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Abstract—Risk assessment is an inevitable step in implemen-
tation of a cyber-defense strategy. An important part of this
assessment is to reason about the impact of possible attacks. In
this work, we study the problem of estimating the impact of
cyber-attacks in stochastic linear networked control systems. For
the stealthiness constraint, we adopt the Kullback-Leibler di-
vergence between attacked and non-attacked residual sequences.
Two impact metrics are considered: The probability that some
of the critical states leave a safety region and the expected value
of the infinity norm of the critical states. For the first metric, we
prove that the optimal value of the impact estimation problem
can be calculated by solving a set of convex problems. For the
second, we derive efficient to calculate lower and upper bounds.
Finally, we show compatibility of our framework with a number
of attack strategies proposed in the literature, and demonstrate
how it can be used for risk assessment on an example.

I. INTRODUCTION

Networked control systems operate physical processes of
great societal significance, such as electricity production,
transportation, and water distribution. Unfortunately, it is
known that numerous security vulnerabilities can be found
within these systems [1], which if exploited, can lead to ex-
tremely dangerous attacks [2]–[4]. Hence, it is essential to pre-
vent security vulnerabilities before an attacker exploits them.

However, preventing security vulnerabilities in a networked
control system can be complicated and costly [1]. Thus, one
should conduct a risk assessment to prioritize among the
vulnerabilities. Prioritization is done based on the likelihood
that vulnerabilities are exploited, and the impact that can
happen if the exploitation occurs [5]. The resources can then
be focused on preventing the most critical vulnerabilities.

Motivated by the risk assessment application, we study an
impact estimation problem. By solving the impact estimation
problem, we check if an attacker can inflict a large damage
to the system while remaining stealthy. Hence, the objective
function of the problem is an impact metric that is maximized,
while the constraints include a stealthiness constraint. This
problem is generally difficult to solve, since it usually reduces
to a non-convex constrained maximization problem.

Related work: Significant effort have been dedicated to-
wards estimating the impact of attacks that remain undetected
by the chi-square anomaly detector [6]–[10]. In these studies,
reachable sets were predominantly used to characterize the
impact, and algorithms for calculating upper and lower bounds
of these sets were proposed in [6]–[8]. The focus of these
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studies was on false data injection (FDI) [6]–[9] and bias
injection [10] attack strategies.

The impact estimation problem for other types of detectors
have also been considered [11]–[15]. The focus of [11]–[15]
was also on powerful injection attacks. In this set of literature,
the work especially relevant for our study is [15]. There, the
authors used the infinity norm of critical states to quantify the
impact under the cumulative sum detector, and showed that
the exact value of the impact can be obtained by solving a set
of convex problems. This useful property of the infinity norm
based metric was also recognized in [16], where the impact
was obtained by solving a set of linear programs. However,
the works [15], [16] neglect the influence of noise, and do not
propose a substitute for the infinity norm based metric that
can be used in stochastic systems.

Our work differs from the existing literature in the following
aspects. Different from the works on the infinity norm based
metric [15], [16], we focus on more general stochastic systems.
Particularly, we propose two metrics that can substitute the
infinity norm based metric, and study the impact estimation
problem based on these metrics. Compared to the studies on
the impact estimation problem [6]–[16] that focus on powerful
injection attacks, our analysis is more general. Particularly, our
analysis covers both FDI and bias injection attack strategies,
as well as Denial of Service (DoS) [17], [18], replay [19],
rerouting [20], sign alternation [21], and combined DoS and
FDI [22], [23] attack strategies. Additionally, the studies [6]–
[15] focus their analysis on particular types of anomaly detec-
tors, so the impact analysis is carried out for every detector
separately. In our work, we use the idea from [24]–[27],
and model the stealthiness constraints based on the Kullback-
Leibler (KL) divergence. In this way, we make our analysis
independent of the choice of anomaly detector.

Contributions: Firstly, we propose and study a novel type of
impact estimation problem. We consider two impact metrics:
(i) The probability that some of the critical states leave a safety
region (IP ); (ii) The expected value of the infinity norm of the
critical states (IE). For the stealthiness constraint, we adopt the
KL–divergence between attacked and non-attacked residual se-
quences. Furthermore, we introduce additional constraints on
attack signals. Through these constraints, we impose different
types of attack strategies.

Secondly, we introduce an auxiliary problem P which we
use to analyze the impact estimation problem, and establish
its convexity (Propositions 1). Using P , we characterize
conditions under which the impact estimation problem is
infeasible or its optimal value equals to the maximum impact
(Proposition 2). If these conditions are not satisfied, we prove
that the metric IP has the same desirable properties as the
infinity norm based metric from [15]. That is, the exact value
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of the impact in terms of IP can be obtained by solving a set
of convex problems P (Theorem 1). Unfortunately, the metric
IE does not have a closed form expression and is not trivial
to evaluate. However, we derive efficient to calculate lower
and upper bounds for the metric IE using P (Theorem 2). We
then discuss the tightness of these bounds, and explain how
the bounds can be used if the tightness cannot be established.

Thirdly, we show that our framework allows us to analyze
the impact of FDI, bias injection, DoS, replay, rerouting,
sign alternation, and combined DoS and FDI attack strategies
(Propositions 3–5). Finally, using a numerical example of a
chemical process, we illustrate how our framework can be used
for risk assessment and discuss how the tuning parameters
influence the impact of different attack strategies.

The preliminary version of this work appeared in [28].
In [28], our focus was on deterministic systems and three
classes of anomaly detectors. In the present work, we consider
a more general stochastic system model, different impact
metrics, stealthiness constraints, and an attack model.

Organization: Section II introduces the model setup and
Section III the impact estimation problem. Section IV presents
the main technical results. Section V introduces attacks com-
patible with our framework. Section VI illustrates the applica-
bility of our framework on an example of a networked control
system. Section VII concludes the paper. Appendix contains
proofs of some technical lemmas and propositions.

Notation: We denote by: 0m×n the zero-matrix with m rows
and n columns; In the identity matrix of size n; 1n the vector
of size n with all the elements equal to 1; T (i, :) the i-th row
of matrix T ; T (i, j) the element of matrix T positioned in the
i-th row and j-th column; x(i) the i-th element of vector x;
⊗ the Kronecker product; N (µ,Σ) the Gaussian distribution
with the mean value µ and the covariance matrix Σ. If x is
a discrete-time signal, then xN :M = [x(N)T . . . x(M)T ]T .
Let A∈Rn×n, B∈Rn×m, C∈Rp×n, and D∈Rp×m. Then

ON (A,C) =


C
CA

...
CAN

 , CN (A,B) =
[
AN−1B . . . B

]
,

TN (A,B,C,D) =


D 0p×m . . . 0p×m

CB D . . . 0p×m

...
...

. . .
...

CAN−1B CAN−2B . . . D

 .
II. MODEL SETUP

The system consists of the physical plant, the estimator, the
controller, and the residual filter. The plant is modeled by

x(k + 1) = Ax(k) +Bũ(k) + vx(k),

y(k) = Cx(k) + vy(k),
(1)

where x(k)∈Rnx is the plant state, y(k)∈Rny are the mea-
surements, ũ(k)∈Rnu are the control actions applied to the
plant, and vx(k)∈Rnx (resp. vy(k)∈Rny ) is the process (resp.
measurement) noise. The noises vx and vy are independent
Gaussian white processes with zero mean and positive defi-
nite covariance matrices Σvx and Σvy , respectively. The pair
(C,A) (resp. (B,A)) is observable (resp. controllable).

The estimator is a steady state Kalman filter defined by

x̂(k + 1) = (A−KC)x̂(k) +Bu(k) +Kỹ(k), (2)

where x̂(k)∈Rnx is the one step ahead prediction of x(k),
u(k)∈Rnu are the control actions calculated by the con-
troller, and ỹ(k)∈Rny are the measurements received by
the estimator. The steady state Kalman gain is given by
K=AΣeC

T (CΣeC
T + Σvy )−1, where Σe is the error co-

variance matrix obtained by solving the Riccati equation
Σe=AΣeA

T +Σvx−AΣeC
T (CΣeC

T +Σvy )−1CΣeA
T . The

gain K exists under the introduced assumptions, and it is
known that A−KC is asymptotically stable [29].

The controller is of the form

u(k) = Lx̂(k) + Lyryr, (3)

where yr∈Rnyr is a constant reference. We assume that
the controller ensures asymptotic stability and satisfactory
performances in absence of attacks, and that the system has
reached a stationary regime before an attack starts.

The residual signal is defined by

r̃(k) = Σ
− 1

2
r

(
ỹ(k)− Cx̂(k)

)
, (4)

where Σr=CΣeC
T+Σw. This signal is used to measure attack

stealthiness. In absence of attacks, the residual sequence is
a white Gaussian process with zero mean value and identity
covariance matrix. We denote by r the non-attacked residual.

We assume that an attack starts at k = 0. The attacked
measurements ỹ and control actions ũ are modeled by

ỹ(k) = Λyy(k) + Γyay(k) + Γyas(k),

ũ(k) = Λuu(k) + Γuau(k).
(5)

For example, the signals can be corrupted when they are
communicated over a network. Here, au(k)∈Rnu (resp.
ay(k)∈Rny ) is the deterministic part of the attack against the
actuators (resp. sensors). The signal as(k)∈Rny is stochastic
in nature, and will be required to model the replay attack
strategy (see Section V). Finally, the matrices Γy , Γu, Λy , and
Λu depend on the attack strategy and the attacker’s resources.

By combining the equations (1)–(5), the system dynamics
under attack can be written as

xe(k + 1) = Ãxe(k)+B̃v(k)+Ẽyr+G̃a(k)+J̃as(k),

r̃(k) = C̃xe(k)+D̃v(k)+F̃ yr+H̃a(k)+K̃as(k),
(C1)

where xe(k)=[x(k)T x̂(k)T ]T , v(k)=[vx(k)T vy(k)T ]T , and
a(k)=[au(k)T ay(k)T ]T are the extended state, noise, and
attack vectors, respectively. We denote the dimension of a(k)
by na, and of v(k) by nv . The matrices Ã–K̃ are given by

Ã =

[
A −BΛuL

KΛyC A−KC −BL

]
, B̃ =

[
Inx 0nx×ny

0nx×nx KΛy

]
,

Ẽ =

[
BΛuLyr

BLyr

]
, G̃ =

[
BΓu 0nx×ny

0nx×nu KΓy

]
, J̃ =

[
0nx×ny

KΓy

]
,

C̃=Σ
− 1

2
r [ΛyC −C], D̃=[0ny×nx Σ

− 1
2

r Λy], F̃ = 0ny×nyr
,

H̃ = [0ny×nu
Σ
− 1

2
r Γy], and K̃=Σ

− 1
2

r Γy .
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III. PROBLEM FORMULATION

This section defines two impact estimation problems P1 and
P2 the rest of the paper is concerned about. We first introduce
the decision variables, the impact metrics, and the constraints.

The decision variables are d=[aT0:N yTr ]T , where N∈Z+ is
the length of the horizon over which we estimate the impact.
Although the system trajectory is influenced by other signals as
well, we show that the impact metrics and the constraints are
only affected by the reference yr and the attack sequence a0:N .
Since we perform off-line analysis, the exact value of yr at
the beginning of the attack is unknown to us. The same holds
for a0:N , since it depends on the attacker’s choice. Hence, by
optimizing over d, we identify the worst case impact.

The impact metrics are based on the concept of critical
states. These states may model the flow of energy through
the power line that should be maintained within predefined
bounds, or a temperature that should not exceed some safety
limit. We define the critical states as

z(k) = Qzx(k), (6)

where Qz∈Rnz×nx is a full row rank scaling matrix, and
nz≤nx is the number of the critical states. The matrix Qz
is chosen such that having magnitude of any of the critical
states larger than one indicates a dangerous system state.

Example 1: Let x=[x(1) x(2)]T be the plant state. Assume
x(2) is the critical state that should be kept within the interval
[−x̄, x̄], where x̄≥0. The matrix Qz is then defined by
Qz=[0 1/x̄]. Therefore, if |x(2)(k)| ≥ x̄, then |z(k)| ≥ 1.

In the related work on deterministic systems [15], the impact
metric was defined as ||z1:N ||∞. If ||z1:N ||∞≥1, then the
attacker can drive some of the critical states outside the safety
region during N time steps. Yet, in our case, the state is
influenced by the noise in addition to attacks. Hence, some
of the critical states can leave the safety region with non-zero
probability even in absence of attacks. To make the impact
metric suitable for stochastic systems, we define a new metric

IP (d) = maxi∈I P(|z(i)1:N | ≥ 1),

where I = {1, . . . , nzN}. If IP is close to one (resp. close
to zero), the critical states leave (resp. stay within) the safety
region with high probability, and the attack is dangerous (resp.
harmless). Another possible impact metric is the expected
value of the infinity norm of z1:N , that is,

IE(d) = E{||z1:N ||∞}.

Unfortunately, IE does not have a closed form expression, and
is hard to evaluate in general.

The problem constrains are denoted by (C1)–(C5). Con-
straint (C1) was introduced in the previous section, and
imposes that xe and r̃ have to satisfy the system dynamics.
Constraint (C2) is the reference constraint defined by

||Qyryr||∞ ≤ 1, (C2)

where Qyr∈Rnyr×nyr is a full rank scaling matrix. Con-
straint (C3) is the stealthiness constraint

1
N+1D(r̃0:N ||r0:N ) ≤ ε, (C3)

where D(r̃0:N ||r0:N ) is the KL–divergence between the dis-
tributions of attacked r̃0:N and non-attacked r0:N residual se-
quences, and ε ≥ 0 is a stealthiness level. The KL–divergence
gives a distance between two distributions p and q over a sam-
ple space X , and is defined by D(p||q)=

∫
X

log
(p(x)
q(x)

)
p(x)dx.

It is known that D(p||q)≥0 with equality if and only if p equals
q almost everywhere. Hence, if D(r̃0:N ||r0:N ) is small, then
the distributions of r̃0:N and r0:N are similar, and the attack
stays stealthy. The constraints (C4) and (C5) are given by

Faa0:N = 0nFa×1, (C4)
as0:N = T1xe(Ns) + T2vNs:−1 + T3yr, (C5)

where Ns<0, the matrices T1, T2, T3, and Fa have appropriate
dimensions, and nFa

is the number of rows of Fa. These
constraints are used to impose a particular attack strategy.

We are now ready to introduce the impact estimation
problem based on the metric IP .

P1 : maximize
d

IP (d) subject to (C1)–(C5).

Although our main focus is on P1, we also investigate the
impact estimation problem based on the metric IE .

P2 : maximize
d

IE(d) subject to (C1)–(C5).

Both P1 and P2 are non-convex constrained maximization
problems, and efficient algorithms for solving these type of
problems are unknown in general. Nevertheless, we propose an
efficient way to calculate the optimal value of P1. Additionally,
we derive lower and upper bounds for P2. Prior to that, we
outline some properties of these problems.

Remark 1: The tuning parameters in P1 and P2 are N
and ε. Naturally, we first want to discover stealthy attacks
that result in a high impact in a short amount of time. Thus,
choosing small values of N and ε is a good starting point for
the analysis. One can then start gradually increasing N and ε
to discover less dangerous attacks.

Remark 2: One can also consider maximizing impact in Nz
steps and imposing stealthiness in Nr 6=Nz steps. The case
Nz<Nr captures attacks that maximize damage in Nz steps,
and prevent the operator noticing this in additional Nr−Nz
steps. The case Nz>Nr models ambush attacks [30], where
the attacker stealthily prepares Nr steps, and then launches a
not necessarily stealthy attack in the remaining time. Although
we focus on the case Nr=Nz=N , the analysis that follows
can be extended to cover the aforementioned cases as well.

Remark 3: Some of the advantages of using the stealthiness
constraint (C3) are as follows: (i) As shown later, (C3) is a
convex constraint in d for the class of attacks we observe;
(ii) The impact analysis is made independent of the choice
of anomaly detector; (iii) Generating attack signals that sat-
isfy (C3) can be a reasonable choice by the attacker that does
not know which anomaly detector is deployed; (iv) In some
cases, other types of stealthiness constraints can be replaced
by a KL–divergence based constraint [6].

Remark 4: As shown later in Proposition 2, P1 and P2 can
be infeasible due to (C3). If that is the case, we define the
impact to be 0.
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IV. MAIN RESULTS

In this section, we prove that the optimal value of P1 can be
calculated by solving a set of convex problems. Additionally,
we show that in the process of solving P1, we also obtain
lower and upper bounds of P2. Prior to this, we introduce some
auxiliary lemmas, present the problem P crucial for solving
P1 and bounding P2, and highlight some special cases of the
problems. The omitted proofs are provided in Appendix.

A. Preliminaries

We first introduce Lemma 1, which establishes that the
vector of critical states z1:N and the vector of residuals r̃0:N
are Gaussian random vectors with fixed covariance matrices
and mean values linear in d.

Lemma 1: The critical states vector z1:N is distributed ac-
cording to N (µZ ,ΣZ) and the residual vector r̃0:N according
to N (µR,ΣR), where µZ = TZd and µR = TRd. The
matrices TZ , TR, ΣZ , ΣR are independent of d and given
by the equations (28), (29), (32), and (33), respectively. The
covariance matrix ΣZ is a positive definite matrix.

While ΣZ is provably positive definite, the same claim does
not hold for ΣR in general. Namely, due to attacks, ΣR may
be positive semi definite. In what follows, we assume ΣR is
positive definite, and we later justify this assumption.

Assumption 1: ΣR is a positive definite matrix.
We now use Lemma 1 to show that the stealthiness con-

straint (C3) is a convex and symmetric1 constraint in d.
Lemma 2: Under Assumption 1, (C3) can be written as

||TRd||22≤ε′, where ε′=(N+1)(2ε+ny)−tr(ΣR)+ln det(ΣR).
Remark 5: If ε′<0, (C3) is impossible to satisfy, and P1

and P2 are infeasible. Particularly, ε′ approaches −∞ when
an eigenvalue of ΣR approaches 0, which justifies excluding
the cases where ΣR is positive semidefinite from the analysis.

Remark 6: Other types of stealthiness constraints based on
the KL–divergence are also reducible to convex and symmetric
constraints. For example, the claim can be proven for: (i) The
window type constraints 1

Nw+1D(r̃i:i+Nw
||ri:i+Nw

)≤ε, where
i=0,. . ., N−Nw, Nw∈Z+, and Nw≤N ; (ii) The constraints
from [24] D(r̃i||ri) ≤ ε, where i = 0, . . . N .

We now introduce an optimization problem P crucial for
solving P1 and deriving bounds for P2.

P : maximize
d

E{z(i)1:N} subject to (C1)–(C5),

where i belongs to I. In what follows, we use Lemma 1 and
Lemma 2 to show that P is reducible to a convex problem
with symmetric constraints. Thus, P can be solved efficiently
using well known algorithms.

Proposition 1: Under Assumption 1, P is reducible to the
following convex optimization problem

maximize
d

TZ(i, :)d

subject to ||Qd||∞ ≤ 1, ||TRd||22 ≤ ε′, Fd = 0nFa×1,
(7)

where Q=[0nyr×(N+1)na
Qyr ] and F = [Fa 0nFa×nyr

].

1We say that a constraint C is symmetric, if for every x that satisfies C,
then −x also satisfies C.

Proof: The constraints (C1) and (C5) impose that z1:N
(resp. r̃0:N ) is distributed according to N (TZd,ΣZ) (resp.
N (TRd,ΣR)) (Lemma 1). Hence, the objective function of P
can be written as E{z(i)1:N}=TZ(i, :)d, which is the objective
function of (7). Constraint (C2) can be rewritten as

||Qyryr||∞ = ||[0nyr×(N+1)na
Qyr ][aT0:N yTr ]T ||∞ ≤ 1.

Hence, (C2) reduces to ||Qd||∞≤1, which is the first constraint
in (7). From Lemma 2, Constraint (C3) can be exchanged with
the second constraint in (7). Finally, Constraint (C4) can be
rewritten as Faa0:N=[Fa 0nFa×nyr

][aT0:N yTr ]T=Fd, which is
the third constraint in (7). �

Next, we investigate when P is infeasible (there are no
points that satisfy the constraints) and unbounded (the optimal
value is infinite), and then explain the importance of this result.

Proposition 2: The following statements hold: (I) P is
infeasible for any i from I if and only if ε′<0; (II) P is
unbounded for at least one i from I if and only if ε′≥0 and
null([QT TTR FT ]T )6⊆null( TZ).

Proof: Statement I. (⇒) If P is infeasible, ε′ ≥ 0 cannot
hold, since d = 0 would be a feasible point for any i from I.

(⇐) If ε′<0, then the constraint ||TRd||22≤ε′ cannot be
satisfied for any d and any i from I, so P is infeasible.

Statement II. (⇒) The proof is by contradiction. If ε′<0,
then P is infeasible, so it cannot be unbounded. If ε′≥0 and
null([QT TTR FT ]T )⊆null( TZ), then for every d for which
TZd6=0 we have [QT TTR FT ]T d6=0. Hence, TZ(i, :)d cannot
be made arbitrary large for any i from I, because at least one
of the constraints would be violated.

(⇐) If null([QT TTR F
T ]T )6⊆null( TZ) and ε′≥0, then there

exists d that satisfies TZd6=0 and [QT TTR F
T ]T d=0. By in-

creasing the magnitude of d while keeping it’s direction same,
we can make TZ(i, :)d arbitrary large for at least one i, while
the constraints remain satisfied. �

Remark 7: Note that P is infeasible if and only if P1 and P2

are infeasible, since these problems have the same constraints.
Hence, the only situation when P1 and P2 are infeasible is
when (C3) cannot be satisfied, that is, when the attacker cannot
achieve the predefined stealthiness level.

Remark 8: If P is unbounded, the system is seriously
vulnerable. Namely, if the easy to check conditions ε′≥0 and
null([QT TTR FT ]T )6⊆null( TZ) are satisfied, the attacker can
make the deterministic part of a critical state arbitrary large
while remaining stealthy. In that case, the influence of the
stochastic component becomes negligible, so the optimal value
of P1 (resp. P2) goes to 1 (resp. +∞).

In the remainder, we focus on the case when P is feasible
and bounded (null([QT TTR FT ]T )⊆null( TZ) and ε′ ≥ 0).
Lemma 3 (resp. Lemma 4) is later used to establish a link
between P1 (resp. P2) with the convex problem P in this case.

Lemma 3: Let Cd be a symmetric constraint and consider
the following optimization problems

maximize
d

E{z(i)1:N} subject to Cd, (8)

maximize
d

P(|z(i)1:N | > 1) subject to Cd. (9)

If the optimal value of (8) is bounded and if d∗ is a solution
of (8), then d∗ is also a solution of (9).
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Algorithm 1 Calculating the optimal value of P1

1: Input: TR, TZ , ΣZ , ΣR, Q, F , ε
2: Output: Î∗P
3: for every i from I do
4: For a given i, find a solution d̂∗i of P
5: Calculate P̂ ∗i =P(|z(i)1:N | > 1) assuming d=d̂∗i
6: end for
7: Î∗P = maxi∈I P̂

∗
i

Lemma 4: (Jensen’s inequality [31]) Let φ be a convex
function defined on a convex subset Cφ of Rn, and let X
be an n-dimensional integrable random vector that satisfies
P(X∈Cφ)=1. Then φ(E{X})≤E{φ(X)}.

B. Solving P1

We now introduce Algorithm 1 and prove that it solves P1.
For each i from I, Algorithm 1 calculates a solution d̂∗i of
P , and then P̂ ∗i =P(|z(i)1:N |>1) based on d̂∗i . Since z1:N is
a Gaussian random vector (Lemma 1), z(i)1:N is a Gaussian
random variable. Hence, the probability P̂ ∗i can be calculated
with sufficiently large accuracy and in the computational time
that is negligible compared to the computational time of
solving P . Finally, Algorithm 1 returns the largest P̂ ∗i as the
attack impact Î∗P . The following theorem establishes that Î∗P
is the optimal value of P1.

Theorem 1: Assume that null([QT TTR FT ]T )⊆null( TZ)
and ε′≥0. Let I∗P be the optimal value of P1 and let Î∗P be
the value returned by Algorithm 1. Then I∗P = Î∗P .

Proof: Since the constraints of P1 are independent of i, P1

can be solved in the two steps. In the first step, one calculates

P ∗i = maximize
d

P(|z(i)1:N | > 1) subject to (C1)–(C5), (10)

for every i from I. In the second, one calculates the optimal
value of P1 as I∗P = maxi∈I P

∗
i .

Algorithm 1 performs these two steps. Firstly, Algorithm 1
computes a solution d̂∗i of P , and based on it, calculates
P̂ ∗i =P(|z(i)1:N |>1) (Lines 3–6). Under the assumption ε′≥0
and null([QT TTR FT ]T )⊆null( TZ), we know that a solution
d̂∗i of P exists, and that TZ(i, :)d̂∗i is bounded for every i
(Proposition 2). From Proposition 1, the constraints of P are
convex and symmetric constraints in d. Since P and (10) have
the same constraints, it follows from Lemma 3 that d̂∗i is also
a solution of (10). This implies that P̂ ∗i =P ∗i for each i from
I, so Algorithm 1 performs the first step of the procedure.
The algorithm then performs the second step of the procedure
(Line 7). Hence, it follows that I∗P=Î∗P . �

Remark 9: Theorem 1 represents an interesting extension
of the works [15], [16] that used the infinity norm metric
||z1:N ||∞. Particularly, Theorem 1 shows that the optimal
value of P1 can be obtained by solving a set of convex
problems. This is the same favorable property that the impact
estimation problem had in the deterministic systems case.

Remark 10: Algorithm 1 needs to solve the convex problem
P nzN times, which may appear to be time consuming.
However, since we are performing off-line analysis, the ex-
ecution time is not of critical importance. Moreover, we can

considerably reduce the execution time by solving the problem
P in parallel for every i from I.

Remark 11: Constraint (C5) on the signal as simplifies
the derivation of Theorem 1. Thanks to (C5), z1:N and r̃0:N
are Gaussian random vectors, the decision variables can be
represented by the vector d, (C3) is a convex and symmetric
constraint in d, and the connection between P1 and P can
be established. These convenient properties do not hold if
as is a random process with non-Gaussian distribution. For
example, (C3) may become hard to evaluate, since it has closed
form expression only in some special cases. Additionally, the
connection between P1 and P would be lost in general.

C. Lower and Upper Bounds for P2

We now use P to derive lower and upper bounds for P2.
Particularly, let Î∗E be defined as

Î∗E = maxi∈I µ∗i , (11)

where µ∗i is the optimal value of P corresponding to i.
Theorem 2 provides lower and upper bounds based on Î∗E .

Theorem 2: Assume that null([QT TTR FT ]T )⊆null( TZ)
and ε′ ≥ 0. Let I∗E be the optimal value of P2, Î∗E be defined
as in (11), and σ∗Z = maxi∈I

√
ΣZ(i, i). Then

Î∗E ≤ I∗E ≤ Î∗E +Nnzσ
∗
Z . (12)

Proof: Since E{z1:N}=TZd (Lemma 1), then Î∗E is the
optimal value of the following optimization problem:

maximize
i∈I

maximize
d

TZ(i, :)d subject to (C1)–(C5). (13)

Let I ′E be the optimal value of the problem

maximize
d

||TZd||∞ subject to (C1)–(C5). (14)

Note that both (13) and (14) are feasible, since ε′≥0. We
first show I ′E = Î∗E . The proof is similar to the proof of [28,
Lemma 1], but we include it here for the reader’s convenience
and for the sake of completeness.

Let d′ be an optimal solution for which I ′E is obtained, and
notice that I ′E = ||TZd′||∞ = |TZ(i′, :)d′|, for some i′ from I.
Thus, |TZ(i′, :)d′| ≥ TZ(i, :)d for every i from I, and every
d that satisfies (C1)–(C5). We then have Î∗E≤I ′E , since (13)
and (14) have the same constraints. We now show that Î∗E<I

′
E

cannot hold. Since (C1)–(C5) are symmetric (Proposition 1),
then d′ and −d′ are feasible points for (13). Then it follows
|TZ(i′, :)d′|=I ′E>Î∗E , which contradicts the assumption that
Î∗E is the optimal value of (13). Hence, I ′E=Î∗E holds.

We now establish the lower bound. Let Z ′∼N (TZd
′,ΣZ),

and note that Z ′ is with the finite mean value (integrable) once
null([QT TTR FT ]T )⊆null( TZ). We then have

Î∗E = I ′E = ||E{Z ′}||∞
(i)
≤ E{||Z ′||∞} = IE(d′)

(ii)
≤ I∗E ,

where: (i) follows from Lemma 4, since every norm is convex;
(ii) follows from the fact that d′ is a feasible point of P2, so
IE(d′) has to be lower than the optimal value I∗E of P2.

We now establish the upper bound. Let d∗ be a solution
of P2 and Z∗ be distributed according to N (TZd

∗,ΣZ).
Note that: (1) Z∗ can be written as Z∗=TZd

∗+Z, where
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Z ∼ N (0,ΣZ); (2) Z(i) is a Gaussian random variable with
the mean value 0 and the variance ΣZ(i, i), so |Z(i)| is a
random variable distributed according to the folded normal
distribution [32]. We then have

E{||Z∗||∞}
(i)
≤ E{||Z||∞}+ ||TZd∗||∞
(ii)
≤ E{||Z||∞}+ Î∗E

(iii)
≤

Nnz∑
i=1

E{|Z(i)|}+ Î∗E

(iv)
≤

Nnz∑
i=1

√
2ΣZ(i, i)

π
+ Î∗E

(v)
≤ Nnzσ

∗
Z + Î∗E ,

where: (i) follows from the triangle inequality and lin-
earity of the expectation operator; (ii) follows from the
fact that ||TZd∗||∞≤||TZd′||∞=Î ′E=Î∗E ; (iii) follows from
||Z||∞≤

∑Nnz
i=1 |Z(i)| and linearity of the expectation operator;

(iv) follows from the fact that |Z(i)| has the mean value
( 2
πΣZ(i, i))

1
2 [32]; (v) follows from the definition of σ∗Z . �

Remark 12: Since ΣZ is independent of d and can be
obtained from the system matrices, we only need to calculate
Î∗E to calculate the bounds. Hence, the bounds can be obtained
by solving P nzN times, same as the optimal value of P1.

Remark 13: From (12), we can see that the bounds are
tight in at least two cases:(i) Î∗E is much larger than Nnzσ∗Z ;
(ii) σ∗Z has small value (noise is negligible). Additionally, even
if the tightness cannot be established, the bounds can still be
useful. If the lower bound (resp. upper bound) is large (resp.
small), then the optimal value I∗E is for sure large (resp. small).

V. APPLICABILITY

This section introduces attack strategies whose impact can
be analyzed using our framework. The omitted proofs are
available in Appendix.

A. DoS, Rerouting, and Sign Alternation Attacks

We first consider three strategies that can be modeled by

ỹ(k) = Λyy(k), ũ(k) = Λuu(k). (15)

The first strategy is a DoS attack strategy [17], [18], where the
attacker prevents the measurements Ya and control actions Ua
from reaching their destination. For example, the attacker can
physically damage the corresponding sensors and actuators, or
jam the network over which the signals are transmitted [17].
Here, Λy and Λu are diagonal matrices defined by

Λy(i, i) =

{
1, i /∈ Ya,
0, i ∈ Ya,

Λu(i, i) =

{
1, i /∈ Ua,
0, i ∈ Ua.

(16)

Remark 14: There are alternative DoS attack models in the
literature. For example, instead of setting missing measure-
ment or control signals to zero, one can use the last received
values [33], or their estimates [34].

In rerouting attacks [20], the attacker permutes the values
of the measurements Ya and control actions Ua. The attack
can be performed by physically re-wiring the sensor cables,
or by modifying the sender’s address [20]. In this strategy, Λy
and Λu are permutation matrices that satisfy Λy(i, i)=1 for
i/∈Ya and Λu(i, i)=1 for i/∈Ua.

Finally, in a sign alternation attack [21], the attacker flips the
sign of the measurement Ya and the control actions Ua. This
attack can turn negative feedback into positive, and potentially
destabilize the system. Moreover, in certain configurations, this
attack strategy leads to strictly stealthy attacks [21]. In this
case, Λu and Λy are diagonal matrices given by

Λy(i, i) =

{
−1, i ∈ Ya,

1, i /∈ Ya,
Λu(i, i) =

{
−1, i ∈ Ua,

1, i /∈ Ua.

The following proposition establishes compatibility of the
above mentioned strategies with our framework.

Proposition 3: The impact estimation problems on DoS,
rerouting, and sign alternation attack strategies can be formu-
lated as optimization problems P1 or P2.

B. FDI, Bias Injection, and Combined FDI and DoS Attacks

In FDI attacks [6], [15], the attacker is able to manipulate
the measurements Ya and the control actions Ua, and knows
the whole system model. Using these resources, the attacker
constructs an optimal attack sequence a0:N that maximizes
some impact metric. Signals ỹ and ũ are given by

ỹ(k) = y(k) + Γyay(k), ũ(k) = u(k) + Γuau(k), (17)

where Γy and Γu are diagonal matrices defined by

Γy(i, i) =

{
1, i ∈ Ya,
0, i /∈ Ya,

Γu(i, i) =

{
1, i ∈ Ua,
0, i /∈ Ua.

(18)

In bias injection attacks, the attacker injects a constant bias
to the measurements Ya and control actions Ua [10], [13].
Hence, this strategy can be modeled by

ỹ(k) = y(k)+Γyay(0), ũ(k) = u(k)+Γuau(0), (19)

where Γy and Γu are defined same as in (18). In fact, one can
notice that the only difference in comparison to (17) is that
au and ay are now constant.

Finally, one can imagine a situation where the attacker
injects corrupted data to the measurements YI and the control
actions UI , but can only deny access to YD and UD [22], [23].
This combination of FDI and DoS attacks can be modeled by

ỹ(k) = Λyy(k)+Γyay(k), ũ(k) = Λuu(k)+Γuau(k), (20)

where Λy and Λu are defined based on YD and UD as in (16),
and Γy and Γu are defined based on YI and UI as in (18).

The injection strategies introduced in this subsection are
also compatible with our framework.

Proposition 4: The impact estimation problems on FDI, bias
injection, and combined FDI and DoS attack strategies can be
formulated as optimization problems P1 or P2.

C. Replay Attacks

The replay attack strategy is inspired by the Stuxnet mal-
ware [3]. The replay attack on the sensors Ya is modeled by

ỹ(k) = Λyy(k) + Γyas(k), (21)
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where Λy is defined as in (16), Γy as in (18), and

as(k) = y(k −N − 1). (22)

In other words, the attacker replaces the attacked measure-
ments with the measurements of the normal operation previ-
ously recorded at the time steps −N−1, . . . ,−1. The purpose
of attacking the sensors Ya is to cover attacks against the
actuators Ua, which can be modeled in different ways. For
instance, in [28], we modeled actuator attacks as

ũ(k) = u(k) + Γuau(0), (23)

where Γu is defined as in (18). This captures the case where
the attacker sends some large signal to the attacked actuators.
Another scenario is a DoS attack against the actuators

ũ(k) = Λuu(k), (24)

where Λu is defined as in (16). Both of the previously
introduced replay attack strategies are compatible with our
framework, as stated in the following proposition.

Proposition 5: The impact estimation problems on replay
attack strategies can be formulated as problems P1 or P2.

VI. NUMERICAL EXAMPLE

We now illustrate how the impact estimation framework we
proposed can be used for risk assessment, and discuss how the
tuning parameters influence the impact of different strategies.

A. System Model

We consider a chemical process from [35] shown in
Fig. 1 a). The states are the volume in Tank 3 (x1), the volume
in Tank 2 (x2), and the temperature in Tank 2 (x3). The control
signals are the flow rate of Pump 2 (u1), the openness of the
valve (u2), the flow rate of Pump 1 (u3), and the power of the
heater (u4). We assume that the control objective is to keep a
constant temperature in Tank 2. The objective is achieved by
injecting hot water from Tank 1, and cold water from Tank 3.

The plant is described by

A =

 0.96 0 0
0.04 0.97 0
−0.04 0 0.90

 , B =

 8.8 −2.3 0 0
0.20 2.2 4.9 0
−0.21 −2.2 1.9 21

 ,
C = I3, Σvx = 0.05 I3, and Σvy = 0.01 I3. The matrices of
the controller are given by

L = −0.01

 10 1.8 −0.1
−2.0 7.1 −0.5
1.4 16 0.2
−0.4 −0.7 4.2

 , Lyr = 0.01

11 11 0
−1 44 0
0 0 0
0 4.7 4.7

 .
We adopted Qyr = 0.4 I3, and we used the steady state
Kalman filter as an estimator.

A cyber-infrastructure is shown in Fig. 1 b). It was identified
that the communication link between Router 1 and the con-
troller is unprotected (vulnerability V1). The same holds for
the link between Router 2 and the controller (vulnerability V2).
If the attacker exploits V1 (resp. V2), he/she gains control over
sensors y2, y3 (resp. y1), and actuators u3, u4 (resp. u1, u2).

Pump 1

Tank 1 Tank 2

Hot

Water

Tank 3

↑Pump 2

Valve

SS

Level

Tank 2

Temp.

S

Level

Tank 3 

Cold

Water

Heater

Product

↑

a)

Controller

Anomaly Detector
Router 1 Router 2

Pump 1 Level Temperature Heater Pump 2 Level Valve

Tank 2 Tank 3

↑ S↑ S S

Link 1 Link 2

b)

Fig. 1. a) The physical part of a chemical process with four actuators (two
pumps, one heater, and one valve), and three sensors (two level sensors and
one temperature sensor); b) The cyber part of the process.
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Fig. 2. The impact of different attack strategies when V1 is exploited (blue)
and V2 is exploited (red).

B. Risk Assessment

We now use our framework to determine which of the vul-
nerabilities is more threatening. We set N = 10, ε = 0.3, and
Qz=[01×2 1/3]. The metric IP was used and we considered
DoS [17], [18], rerouting [20], replay [19], FDI [6], [15], and
bias injection [10], [13] attack strategies. Since the attacker
can conduct DoS and rerouting attacks in multiple ways, we
calculated the worst case impact for these strategies. For the
replay strategy, the attack against the actuators was modeled
according to (24).

The results of the analysis are illustrated in Fig. 2. Firstly,
note that the impact of different strategies may result in differ-
ent conclusions concerning the importance of vulnerabilities.
Based on the impact of DoS attacks, it follows that V2 is more
important to be prevented than V1. Yet, based on the impact of
replay, FDI, and bias attacks, V1 is more critical. The impact
of rerouting attacks was not informative, since it was equal to
zero in both of the cases. This illustrates that in some cases,
several attack strategies need to be considered to decide on
importance of vulnerabilities. In this case, we can give higher
priority to V1, since the impact of majority of attack strategies
is larger for this vulnerability.

Secondly, we point out that sometimes less complex attacks
can be just as dangerous as full model knowledge FDI attacks.
For example, if V1 is exploited, replay attacks lead to the
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Fig. 3. The impact of different attack strategies with respect to N .

same impact as FDI attacks. Thirdly, we observe that the
stochastic model of the system can considerably influence
the impact of some attacks. Particularly, rerouting attacks
proved to be harmless in this framework, because they were
detectable in both of the scenarios. Yet, in our previous
study on deterministic systems [28], these attacks had impact
comparable with DoS and bias injection attacks.

Finally, once the attacker exploits V1 and uses FDI attack
strategy, he/she can make the deterministic part of the critical
state x3 arbitrarily large (Proposition 2). Namely, by manipu-
lating the compromised actuators, the attacker affects the vol-
ume x2 and the temperature x3 of Tank 2. Additionally, these
changes cannot be seen neither from y2 and y3 (controlled by
the attacker), nor from y1 (x2 and x3 do not influence x1).

C. Tuning Parameters

Recall that ε and N are the tuning parameters in P1. By
increasing ε, the stealthiness constraint becomes easier to
satisfy, so the impact is clearly non-decreasing with respect
to ε. However, the connection of the impact to the horizon
length N is not obvious. To illustrate some interesting facts,
we investigate how the impact changes when we vary N in
the range 2 to 50. We fixed other modeling parameters to be
the same as in the previous two sections, assumed V2 to be
exploited, and considered the same attack strategies.

A plot of the impact of different attack strategies with
respect to N is shown in Fig. 3. The first observation is that
the impact of almost all the strategies seems to converge to
a steady state relatively quickly. In fact, only the impact of
the replay strategy keeps increasing over time. The second
observation is that the impact can also be decreasing with N ,
as in the case of bias injection attacks. We find the reason to be
that the stealthiness constraint becomes harder to satisfy, while
the number of decision variables in the problem effectively
remains the same. Both of these observations point out that in
certain cases, we do not have to consider long horizon lengths
to find the worst case attack impact.

VII. CONCLUSION AND FUTURE WORK

We proposed a framework for estimating impact of a range
of cyber-attack strategies that is independent of the choice of
anomaly detector. Furthermore, we suggested two alternatives
for the impact metric based on the infinity norm that can be

used in stochastic systems. For the first metric, we proved that
the optimal value of the impact estimation problem can be
obtained by solving a set of convex problems. For the second
metric, lower and upper bounds were derived. Additionally,
we demonstrated how our framework can be used for risk
assessment on an illustrative example.

The future work may go in the following directions. Firstly,
a possible extension would be to explore if the impact of feed-
back attacks can be analyzed using our framework. Secondly,
it might be interesting to derive conditions under which the
impact is decreasing or increasing with the horizon length N .
This may help us to perform risk assessment faster. Finally,
we plan to investigate how can one apply our framework to
allocate security measures, tune anomaly detectors, or develop
a game theoretic based defense strategy.

APPENDIX

Proof of Lemma 1: Let Ns ∈ Z and Ns < 0. We first
prove that xe(Ns) is distributed according to N (T0yr,Σ0).
In absence of attacks, the extended state xe is given by

xe(k + 1) = Aexe(k) +Bev(k) + Eeyr, (25)

where Ae,Be, and Ce are respectively obtained from Ã, B̃, and
C̃ by setting Λy = Iny

, Λu = Inu
, Γy = 0ny×ny

, and Γu =
0nu×nu . We denote the covariance matrix of v by Σv . Let
yr=0, and recall that we assumed that the system has reached
the stationary regime and that Ae is asymptotically stable.
Under these assumptions, xe is zero mean Gaussian stationary
process with the covariance matrix obtained as the solution
of the Lyapunov equation Σ0=AeΣ0A

T
e +BeΣvB

T
e (see [29,

Chapter 4]). Once yr 6= 0, only the mean value of the process
changes. Since the system has reached the stationary regime,
it follows that E{xe(Ns+1)}=E{xe(Ns)}. Hence, from (25),
we have E{xe(Ns)}=T0yr, where T0=(I2nx

−Ae)−1Ee.
We now prove that z1:N is distributed according to
N (TZd,ΣZ). From (C1), (6), and (25), we have

z0:N = P1xe(Ns) + P2vNs:N + P3yr + P4a0:N + P5as0:N ,
(26)

where P1=ON (Ã,Q′z)A
|Ns|
e ,

P2 = [ON (Ã,Q′z)CNs(Ae, Be) TN (Ã, B̃, Q′z, 0nz×nv )],

P3 = ON (Ã,Q′z)

|Ns|−1∑
i=0

Ai
eEe+TN (Ã, Ẽ, Q′z, 0nz×nyr

)(1N+1⊗Inyr
),

P4=TN (Ã, G̃, Q′z, 0nz×na), P5=TN (Ã, J̃ , Q′z, 0nz×ny ), and
Q′z=[Qz 0nz×nx ]. Next, from (26) and (C5), it follows that

z1:N = P ′1xe(Ns) + P ′2vNs:N + P ′3yr + P ′4a0:N , (27)

where P ′1=Pl(P1+P5T1), P ′2=Pl(P2+[P5T2 0N ′nz×N ′nv ]),
P ′3=Pl(P3 + P5T3), P ′4=PlP4, Pl = [0Nnz×nz

INnz
], and

N ′=N+1. Since xe(Ns) and vNs:N are independent Gaussian
vectors, and a0:N and yr are deterministic, z1:N is a Gaussian
vector. Using the linearity property of the expected value and
the fact that xe(Ns) ∼ N (T0yr,Σ0), we get

E{z1:N} = P ′1T0yr + P ′3yr + P ′4a0:N = TZd, (28)
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where TZ=[P ′4 P
′
1T0+P ′3]. Let the covariance matrix of vNs:N

be denoted with ΣV . We then have

ΣZ = P ′1Σ0(P ′1)T + P ′2ΣV (P ′2)T , (29)

where we used that xe(Ns) and vNs:N are independent. Notice
that TZ and ΣZ are independent of d.

We similarly prove that r̃0:N is distributed according to
N (TRd,ΣR). From (C1) and (25), r̃0:N can be written as

r̃0:N = M1xe(Ns)+M2vNs:N +M3yr+M4a0:N +M5as0:N ,
(30)

where M1 = ON (Ã, C̃)A
|Ns|
e ,

M2 = [ON (Ã, C̃)CNs(Ae, Be) TN (Ã, B̃, C̃, D̃)],

M3 = ON (Ã, C̃)

|Ns|−1∑
i=0

Ai
eEe + TN (Ã, Ẽ, C̃, F̃ )(1N+1 ⊗ Inyr

),

M4=TN (Ã, G̃, C̃, H̃), and M5=TN (Ã, J̃ , C̃, K̃). From (30)
and (C5), it follows that

r̃0:N = M ′1xe(Ns) +M ′2vNs:N +M ′3yr +M4a0:N , (31)

where M ′1=M1+M5T1, M ′2=M2+[M5T2 0N ′ny×N ′nv
], and

M ′3=M3 + M5T3. Thus, r̃0:N is a Gaussian vector, since
xe(Ns) and vNs:N are independent Gaussian vectors, and a0:N
and yr are deterministic. The mean value of r̃0:N is

E{r̃0:N} = M ′1T0yr +M ′3yr +M4a0:N = TRd, (32)

where TR=[M4 M
′
1T0+M ′3]. The covariance matrix of r̃0:N is

ΣR = M ′1Σ0(M ′1)T +M ′2ΣV (M ′2)T . (33)

Finally, we can see that TR and ΣR are independent of d.
It remains to prove that ΣZ is positive definite. Equa-

tion (27) can be rewritten as

z1:N = P ′1xe(Ns)+PvpvNs:−1+Pvxvx0:N−1+Pvyvy0:N−1

+ P ′3yr + P4a0:N + 0Nnz×nxvx(N) + 0Nnz×nyvy(N).

Since P ′1xe(Ns), PvpvNs:−1, Pvxvx0:N−1, Pvyvy0:N−1 are
independent Gaussian vectors, ΣZ is the sum of the covariance
matrices of these vectors. Thus, it suffices to prove that one
of these vectors has a positive definite covariance matrix.
From (1) and (6), Pvx is of the form

Pvx =

Qz . . . 0nz×nx

...
. . .

...
× . . . Qz

 .
It then follows that null(PTvx) = ∅, since Qz has full row rank.
Let ΣVx

be the covariance matrix of vx0:N−1. Since Σvx is
positive definite, so it is ΣVx

. Thus, PvxΣVx
(Pvx)T is positive

definite, which implies that ΣZ is positive definite. �
Proof of Lemma 2: Let Y1 and Y2 be random vectors with
the distributions N (µ1,Σ1) and N (µ2,Σ2), respectively. Let
Σ1 and Σ2 be positive definite. Then

D(Y1||Y2) = 0.5

(
tr(Σ−1

2 Σ1) + ||µ2 − µ1||Σ−1
2

+ ln
det(Σ2)

det(Σ1)
− n

)
,

where n is the dimension of Y1 and Y2 [36]. In our case,
the distributions of r̃0:N and r0:N are N (TRd,ΣR) and

N (0(N+1)ny×1, I(N+1)ny
), respectively. Thus, it follows

D(r̃0:N ||r0:N ) = 0.5
(
tr(ΣR) + ||TRd||22 − ln det(ΣR)

− (N + 1)ny
)

= cKL + 0.5||TRd||22,

where cKL=0.5(tr(ΣR)−ln det(ΣR)−(N+1)ny).
Hence, (C3) becomes ||TRd||22 ≤ ε′, where ε′ =

2((N+1)ε−cKL) = (N+1)(2ε+ny)−tr(ΣR)+ln det(ΣR). �
Proof of Lemma 3: From Lemma 1, z1:N is a Gaussian ran-
dom vector with a non-degenerate distribution N (TZd,ΣZ).
Thus, z(i)1:N is a Gaussian random variable with the distribution
N (µ, σ2), where µ = TZ(i, :)d, and σ2 = ΣZ(i, i). Hence, d
influences the distribution of z(i)1:N only through µ.

Next, we outline two properties of P(|z(i)1:N |≥1) with respect
to µ. Let f(µ)=P(|z(i)1:N |≥1), c1=(

√
2σ)−1, and note that

|z(i)1:N | is distributed according to the folded normal distribu-
tion [32]. Therefore, it follows

f(µ) = 1− 0.5erf(c1 − c1µ)− 0.5erf(c1 + c1µ), (34)

where erf(x)= 1√
π

∫ x
−x e

−t2dt is the error function [32].
From (34), we can observe that f(−µ)=f(µ). Hence, f(µ)
is symmetric in µ (Property 1). Next, we have

df(µ)

dµ
= −0.5

2√
π
e−c

2
1(1−µ)

2

(−c1)− 0.5
2√
π
e−c

2
1(1+µ)

2

c1

=
c1√
π

(
e−c

2
1(1−µ)

2

− e−c
2
1(1+µ)

2)
,

where we used the property d
dz erf(z) = 2√

π
e−z

2

. Since

e−c
2
1(1+µ)

2

<e−c
2
1(1−µ)

2

(resp. e−c
2
1(1+µ)

2

>e−c
2
1(1−µ)

2

) once
µ>0 (resp. µ<0) , it follows that f is monotonically increasing
(resp. decreasing) with respect to µ on the interval (0,+∞)
(resp. (−∞, 0)). Due to this fact and Property 1, we have that
f(µ) is increasing with respect to |µ| (Property 2).

We are now ready to prove the claim of the lemma. Since
Cd is a symmetric constraint and E{z(i)1:N} = TZ(i, :)d, we
have that a solution of (8) also represents a solution of

maximize
d

|E{z(i)1:N}| subject to Cd.

From Property 2, we have P(|z(i)1:N | ≥ 1) to be increasing with
respect to |E{z(i)1:N}|. Hence, d∗ is also a solution of (9). �
Proof of Proposition 3: To show compatibility, we need to
verify if the strategies can be imposed through (C4) and (C5).
From (15), it follows that ay , au, and as are zero. These
constraints on ay and au can be modeled by (C4), by setting
Fa=I(N+1)na

. The constraint on as can be modeled by (C5),
by setting T1–T3 to zero. �
Proof of Proposition 4: Same as in the previous proposition,
we verify compatibility by showing that the strategies can
be imposed through (C4) and (C5). Consider first FDI attack
strategy. No constraints are imposed on au and ay , which can
be modeled by (C4) by setting Fa to zero. The constraints
as(k)=0 for k=0, . . . , N can be modeled by (C5) by setting
T1–T3 to zero. The proof for the bias injection strategy is sim-
ilar as for FDI attacks. The only difference are the additional
constraints on ay and au, that can be written as ay(k)=ay(0),
au(k)=au(0), where k=1, . . . , N . These constraints are linear
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equality constraints that can be modeled by (C4). In the case
of combined FDI and DoS attacks (20), au and ay are free to
select, and as(k) = 0 for k=0, . . . , N . As discussed above,
having au and ay free to choose can be modeled by (C4), and
having as(k)=0 for k=0, . . . , N can be modeled by (C5). �
Proof of Proposition 5: From (21), we have ay(k) = 0 for
k=0, . . . , N , which can be modeled by (C4). The same holds
for au if (24) is used to model the actuator attack. If (23)
is used, au needs to satisfy au(k) = au(0) for k=1, . . . , N ,
which can also be modeled by (C4). We now show that as can
be imposed through (C5). Let Ns=−N−1, Ce=[C 0ny×nx

],
and De=[0ny×nx

Iny
]. In absence of attacks, we have

y(k) = Cexe(k) +Dev(k). (35)

From (22), we have as0:N=yNs:−1. From the later, (25),
and (35), it follows that

as0:N = T1xe(Ns) + T2vNs:−1 + T3yr,

where T1=ON (Ae, Ce), T2=TN (Ae, Be, Ce, De), and
T3=TN (Ae, Ee, Ce, 0ny×nyr

)(1N+1⊗Inyr
). Hence, the

constraint (22) on as can be modeled by (C5). �
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