE) of the least
squares estimator for different values of the level of infor-
mation leakage I0. According to this figure, the performance
of the least squares deteriorates as I0 becomes small. This
observation confirms that, under the proposed framework, the
estimator cannot reliably estimate the controller gains. This is
due to the fact that, under the proposed scheme, the joint p.d.f.
of ỹ1:T is characterized by the vector of pseudo gains which
are different from the true gains.

Fig. 7 shows the average total distortion between the true
and pseudo states of the ASCS as a function of I0. Accord-
ing to this figure, the average total distortion increases as
I0 becomes small. Note that the privacy constraint in (7)
becomes tight as I0 decreases. This results in higher values of
distortion since the feasible set of the optimization problem (7)
shrinks as I0 becomes small.

We next compare the performance of the proposed privacy
filter with that of an additive noise privacy mechanism wherein
random perturbation is added to the sensor measurements to
ensure privacy. We note that the additive noise schemes have
been extensively studied in the context of data privacy, e.g.,
see [34] and references therein. To this end, we consider an
additive noise mechanism in which Gaussian noise is added to
the sensor measurements to ensure privacy. Let x̃add

k denote the
output of the additive noise mechanism which can be described
as

x̃add
n = xn + Nn,

where {Nn}n is a sequence of i.i.d. Gaussian random vectors
with zero mean and covariance matrix σ 2I, and I is a 2-by-2

Fig. 8. Percentage of the normalized MSE and MAE of the gain estimator
as a function of time when the average total distortion is 0.06 (a), and when
the average total distortion is 0.2 (b).

identity matrix. Under the additive noise mechanism, at time-
step n, x̃n is shared with the vehicular ad hoc network and an
adversary with access to

�
x̃n

�
n may attempt to infer the true

values of control gains.
To compare the proposed privacy filter with the additive

noise mechanism, we assume that the adversary is aware of
the structure of the employed privacy scheme, and uses a least
squares estimator to infer the control gains. Thus, in each
case, the least squares estimator is designed according to the
structure of the privacy mechanism in that case.

Fig. 8(a) illustrates the percentage of the normalized MSE
and MAE of the estimator of control gains as a function
of time under the proposed privacy filter and the additive
noise mechanism when the average total distortion due to each
scheme is equal to 0.06. Note that the values of I0 and σ 2 can
be varied to achieve the same distortion level in both cases.

According to Fig. 8(a), the normalized MSE and MAE of
the estimator under the additive noise mechanism is 5% when
the adversary has access to 1000 measurements. However,

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 19:26:08 UTC from IEEE Xplore.  Restrictions apply. 



NEKOUEI et al.: RANDOMIZED FILTERING STRATEGY AGAINST INFERENCE ATTACKS ON ASCS 25

Fig. 9. The percentage of the normalized MSE and MAE error of the gain
estimator as a function of the average total distortion under the proposed
privacy and the additive noise mechanism.

under the proposed privacy scheme, the normalized MSE of
the estimator is close to 25%. This observation indicates that
the proposed privacy filter provides a better privacy protection
compared with the additive noise mechanism. A same behavior
continues to hold for the MAE of the gain estimator. Note
that the adversary can accurately estimate the feedback gains
under the additive noise mechanism. This is due to the fact
that the impact of the additive noise can be averaged out.
However, under the proposed privacy filter, the adversary can
at most infer pseudo gains accurately and accurate knowledge
of pseudo gains does not result in an accurate estimate of true
gains. A similar behavior is observed when the average total
distortion is 0.2 as shown in Fig. 8(b).

Fig. 9 shows the normalized MSE and MAE of the gain
estimator versus the total average distortion under the proposed
privacy filter and the additive noise mechanism. The MSE
and MAE in each case are computed using 1000 samples of
the output of the privacy filter in that case. According to this
figure, for a given distortion level, normalized MSE (MAE) of
the least squares estimator is higher when the proposed privacy
filter in employed compared with that under the additive noise
mechanism. This observation also confirms that the proposed
privacy scheme is more efficient in ensuring privacy than the
additive noise scheme.

VI. CONCLUSION

In this paper, we proposed a randomized filtering framework
for protecting the controller gains of the active steering control
system (ASCS) of a vehicle against inference attacks. The
proposed framework consists of a randomizer and a nonlinear
transformation. The randomizer takes the vector of true gains
as input and randomly selects a vector of pseudo gains. The
nonlinear transformation takes the true gains, the pseudo gains,
the driver’s steering command and the states of the ASCS as
input. It then generates a vector of pseudo states which is
shared with other vehicles and transportation infrastructure via
a vehicular ad hoc network. We showed that the randomizer

can be optimally designed by solving a convex optimization
problem. We also showed that the proposed filtering scheme
limits the performance of any estimator in recovering the true
gains.

Our results can be extended in multiple directions. The
privacy filter design problem under other metrics such as
Fisher information and Akaike information criterion is an
important and interesting research direction. Another impor-
tant research direction is the development of computationally
efficient methods for the optimal design of the pseudo gains.

APPENDIX A
PROOF OF THEOREM 1

Recall that M = {pκ (x1:T ; δ1:T )}κ∈R3 where
pκ (x1:T ; δ1:T ) denotes the joint probability density function
(p.d.f.) of x1:T when κ = κ and δ1:T = δ1:T . To prove
Theorem 1, we first derive an expression for pκ (x1:T ; δ1:T ).
We then use this expression to show that the joint p.d.f. of the
output of the filter, i.e., x̃1:T , also belongs to M. Note that
x1:T = x1, . . . , xT and xn = (vn, rn)�. Using the Bayes’
rule and the Markov property of the dynamics of the ASCS,
pκ (x1:T ; δ1:T ) can be factorized as

pκ (x1:T ; δ1:T )

=
T −1�
n=0

pκ,v (vn+1 |vn, rn, δn ) pκ,r (rn+1 |vn+1, vn, rn, δn ) .

We next show that the joint p.d.f. of the output of the filter
has the same from as pκ (x1:T ; δ1:T ).

Let px̃1:T
�
x̃1:T

��κi , κ̃ j , δ1:T


denote the joint p.d.f. of x̃1:T
given δ1:T = δ1:T , κ = κi and κ̃ = κ̃ j . We obtain an
expression for px̃1:T

�
x̃1:T

��κi , κ̃ j , δ1:T


as follows. Using the
Bayes’ rule, we have

px̃1:T
�
x̃1:T

��κi , κ̃ j , δ1:T


=
T −1�
n=0

pṽn+1

�
ṽn+1

��x̃1:n, κi , κ̃ j , δ1:T


× pr̃n+1

�
r̃n+1

��ṽn+1, x̃1:n, κi , κ̃ j , δ1:T

, (10)

where pṽn+1

�·��x̃1:n, κi , κ̃ j , δ1:T


is the conditional p.d.f.
of ṽn+1 given

�
x̃1:n = x̃1:n, κ = κi , κ̃ = κ̃ j , δ1:T = δ1:T

�
and

pr̃n+1

�·��ṽn+1, x̃1:n, κi , κ̃ j , δ1:T


is the conditional p.d.f. of r̃n+1
given

�
ṽn+1 = ṽn+1, x̃1:n = x̃1:n, κ = κi , κ̃ =

κ̃ j , δ1:T = δ1:T
�
. We next derive expressions for the condi-

tional p.d.f.s pṽn+1

�
ṽn+1

��x̃1:n, κi , κ̃ j , δ1:T

. Note that the con-

ditional probability of the event
�
ṽn+1 ≤ y

�
given the event�

x̃1:n = x̃1:n, κ = κi , κ̃ = κ̃ j , δ1:T = δ1:T
�

can be written as

Pr
�
ṽn+1 ≤ y

�� x̃1:n, κi , κ̃ j , δ1:T


= Pr
�

F−1
v

�
d1

n+1

��ṽn, r̃n, δn, κ̃ j

�
≤ y

��� x̃1:n, κi , κ̃ j , δ1:T
�

(a)= Pr
�

d1
n+1 ≤ Fv

�
y
��ṽn, r̃n, δn, κ̃ j

��� x̃1:n, κi , κ̃ j , δ1:T
�

(b)= Pr
�

d1
n+1 ≤ Fv

�
y
��ṽn, r̃n, δn, κ̃ j

��� x1:n, κi , κ̃ j , δ1:T
�

,

(11)

where (a) holds since Fv

�· ��ṽn, r̃n, δn, κ̃ j


is monotonically
increasing and continuous, and (b) follows from the fact
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that, given κ and κ̃ , the transformation from x1:n to x̃1:n is
invertible, hence it is possible to uniquely recover x1:n from
x̃1:n when κ and κ̃ are known.

We next show that the conditional p.d.f. of d1
n+1 given�

x1:n = x1:n, δ1:T = δ1:T , κ = κi , κ̃ = κ̃ j
�

is a uniform distri-
bution in the interval [0, 1]. Note that Fv

�· ��ṽn, r̃n, δn, κ̃ j


takes values in [0, 1]. Also, for 0 ≤ y ≤ 1, the condi-
tional probability of the event

�
d1

n+1 ≤ y
�

given the event�
x1:n = x1:n, δ1:T = δ1:T , κ = κi , κ̃ = κ̃ j

�
can be written as

Pr
�

d1
n+1 ≤ y

��� x1:n, κi , κ̃ j , δ1:T
�

= Pr
�

Fv (vn+1 |vn, rn, δn, κi ) ≤ y| x1:n, κi , κ̃ j , δ1:T


(a)= Pr
�
vn+1 ≤ F−1

v (y|vn, rn, δn, κi)
���x1:n, κi , κ̃ j , δ1:T

�
=Pr

�
vn+1≤F−1

v (y|vn, rn, δn, κi)
���vn, rn, x1:n−1, κi , κ̃ j , δ1:T

�
(b)= Pr

�
vn+1 ≤ F−1

v (y |vn, rn, δn, κi)
���vn, rn, κi , δn

�
= Fv

�
F−1

v (y |vn, rn, δn, κi) |vn, rn, δn, κi

�
= y, (12)

where (a) holds since Fv (· |vn, rn, κi , δn) is invertible and
(b) follows from the Markov chains κ̃ → (κ, x1:n, δ1:T ) →
vn+1 and (x1:n−1, δ1:T ) → (κ, xn, δn) → vn+1.
Equation (12) implies that the random variable d1

n+1 given�
x1:n = x1:n, δ1:T = δ1:T , κ = κi , κ̃ = κ̃ j

�
is uniformly dis-

tributed in [0, 1]. Combining (12) and (11), we have

Pr
�
ṽn+1 ≤ y

�� x̃1:n, κi , κ̃ j , δ1:T
 = Fv

�
y

��ṽn, r̃n, δn, κ̃ j

,

(13)

which implies that

pṽn+1

�
ṽn+1

��x̃1:n, κi , κ̃ j , δ1:T
 = pκ̃ j ,v (ṽn+1 |ṽn, r̃n, δn ) .

(14)

Following similar steps, it is straightforward to show that

pr̃n+1

�
r̃n+1

��ṽn+1, x̃1:n, κi , κ̃ j , δ1:T


= pκ̃ j ,r (r̃n+1 |ṽn+1, ṽn , r̃n, δn ) . (15)

Combining (10), (14) and (15), we have

px̃1:T
�
x̃1:T

��κi , κ̃ j , δ1:T


=
T −1�
n=0

pκ̃ j ,v (ṽn+1 |ṽn, r̃n, δn ) pκ̃ j ,r (r̃n+1 |ṽn+1, ṽn, r̃n , δn )

= pκ̃ j (x̃1:T ; δ1:T ) . (16)

The equation above implies that the Markov chain κ →�
κ̃, δ1:T

 → x̃1:T holds. Thus, we have

px̃1:T
�
x̃1:T

��κ̃ j , δ1:T
 = px̃1:T

�
x̃1:T

��κi , κ̃ j , δ1:T


= pκ̃ j (x̃1:T ; δ1:T ) .

Hence, the joint p.d.f. of the filter’s output belongs to M.

APPENDIX B
PROOF OF THEOREM 2

Using the law of total expectation, E
���xn − x̃n

��2
�

can be
written as

E
���xn − x̃n

��2
�

= Eκ ,κ̃

�
E

���xn − x̃n
��2 ��κ = κi , κ̃ = κ̃ j

��
=

�
κi ,κ̃ j

E
���xn − x̃n

��2 ��κ = κi , κ̃ = κ̃ j

�

× π
�
κ̃ j |κi


Pr (κ = κi ) .

Thus, the objective function is linear in the randomization
probabilities. The first and second constraints in (7) are linear
and the privacy constraint is convex in the randomization prob-
abilities [33]. These observations imply that the optimization
problem (7) is convex.

APPENDIX C
PROOF OF THEOREM 3

Using Fano’s inequality [33], the error probability of any
estimator of the true gains can be lower bounded as

Pr
�
κ 	= κ̂

�
x̃1:T , δ1:T

 ≥ H
�
κ

��x̃1:T , δ1:T
� − 1

log |K| .

(a)= H [κ] − I
�
κ; x̃1:T , δ1:T

� − 1

log |K| .

(17)

where H
�
κ

��x̃1:T , δ1:T
�

is the discrete conditional entropy of
κ given x̃1:T , δ1:T and (a) follows from the definition of
mutual information. Next, we derive an upper bound on the
mutual information between κ and x̃1:T , δ1:T . In Appendix A,
we show that the joint p.d.f. of x̃1:T given δ1:n , κ̃ and κ

only depends on κ̃ . Thus, the following Markov chain holds:
κ → �

κ̃, δ1:T
 → x̃1:T . Hence, we have

I
�
κ; x̃1:T , δ1:T

� (a)= I
�
κ; x̃1:T

� + I
�
κ; δ1:T

��x̃1:T
�

(b)= I
�
κ; x̃1:T

�
(c)≤ I

�
κ; κ̃, δ1:T

�
(d)= I

�
κ; κ̃

� + I
�
κ; δ1:T

��κ̃ �
(e)= I

�
κ; κ̃

�
≤ I0, (18)

where (a) and (d) follow from the chain rule for mutual
information [33], (b) and (e) follow from the fact that the
driver steering command is deterministic. The inequality (c)
follows from the data processing inequality [33] and the
Markov chain κ → �

κ̃, δ1:T
 → x̃1:T . The last inequality fol-

lows from the privacy constraint in optimization problem (7).
Combining (17) and (18), we have

Pr
�
κ 	= κ̂

�
x̃1:T , δ1:T

 ≥ H [κ] − I0 − 1

log |K| .
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