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ABSTRACT
Cyber-secure networked control is modeled, analyzed, and
experimentally illustrated in this paper. An attack space de-
fined by the adversary’s system knowledge, disclosure, and
disruption resources is introduced. Adversaries constrained
by these resources are modeled for a networked control sys-
tem architecture. It is shown that attack scenarios corre-
sponding to replay, zero dynamics, and bias injection at-
tacks can be analyzed using this framework. An experimen-
tal setup based on a quadruple-tank process controlled over
a wireless network is used to illustrate the attack scenarios,
their consequences, and potential counter-measures.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—unauthorized access;
C.3 [Special-Purpose and Application-Based Systems]:
Process control systems

Keywords
Cyber-physical systems, security, attack space, secure con-
trol systems

1. INTRODUCTION
Safe and reliable operation of infrastructures is of major

societal importance. These systems need to be engineered in
such a way so that they can be continuously monitored, coor-
dinated, and controlled despite a variety of potential system
disturbances. Given the strict operating requirements and
system complexity, such systems are operated through IT
infrastructures enabling the timely data flow between dig-
ital controllers, sensors, and actuators. However, the use
of non-proprietary communication networks and heteroge-
neous IT components has made these cyber-physical sys-
tems vulnerable to cyber threats. One such example are the
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power transmission networks operated through Supervisory
Control and Data Acquisition (SCADA) systems. The mea-
surement and control data in these systems are commonly
transmitted through unprotected channels, leaving the sys-
tem vulnerable to several threats [7]. In fact cyber attacks
on power networks operated by SCADA systems have been
reported in the media [8].

There exists a vast literature on computer security focus-
ing on three main properties of data and IT services, namely
confidentiality, integrity, and availability [3]. Confidentiality
relates to the non-disclosure of data by unauthorized parties.
Integrity on the other hand concerns the trustworthiness of
data, meaning there is no unauthorized change of the data
contents or properties, while availability means that timely
access to the data or system functionalities is ensured. Un-
like other IT systems where cyber-security mainly involves
the protection of data, cyber attacks on networked control
systems may influence the physical processes through the
communication infrastructure due to feedback loops. There-
fore networked control system security needs to consider the
existing threats at both the cyber and physical layers. These
threats can be captured in the attack space illustrated in
Figure 1, which also depicts several attack scenarios de-
scribed in this work. For instance, two typical examples
of cyber attacks considered in IT security can be found in
Figure 1, the eavesdropping attack and the Denial-of-Service
(DoS) attack.

Figure 1: The cyber-physical attack space.

We propose three dimensions for the attack space: the
adversary’s a priori system model knowledge and his disclo-

55



sure and disruption resources. The a priori system knowl-
edge can be used by the attacker to construct more com-
plex attacks, possibly harder to detect and with more se-
vere consequences. Similarly, the disclosure resources en-
able the attacker to obtain sensitive information about the
system during the attack by violating the data confidential-
ity. Note that disclosure resources cannot be used to disrupt
the system operation, which is the case of the eavesdropping
attack illustrated in Figure 1. On the other hand, disrup-
tion resources can be used to affect the system operation,
which happens for instance when data integrity or availabil-
ity properties are violated. One such example is the DoS
attack illustrated in Figure 1, where the data required for
correctly operating the system is made unavailable.

Control theory has contributed with frameworks to handle
model uncertainties and disturbances [20] as well as fault
diagnosis and mitigation [5, 10], which can then be used to
detect and attenuate the consequences of cyber attacks on
networked control systems. Some of these tools are therefore
considered as part of the networked control system and will
be used to analyze the consequences of cyber attacks.

1.1 Related Work
Cyber attacks on control systems compromising measure-

ment and actuator data integrity and availability have been
considered in [4], where the authors modeled their effects
on the physical dynamics. Availability attacks have been
further analyzed in [1, 9] for resource constrained attackers
with full-state information. Particularly, this work consid-
ered DoS attacks in which the attacker could jam the com-
munication channels and prevent measurement and actuator
data from reaching its destination, rendering the data un-
available. A particular instance of the DoS attack in which
the attacker does not have any a priori system knowledge [1]
is represented in the attack space in Figure 1.

Deception attacks compromising integrity have recently
received more attention. A particular kind of deception
attacks, i.e. replay attacks on the sensor measurements,
has been analyzed in [14]. The authors considered the case
where all the existing sensors were attacked and proposed
suitable counter-measures to detect the attack. In this at-
tack scenario the attacker does not have any system knowl-
edge but is able to access and corrupt the sensor data, thus
having disclosure and disruptive resources, as depicted in
Figure 1.

Another class of deception attacks, false-data injection at-
tacks, has also been studied in recent work. For instance, in
the case of power networks, an attacker with perfect model
knowledge has been initially considered in [13]. The work
in [12] considered stealthy attacks with limited resources
and proposed improved detection methods, while [16] ana-
lyzed the minimum number of sensors required for stealthy
attacks, based on which measurement security metrics were
proposed. The consequences of these attacks have also been
analyzed in [18, 19]. The models used are static, hence
these attack scenarios are closest to the bias injection at-
tack shown in Figure 1.

Data injection attacks on dynamic control systems were
also considered. In [17] the author characterizes the set of
attack policies for covert (undetectable) false-data injection
attacks with detailed model knowledge and full access to all
sensor and actuator channels, while [15] described the set
of undetectable false-data injection attacks for omniscient

attackers with full-state information, but possibly compro-
mising only a subset of the existing sensors and actuators.
In these attack scenarios confidentiality was also violated, as
the attacker had access to either measurement and actuator
data or full-state information. These attacks are therefore
placed close to the boundaries of the attack space, as illus-
trated in Figure 1 for the covert attack, while the framework
in [15] addresses attacks on the top plane where full model
knowledge is considered.

1.2 Contributions and Outline
Most of the recent work on cyber-security of control sys-

tems has considered scenarios where the attacker has ac-
cess to a large set of resources and knowledge, thus being
placed close to the boundaries of the attack space in Fig-
ure 1. Therefore a large part of the attack space has not
been addressed. In particular, the class of detectable at-
tacks that do not trigger conventional alarms has yet to be
covered in depth.

In this paper we consider a typical control architecture for
the networked control system under both cyber and physical
attacks. Given this architecture, a generic adversary model
applicable to several attack scenarios is discussed and the
attack resources are mapped to the corresponding dimen-
sions of the attack space. Three stealthy attack scenarios
are discussed in more detail to better illustrate the proposed
adversary model and the concept of attack space.

One of the attack scenarios analyzed corresponds to a
particular type of detectable attack, the bias injection at-
tack. Although this attack may be detected, it requires
limited model knowledge and no information about the sys-
tem state. Stealthiness conditions are provided, as well as
a methodology to assess the attack impact on the physical
state of the system.

The attack scenarios analyzed in the paper have been
staged at our testbed for security of control systems. The
testbed architecture and results from the staged attacks are
presented and discussed.

The outline of the paper is as follows. The system archi-
tecture and model are described in Section 2, while Section 3
contains the adversary model and a detailed description of
the attack resources on each dimension of the attack space.
The framework introduced in the previous sections is then
illustrated for three particular attack scenarios in Section 4.
The results of the experiments for each attack scenario in a
secure control systems testbed are presented and discussed
in Section 5, followed by conclusions in Section 6.

2. NETWORKED CONTROL SYSTEM
In this section we describe the networked control system

structure, where we consider three main components: the
physical plant and communication network, the feedback
controller, and the anomaly detector.

2.1 Physical Plant and Communication Net-
work

The physical plant is modeled in a discrete-time state-
space form,

P :
{

xk+1 = Axk + Bũk + Gwk + F fk

yk = Cxk + vk

, (1)

where xk ∈ R
n is the state variable, ũk ∈ R

q the control
actions applied to the process, yk ∈ R

p the measurements
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from the sensors at the sampling instant k ∈ Z, and fk ∈ R
d

is the unknown signal representing the effects of anomalies,
usually denoted as fault signal in the fault diagnosis liter-
ature [6]. The process and measurement noise, wk ∈ R

n

and vk ∈ R
p, represent the discrepancies between the model

and the real process, due to unmodeled dynamics or distur-
bances, for instance, and we assume their means are respec-
tively bounded by δw and δv, i.e. w̄ = ‖E{wk}‖ ≤ δw and
v̄ = ‖E{vk}‖ ≤ δv.

The physical plant operation is supported by a communi-
cation network through which the sensor measurements and
actuator data are transmitted, which at the plant side cor-
respond to yk and ũk, respectively. At the controller side
we denote the sensor and actuator data by ỹk ∈ R

p and
uk ∈ R

q respectively. Since the communication network
may be unreliable, the data exchanged between the plant
and the controller may be altered, resulting in discrepan-
cies in the data at the plant and controller ends. In this
paper we do not consider the usual communication network
effects such as packet losses and delays. Instead we focus on
data corruption due to malicious cyber attacks, as described
in Section 3. Therefore the communication network is sup-
posed to be reliable, not affecting the data flowing through
it.

Given the physical plant model (1) and assuming an ideal
communication network, the networked control system is
said to have a nominal behavior if fk = 0, ũk = uk, and
ỹk = yk. The absence of either one of these condition results
in an abnormal behavior of the system.

2.2 Feedback Controller
In order to comply with performance requirements in the

presence of the unknown process and measurement noises,
we consider that the physical plant is controlled by an ap-
propriate linear time-invariant feedback controller [20]. The
output feedback controller can be written in a state-space
form as

F :
{

zk+1 = Aczk + Bcỹk

uk = Cczk + Dcỹk

(2)

where the states of the controller, zk ∈ R
m, may include

the process state and tracking error estimates. Given the
plant and communication network models, the controller is
supposed to be designed so that acceptable performance is
achieved under nominal behavior.

2.3 Anomaly Detector
In this section we consider the anomaly detector that mon-

itors the system to detect possible anomalies, i.e. deviations
from the nominal behavior. We consider that the anomaly
detector is collocated with the controller, therefore it only
has access to ỹk and uk to evaluate the behavior of the plant.

Several approaches to detecting malfunctions in control
systems are available in the fault diagnosis literature [6,10].
Here we consider the following observer-based Fault Detec-
tion Filter

D :
{

x̂k|k = Ax̂k−1|k−1 + Buk−1 + K(ỹk − ŷk|k−1)
rk = V (ỹk − ŷk|k)

, (3)

where x̂k|k ∈ R
n is the state estimate given measurements

up until time k and rk ∈ R
pd the residue, which is evaluated

in order to detect and locate existing anomalies.
The anomaly detector is designed so that

K = {P̂, F̂ , D̂}

ak = g(K, Ik) Υu

Υy
Bc

uk

yk

System Knowledge

Disclosure
Resources

Disruption
Resources

Attack Policy
Figure 2: Adversary model for a point in the attack
space in Figure 1.

1. under nominal behavior of the system (i.e., fk = 0,
uk = ũk, yk = ỹk), the expected value of the residue
converges asymptotically to a neighborhood of zero,
i.e., limk→∞ ‖E{rk}‖ ≤ δr, with δr ∈ R

+;

2. the residue is sensitive to the anomalies (fk �≡ 0).

An alarm is triggered if the residue meets

‖rk‖ ≥ δr + δα, (4)

where δα ∈ R
+ is chosen so that the false alarm rate does

not exceed a given α ∈ [0, 1].

3. ADVERSARY MODELS
The adversary model considered in this paper is illustrated

in Figure 2 and is composed of an attack policy and the ad-
versary resources i.e., the system model knowledge, the dis-
closure resources, and the disruption resources. The attack
policy is described by

ak = g(K, Ik). (5)

Each of the attack policy components can be mapped to a
specific axis of the attack space in Figure 1: K = {P̂, F̂ , D̂}
is the a priori system knowledge possessed by the attacker,
Ik corresponds to the set of sensor and actuator data avail-
able to the attacker at time k, thus being mapped to the
disclosure resources, while ak is the attack vector at time
k that may affect the system behavior using the disruption
resources captured by Bc.

In this section we describe the networked control system
under attack with respect to the attack vector ak. Then we
detail the adversary’s system knowledge, the disclosure re-
sources, and the disruption resources. Models of the attack
vector ak for particular disruption resources are also given.

3.1 Networked Control System under Attack
The system components under attack are now character-

ized for the attack vector ak. Considering the plant and
controller states to be stacked as ηk = [x�

k z�
k ]�, the dy-

namics of the closed-loop system composed by P and F
under the effect of ak can be written as

ηk+1 = Acηk + Bcak + Gc

[
wk

vk

]

ỹk = Ccηk + Dcak + Hc

[
wk

vk

]
,

(6)
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where the system matrices are

Ac =
[

A + BDcC BCc

BcC Ac

]
, Gc =

[
G BDc

0 Bc

]
,

Cc =
[
C 0

]
, Hc =

[
0 I

]
,

and Bc and Dc capture the way in which the attack vec-
tor ak affects the plant and controller. These matrices are
characterized for some attack scenarios in Section 3.4.

Similarly, using P and D as in (1) and (3), respectively,
the anomaly detector error dynamics under attack are de-
scribed by

ξk|k = Aeξk−1|k−1 + Beak−1 + Ge

[
wk−1

vk

]

rk = Ceξk−1|k−1 + Deak−1 + He

[
wk−1

vk

]
,

(7)

where ξk|k ∈ R
n is the estimation error and

Ae = (I − KC)A, Ge =
[
(I − KC)G −K

]
,

Ce = V C(I − KC)A, He =
[
V C(I − KC)G V (I − CK)

]
.

The matrices Be and De are specific to the available disrup-
tive resources and are characterized in Section 3.4.

3.2 System Knowledge
The amount of a priori knowledge regarding the control

system is a core component of the adversary model, as it may
be used, for instance, to render the attack undetectable. In
general, we may consider that the adversary approximately
knows the model of the plant (P̂) and the algorithms used in
the feedback controller (F̂) and the anomaly detector (D̂),
thus denoting the adversary knowledge by K = {P̂, F̂ , D̂}.
Figure 1 illustrates several types of attack scenarios with dif-
ferent amounts of required system knowledge. In particular,
note that the replay attacks do not need much knowledge of
the system components.

3.3 Disclosure Resources
The disclosure resources enable the attacker to gather se-

quences of data from the calculated control actions uk and
the real measurements yk through disclosure attacks. De-
note Ru

C ⊆ {1, . . . , q} and Ry
C ⊆ {1, . . . , p} as the disclo-

sure resources, i.e. set of actuator and sensor channels that
can be accessed during disclosure attacks, and let Ik be the
control and measurement data sequence gathered by the at-
tacker from time k0 to k. The disclosure attacks can then
be modeled as

Ik := Ik−1 ∪
[

Υu 0
0 Υy

] [
uk

yk

]
, (8)

where Υu ∈ B
|Ru

C |×q and Υy ∈ B
|Ry

C
|×p are the binary in-

cidence matrices mapping the data channels to the corre-
sponding data gathered by the attacker and Ik0 = ∅.

As seen in the above description of disclosure attacks, the
physical dynamics of the system are not affected by these
type of attacks. Instead, these attacks gather intelligence
that may enable more complex attacks, such as the replay
attacks depicted in Figure 1.

3.4 Disruption Resources
As seen in (6) and (7), disruption resources are related

to the attack vector ak and may be used to affect the sev-
eral components of the system. The way a particular attack
disturbs the system operation depends not only on the re-
spective resources, but also on the nature of the attack. For
instance, a physical attack directly perturbs the system dy-
namics, whereas a cyber attack disturbs the system through
the cyber-physical couplings. To better illustrate this dis-
cussion we now consider physical, data deception, and data
DoS attacks.

3.4.1 Physical Attack
Physical attacks may occur in control systems, often in

conjunction with cyber attacks. For instance, in [2] water
was pumped out of an irrigation system while the water level
measurements were corrupted so that the attack remained
stealthy. Since physical attacks are similar to the fault sig-
nals fk in (1), in the following sections we consider fk to be
the physical attack modifying the plant dynamics as

xk+1 = Axk + Bũk + Gwk + F fk

yk = Cxk.

Considering ak = fk, the resulting system dynamics are
described by (6) and (7) with

Bc =
[

F
0

]
, Dc = 0,

Be = (I − KC)F, De = V C(I − KC)F.

Note that the disruption resources in this attack are cap-
tured in the matrix F .

3.4.2 Data Deception Attack
The deception attacks modify the control actions uk and

sensor measurements yk from their calculated or real values
to the corrupted signals ũk and ỹk, respectively. Denoting
Ru

I ⊆ {1, . . . , q} and Ry
I ⊆ {1, . . . , p} as the deception re-

sources, i.e. set of actuator and sensor channels that can be
affected, the deception attacks are modeled as

ũk := uk + Γubu
k

ỹk := yk + Γyby
k

(9)

where the signals bu
k ∈ R

|Ru
I

| and by
k ∈ R

|Ry
I

| represent the
data corruption and Γu ∈ B

q×|Ru
I

| and Γy ∈ B
p×|Ry

I
| (B :=

{0, 1}) are the binary incidence matrices mapping the data
corruption to the respective data channels. The matrices Γu

and Γy indicate which data channels can be accessed by the
attacker and are therefore directly related to the attacker
resources in deception attacks.

Defining ak = [bu�
k by�

k+1 by�
k ]�, the system dynamics

are given by (6) and (7) with

Bc =
[

BΓu 0 BDcΓy

0 0 BcΓy

]
, Dc =

[
0 0 Γy

]
,

Be =
[
(I − KC)BΓu −KΓy 0

]
,

De =
[
V C(I − KC)BΓu V (I − CK)Γy 0

]
.

Note that deception attacks do not possess any disclosure
capabilities, as depicted in Figure 1 for examples of decep-
tion attacks such as the bias injection attack.
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3.4.3 Data Denial-of-Service Attack
The DoS attacks prevent the actuator and sensor data

from reaching their respective destinations and should there-
fore be modeled as the absence of data, for instance uk = ∅
if all the actuator data was jammed. However such a model
would not fit the framework in (6) and (7) where ak is as-
sumed to be a real valued vector. Hence we consider instead
one of the typical mechanisms used by digital controllers to
deal with the absence of data, in which the absent data
is considered to be zero. Denoting Ru

A ⊆ {1, . . . , q} and
Ry

A ⊆ {1, . . . , p} as the set of actuator and sensor channels
that can be jammed, we can model DoS attacks as deception
attacks in (9) with

bu
k := −Su

k Γu�uk

by
k := −Sy

k Γy�yk
(10)

where Su
k ∈ B

|Ru
A|×|Ru

A| and Sy
k ∈ B

|Ry
A

|×|Ry
A

| are boolean
diagonal matrices where the i−th diagonal entry indicates
whether a DoS attack is performed ([S(·)

k ]ii = 1) or not
([S(·)

k ]ii = 0) on the corresponding channel. Therefore DoS
attacks on the data are a type of disruptive attacks, as de-
picted in Figure 1.

4. ATTACK SCENARIOS
In this section we discuss the general goal of an attacker

and likely choices of the attack policy g(·, ·). In particular we
consider three attack scenarios with stealthiness constraints
under the framework introduced in the previous sections.
For each scenario we comment on the attacker’s capabilities
along each dimension of the attack space in Figure 1 and
formulate the corresponding stealthy attack policy. These
scenarios are illustrated by experiments on a process control
testbed in Section 5.

4.1 Attack Goals and Constraints
The attack scenarios need to also include the intent of the

attacker, namely the attack goals and constraints shaping
the attack policy. The attack goals can stated in terms of the
attack impact on the system operation, while the constraints
may be related to the attack detectability. In this paper we
focus on the latter and consider stealthy attacks. Further-
more, we consider the disruptive attack component consists
of only physical and data deception attacks, and thus we
consider the attack vector ak = [f�

k bu�
k by�

k+1 by�
k ]�.

Given the anomaly detector described in Section 2 and
denoting Akf

k0
= {ak0 , . . . , akf } as the attack signal, the set

of stealthy attacks are defined as follows.

Definition 1. The attack signal Akf

k0
is stealthy if ‖rk‖ <

δr + δα∀k ≥ k0.

Note that the above definition is dependent on the initial
state of the system at k0, as well as the noise terms wk and
vk.

Since the closed-loop system (6) and the anomaly detec-
tor (7) under physical and data deception attacks are linear
systems, each of these systems can be separated in two com-
ponents, the nominal component with ak = 0 ∀k and the
following systems

ηk+1 = Acηk + Bcak

ỹa
k = Ccηk + Dcak

(11)

and
ξk|k = Aeξk−1|k−1 + Beak−1

ra
k = Ceξk−1|k−1 + Deak−1,

(12)

with η0 = ξ0|0 = 0.
Assuming the system to be in nominal behavior before

the attack, using the triangle inequality and linearity prop-
erty we have ||ra

k || ≤ δα ⇒ ||rk|| ≤ δr + δα, leading to the
following definition:

Definition 2. The attack signal Akf

k0
is α−stealthy with

respect to D if ||ra
k || < δα ∀k ≥ k0.

Albeit more conservative than Definition 1, this definition
only depends on the attack signals Akf

k0
. Similarly, the im-

pact of attacks on the closed-loop system can also be ana-
lyzed by looking at the linear system (11).

4.2 Replay Attack
In replay attacks the adversary first performs a disclosure

attack from k = k0 until kr, gathering sequences of data
Ikr , and then begins replaying the recorded data at time
k = kr+1 until the end of the attack at k = kf , as illustrated
in Figure 3. In the scenario considered here, the attacker is
also able to perform a physical attack while replaying the
recorded data.

NetworkNetwork

uk yk

Ik

P

F

D

ũk ỹk

ΥyykΥuuk

(a) Phase I of the replay attack (13).

NetworkNetwork

uk yk

g(∅, Ikr )

fk

P

F

D

ũk ỹk

by
k

bu
k

(b) Phase II of the replay attack (14).

Figure 3: Schematic of the replay attack.

Attack policy

Similar to the work in [14], assuming R(·)
C = R(·)

I , meaning
that the attacker can corrupt the digital channels from which
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the data sequences are gathered, the replay attack policy can
be described as

Phase I:
ak = 0

Ik = Ik−1 ∪
[

Υu 0
0 Υy

] [
uk

yk

]
,

(13)

with k0 ≤ k ≤ kr and Ik0 = ∅ and

Phase II:
ak =

⎡
⎢⎣

gf (K, Ikr )
Υu(uk−T − uk)

Υy(yk+1−T − yk+1)
Υy(yk−T − yk)

⎤
⎥⎦

Ik = Ik−1,

(14)

where T = kr − 1 + k0 and kr + 1 ≤ k ≤ kf . An inter-
esting instance of this attack scenario consists of applying
a pre-defined physical attack to the plant, while using re-
play attacks to render the attack stealthy. In this case the
physical attack signal fk corresponds to an open-loop signal,
fk = gf (k).

Disclosure resources
The disclosure capabilities required to stage this attack cor-
respond to the data channels that can be eavesdropped by
the attacks, namely Ru

C and Ry
C .

Disruption resources
In this case the deception capabilities correspond to the data
channels that the attacker can tamper, Ru

I and Ry
I . In par-

ticular, for replay attacks the attacker can only tamper data
channels from which data has been previously recorded, i.e.
Ru

I ⊆ Ru
C and Ry

I ⊆ Ry
C .

Direct disruption of the physical system through the signal
fk depends on direct access to the physical system, modeled
by the matrix F in (1).

System knowledge
Note that no a priori knowledge on the system model is
needed for the cyber component of the attack, namely the
data disclosure and deception attack, as seen in the attack
policy (13) and (14). As for the physical attack, fk, the
required knowledge is scenario dependent. In the scenario
considered in the experiments described in Section 5, this
component was modeled as an open-loop signal, fk = gf (k).

Stealthiness constraints
The work in [14] provided conditions under which replay
attacks with access to all measurement data channels are
stealthy. However, these attacks are not guaranteed to be
stealthy when only a subset of the data channels is attacked.
In this case, the stealthiness constraint may require addi-
tional knowledge of the system model. For instance, the
experiment presented in Section 5 required knowledge of
the physical system structure, so that fk only excited the
attacked measurements.

4.3 Zero Dynamics Attack
Recalling that for attacks with only physical and data

deception components the plant and anomaly detector are
linear systems, (11) and (12) respectively, Definition 2 states
that these type of attacks are 0−stealthy if ra

k = 0, k =
k0, . . . , kf . The idea of 0−stealthy attacks then consists of

designing an attack policy and attack signal Akf

k0
so that the

residue rk does not change due to the attack.
A particular subset of 0−stealthy attacks are character-

ized in the following lemma:

Lemma 1. The attack signal Akf

k0
is 0−stealthy with re-

spect to any D if ỹa
k = 0, ∀k ≥ k0.

Proof. Consider the attacked components of the con-
troller and the anomaly detector in (11) and (12) with x̂a

0 =
ξa

0|0 = 0. From the controller dynamics it directly follows
that ỹa

k = 0, ∀k ≥ k0 results in ua
k = 0, ∀k ≥ k0, as the

input to the controller (ỹa
k) is zero. Since x̂a

0 = 0 and
ỹa

k = ua
k = 0, ∀k ≥ k0, meaning that the detector’s inputs

are zero, we then conclude ra
k = 0, ∀k ≥ k0.

Both the definition of 0−stealthy attacks and Lemma 1
indicate that these attacks are decoupled from the outputs
of linear systems, rk and yk respectively. Hence finding
0−stealthy attack signals relates to the output zeroing prob-
lem or zero dynamics studied in the control theory litera-
ture [20]. Note that such attack requires the perfect knowl-
edge of the plant dynamics P and the attack signal is then
based on the open-loop prediction of the output changes due
to the attack, as illustrated in Figure 4 where Kz denote the
zero dynamics and there is no disclosure of sensor or actua-
tor data.

NetworkNetwork

ũk
yk

g(Kz, ∅)

P
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Figure 4: Schematic of the zero dynamics attack.

In Section 5 a particular instance of this attack was con-
sidered, where only the actuator data is corrupted. The zero
attack policy thus corresponds to the transmission zero dy-
namics of the plant, which is now described. The plant dy-
namics due to an attack on the actuator data are described
by

xa
k+1 = Axa

k + Bak

ỹa
k = Cxa

k

(15)

with ak = bu
k . Given the discrete-time system (15) with

B having full column rank, the transmission zeros can be
calculated as the values ν ∈ C that cause the matrix P (ν)
to lose rank, where

P (ν) =
[

νI − A −B
C 0

]
. (16)

Those values are called minimum phase or non-minimum
phase zeros depending on whether they are stable or unsta-
ble zeros, respectively. In discrete-time systems a zero is
stable if |ν| < 1 and unstable otherwise.
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Attack policy
The attack policy then corresponds to the input sequence
(ak) that makes the outputs of the process (ỹa

k) identically
zero for all k and is illustrated in Figure 4. It can be
shown [20] that the solution to this problem is given by
the sequence

ak = gνk, (17)
where g is the input zero direction for the chosen zero ν. The
input zero direction can be obtained by solving the following
equation [

νI − A −B
C 0

] [
x0
g

]
=

[
0
0

]
. (18)

where x0 is the initial state for which the input sequence (17)
results in an identically zero output, ỹa

k = 0 ∀k. If the zero is
stable, that is |ν| < 1, the attack will asymptotically decay
to zero, thus having little effect on the plant. However, in
the case of unstable zeros the attack grows geometrically,
which could cause a great damage to the process.

Disclosure resources
This attack scenario considers an open-loop attack policy
and so no disclosure capabilities are required, resulting in
Ru

C = Ry
C = ∅ and Iu

k = Iu
k = ∅ ∀k.

Disruption resources
The disruption capabilities in this attack scenario corre-
spond to the ability of performing deception attacks on the
actuator data channels. Therefore the required resources are
Ru

I = {1, . . . , q}, Ry
I = ∅, and F = 0

System knowledge
The ability to compute the open-loop attack policy (17)
requires the perfect knowledge zero dynamics (18), which
we denote as Kz. Note that computing the zero dynamics
requires perfect knowledge of the plant dynamics, namely
A, B, and C. No knowledge of the feedback controller or
anomaly detector is assumed in this scenario.

Stealthiness constraint
Note that the transmission zero attack is 0−stealthy only if
xa

0 = x0. However the initial condition of the system under
attack xa

0 is defined to be zero at the beginning of the attack.
Therefore stealthiness of the attack may be violated for large
differences between xa

0 = 0 and x0.

4.4 Bias Injection Attack
Here a particular scenario of false-data injection is consid-

ered, where the attacker’s goal is to inject a constant bias
in the system without being detected. For this scenario,
the class of α−stealthy attacks is characterized at steady-
state and a method to evaluate the corresponding impact
is proposed. Furthermore, we derive the policy yielding the
largest impact on the system.

Denote a∞ as the bias to be injected and recall the anomaly
detector dynamics under attack given by (7). The steady-
state detectability of the attack is then dependent on the
steady-state value of the residual

ra
∞ =

(
Ce(I − Ae)−1Be + De

)
a∞ =: Graa∞. (19)

The largest α−stealthy attacks are then characterized by

‖Graa∞‖2 = δα. (20)

Although attacks satisfying (20) could be detected during
the transient, incipient attack signals slowly converging to
a∞ may go undetected, as it is shown in the experiments in
Section 5.

The impact of such attacks can be evaluated using the
closed-loop dynamics under attack given by (6). Recalling
that ηk = [x�

k z�
k ]�, the steady-state impact on the state

is given by

xa
∞ = [I 0] (I − Ac)−1 Bca∞ =: Gxaa∞. (21)

Largest 2−norm state bias. The α−stealthy attack yield-
ing the largest bias in the 2−norm sense can be computed
by solving

max
a∞

‖Gxaa∞‖2
2

s.t. ‖Graa∞‖2
2 ≤ δ2

α.

(22)

Note that this problem is unbounded unless

ker(Gra) ⊆ ker(Gxa),

where ker(A) denotes the null space of A, and the solution is
trivial. Therefore in this section we consider the non-trivial
case in which the previous condition holds.

The above optimization problem can be transformed into
a generalized eigenvalue problem and the corresponding op-
timal solution characterized in terms of generalized eigen-
values and eigenvectors. Denote λ∗ and v∗ as the largest
generalized eigenvalue and corresponding unit-norm eigen-
vector of the matrix pencil G�

xaGxa − λG�
raGra, satisfying

(G�
xaGxa − λ∗G�

raGra)v∗ = 0.

It can be shown that the optimal solution to the optimiza-
tion problem (22) is given by

a∗
∞ = δα

‖Grav∗‖2
v∗, (23)

and the corresponding optimal value is ‖Gxaa∞‖2
2 = λ∗δ2

α.

Largest infinity-norm state bias. Similarly, the α−stealthy
attack yielding the largest bias in the infinity-norm sense is
the solution to the following optimization problem

max
a∞

‖Gxaa∞‖∞

s.t. ‖Graa∞‖2 ≤ δα.

(24)

A possible method to solve this problem is to observe that

‖Gxaa∞‖∞ = max
i

‖e�
i Gxaa∞‖2,

where the vector ei is i−th column of the identity matrix.
Thus one can transform the optimization problem (24) into
a set of problems with the same structure as (22), obtaining

max
i

max
ai∞

∥∥e�
i Gxaai

∞
∥∥

∞

s.t.
∥∥Graai

∞
∥∥

2 ≤ δα.

(25)

Denote λ∗
i as the largest generalized eigenvalue of the ma-

trix pencil G�
xaeie

�
i Gxa − λG�

raGra. Letting λ∗ = maxi λ∗
i

and v∗ be the corresponding generalized eigenvector, the op-
timal attack is given by (23) and the corresponding optimal
value is ‖Gxaa∞‖∞ =

√
λ∗δα.
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Figure 5: Schematic of the bias injection attack.

Attack policy
The bias injection attack is illustrated in Figure 5. The
steady-state attack policy yielding the maximum impact on
the physical system is given by (23). For the transient, we
consider that the attacker uses a linear low-pass filter so that
the data corruptions are slowly converging to the steady-
state values. As an example, for a set of identical first-order
filters the open-loop attack sequence is described by

ak+1 = βak + (1 − β)a∗
∞, (26)

where 0 < β < 1 and a0 = 0.

Disclosure resources
Similarly to the zero attack, no disclosure capabilities are
required for this attack, since the attack policy is open-loop.
Therefore we have Ru

C = Ry
C = ∅ and Iu

k = Iu
k = ∅ ∀k.

Disruption resources
The biases may be added to both the actuator and sen-
sor data, hence the required resources are Ru

I ⊆ {1, . . . , q},
Ry

I ⊆ {1, . . . , p}. Since no physical attack is performed, we
have F = 0.

System knowledge
As seen in (22), the open-loop attack policy (26) requires the
knowledge of the closed-loop system and anomaly detector
steady-state gains Gra and Gxa, which we denoted as K0 as
shown in Figure 5.

Stealthiness constraint
Note that the steady-state value of the data corruption a∗

∞
is only necessary for the attack to be α−stealthy, since
the transients are disregarded. In practice, however, it has
been observed in the Fault Diagnosis literature that incipi-
ent faults with slow dynamics are hard to detect [5]. There-
fore the low-pass filter dynamics in (26) could be designed
sufficiently slow as to difficult detection.

5. EXPERIMENTS
In this section we present our testbed and report exper-

iments on staged cyber attacks following the different sce-
narios described in the previous section.

5.1 Quadruple-Tank Process
Our testbed consists of a Quadruple-Tank Process (QTP)

[11] controlled through a wireless communication network,
as shown in Figure 6.

 

Centralized controller 

Attacker 

 

 

 
 Sensor 

Actuator 

Figure 6: Schematic diagram of the testbed with the
Quadruple-Tank Process and a multi-hop communi-
cation network.

The plant model can be found in [11]

ḣ1 = − a1

A1

√
2gh1 + a3

A1

√
2gh3 + γ1k1

A1
u1,

ḣ2 = − a2

A2

√
2gh2 + a4

A2

√
2gh4 + γ2k2

A2
u2,

ḣ3 = − a3

A3

√
2gh3 + (1 − γ2)k2

A3
u2,

ḣ4 = − a4

A4

√
2gh4 + (1 − γ1)k1

A4
u1,

(27)

where hi are the heights of water in each tank, Ai the cross-
section area of the tanks, ai the cross-section area of the
outlet hole, ki the pump constants, γi the flow ratios and
g the gravity acceleration. The nonlinear plant model is
linearized for a given operating point.

The QTP is controlled using a centralized controller run-
ning in a remote computer and a wireless network is used for
the communications. A Kalman-filter-based anomaly detec-
tor is also running in the remote computer and alarms are
triggered according to (4), for which we computed δr = 0.15
and chose δα = 0.25 for illustration purposes. The commu-
nication network is multi-hop, having one additional wireless
device relaying the data, as illustrated in Figure 6.

5.2 Replay Attack
In this scenario, the QTP is operating at a constant set-

point and a hacker wants to steal water from the tank 4, the
upper tank on the right side. The attacker has been able
to hack one of the relay nodes that is between the sensor
2 (y2) and the controller in a way that data from the real
sensor can be recorded. Furthermore the attacker is able
to replace the measurements sent to the controller with the
recorded data. An example of this attack is presented in the
Figure 7, where the attacker replays past data from y2 while
stealing water from tank 4. As we can see, the residue stays
almost constant and therefore the attack is not detected,
while there is a significant drop in water level in tanks 2 and
4.

62



0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

L
ev

el
of

w
at

er
[c

m
]

 

 

0 50 100 150 200 250 300 350
0.06

0.07

0.08

Time [s]

R
es

id
ue

 

 

‖rk‖2

h2

h4

ỹ2

Figure 7: Results for the replay attack performed
against sensor 2 from t ≈ 100s to t ≈ 280s. Addition-
ally, the attacker opens the tap of tank 4 at t ≈ 100s
and closes it at t ≈ 180s.

5.3 Zero Dynamics Attack
The QTP has a non-minimum phase configuration in which

the plant contains an unstable zero. In this case, as dis-
cussed in Section 4.3, an attacker able to corrupt all the
actuator channels may launch a false-data injection attack
where the false-data follows the transmission zero dynam-
ics, rendering the attack undetectable. This scenario is il-
lustrated in Figure 8.

The attack remains undetected for quite some time as ex-
pected from the theory, even though the QTP is a nonlinear
process. However, the fast increment of the attack signal
causes saturation of the water levels after some sampling
periods, as seen in Figure 8. From that moment the system
dynamics change and therefore the attack signal no longer
corresponds to the zero dynamics and will be detected, al-
though it may have already damaged the system. Thus
these attacks are particularly dangerous in processes that
have unstable zero dynamics and in which the actuators are
over-dimensioned, allowing the adversary to perform longer
attacks before saturating.

5.4 Bias Injection Attack
Figure 9 shows the maximum attack impacts for all the

combinations of compromised sensors and actuators in the
QTP. The blue area represents the possible impacts in the
process for a given number of attackable channels. As we
can see, when the adversary can attack more than two chan-
nels the impact is unbounded (assuming linear dynamics),
although in practice this is prevented due to saturation, as
previously shown for the zero dynamics attack.

The results for the case where u1 and y1 are respectively
corrupted with bu

∞ and by
∞ are presented in the Figure 10,

where the attacker aimed at maximizing the state bias in
the infinity-norm sense while remaining stealthy. The false
bias was slowly injected using a first-order low-pass filter and
the following steady-state value a∞ = [bu

∞ by
∞]� = [2.15 −

9.42]�.

0 20 40 60 80 100
0

5

10

15

20

25

W
at

er
le

ve
l[

cm
]

 

 

0 20 40 60 80 100
0

5

10

15

C
on

tr
ol

ac
ti
on

[V
]

 

 

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

T [ ]
R

es
id

ue

 

 

‖rk‖2

δ

h1 h2 h3 h4

ũ1
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Figure 8: Results for the zero dynamics attack start-
ing at t ≈ 30s. Tank 3 is emptied at t ≈ 55s, resulting
in a steep increase in the residual since the linearized
model is no longer valid.

6. CONCLUSIONS
In this paper we have analyzed the security of networked

control systems. A novel attack space based on the at-
tacker’s system knowledge, disclosure, and disruption re-
sources was proposed and the corresponding adversary model
described. Attack scenarios corresponding to replay, zero
dynamics, and bias injection attacks were analyzed using
this framework. In particular the maximum impact of stealthy
bias injection attacks was derived and it was shown that the
corresponding policy does not require perfect model knowl-
edge. These attack scenarios were illustrated using an exper-
imental setup based on a quadruple-tank process controlled
over a wireless network.
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ũ1

Figure 10: Results for the bias attack against the
actuator 1 and sensor 1 in the minimum phase QTP.
The attack is launched using a low-pass filter in the
instant t ≈ 70s and stopped at t ≈ 230s.

attack. In 47th Annual Allerton Conference on
Communication, Control, and Computing, Oct. 2009.

[15] F. Pasqualetti, F. Dorfler, and F. Bullo.
Cyber-physical attacks in power networks: Models,
fundamental limitations and monitor design. In Proc.
of the 50th IEEE Conf. on Decision and Control and
European Control Conference, Orlando, FL, USA,
Dec. 2011.

[16] H. Sandberg, A. Teixeira, and K. H. Johansson. On
security indices for state estimators in power
networks. In Preprints of the First Workshop on
Secure Control Systems, CPSWEEK 2010, Stockholm,
Sweden, April 2010.

[17] R. Smith. A decoupled feedback structure for covertly
appropriating networked control systems. In Proc. of
the 18th IFAC World Congress, Milano, Italy,
August-September 2011.

[18] A. Teixeira, H. Sandberg, G. Dán, and K. H.
Johansson. Optimal power flow: Closing the loop over
corrupted data. In Proc. American Control
Conference, 2012. Accepted.

[19] L. Xie, Y. Mo, and B. Sinopoli. False data injection
attacks in electricity markets. In First IEEE
International Conference on Smart Grid
Communications, Oct. 2010.

[20] K. Zhou, J. C. Doyle, and K. Glover. Robust and
Optimal Control. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996.

64




