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Abstract—In this article, we study a privacy filter design
problem for a sequence of sensor measurements whose
joint probability density function (p.d.f.) depends on a pri-
vate parameter. To ensure parameter privacy, we propose a
filter design framework which consists of two components:
a randomizer and a nonlinear transformation. The random-
izer takes the private parameter as input and randomly gen-
erates a pseudo parameter. The nonlinear mapping trans-
forms the measurements such that the joint p.d.f. of the
filter’s output depends on the pseudo parameter rather than
the private parameter. It also ensures that the joint p.d.f. of
the filter’s output belongs to the same family of distribu-
tions as that of the measurements. The design of the ran-
domizer is formulated as an optimization problem subject
to a privacy constraint, in terms of mutual information, and
it is shown that the optimal randomizer is the solution of
a convex optimization problem. Using information-theoretic
inequalities, we show that the performance of any estimator
of the private parameter, based on the output of the privacy
filter, is limited by the privacy constraint. The structure of
the nonlinear transformation is studied in the special cases
of independent and identically distributed, Markovian, and
Gauss-Markov measurements. Our results show that the
privacy filter in the Gauss-Markov case can be implemented
as two one-step ahead Kalman predictors and a set of min-
imum mean square error predictors. A numerical example
on occupancy privacy in a building automation system il-
lustrates the approach.

Index Terms—Information theory, Kalman filtering, pri-
vacy in networked control systems.

Manuscript received 12 April 2021; revised 19 August 2021; accepted
16 January 2022. Date of publication 25 January 2022; date of current
version 30 January 2023. This work was supported in part by the Re-
search Grants Council of Hong Kong under the Project CityU 9048210,
in part by the Chow Sang Sang Group Research Fund sponsored by
Chow Sang Sang Holdings International Ltd., in part by the Knut and
Alice Wallenberg Foundation, in part by the Swedish Foundation for
Strategic Research, and in part by the Swedish Research Council. Rec-
ommended by Associate Editor G. Gu. (Corresponding author: Ehsan
Nekouei.)

Ehsan Nekouei is with the Department of Electrical Engineering,
City University of Hong Kong, Hong Kong, China (e-mail: enek-
ouei@cityu.edu.hk).

Henrik Sandberg, Mikael Skoglund, and Karl Henrik Johansson
are with the School of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden,
and also with Digital Futures, SE-100 44 Stockholm, Sweden (e-mail:
hsan@kth.se; skoglund@kth.se; kallej@kth.se).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3145664.

Digital Object Identifier 10.1109/TAC.2022.3145664

I. INTRODUCTION

A. Motivation

N ETWORKED control systems are omnipresent in our
daily lives by providing essential services such as in-

telligent transportation, smart grid, and intelligent buildings.
Sensors are crucial components of any system as they provide
critical information that can be used for control, diagnosis,
and monitoring purposes. However, sensor measurements in
a networked system typically contain information about pri-
vate variables. Thus, directly revealing the measurements to
untrusted parties may expose the system to the risk of privacy
loss. For example, the occupancy level of a building, which is
a highly private variable, can be inferred from the CO2 and
temperature measurements of the building [1]. Privacy breaches
may have negative consequences such as reputation damage
and financial losses due to lawsuits. The sheer importance of
privacy has motivated numerous research efforts to develop
privacy-preserving solutions for networked control systems.

B. Related Work

A variety of problems related to privacy and networked es-
timation and control have been studied in the literature. The
privacy aspect of the hypothesis testing problem as well as
various solutions for privacy-aware hypothesis testing have been
studied in the literature, e.g., [2]–[6]. The authors in [7] consid-
ered a multisensor hypothesis testing problem wherein a fusion
center receives the decisions of a set of sensors and an adversary
overhears the local decisions of a subset of sensors. They studied
the optimal privacy-aware hypothesis testing rule that minimizes
the Bayes risk subject to a privacy constraint at the adversary.
In [8], the authors considered a similar setup and investigated
the optimal privacy-aware design of the Neyman–Pearson test.

The authors in [9] studied the optimal privacy filter design
problem for a public Markov chain that is correlated with a
private Markov chain. Tanaka et al. [10] considered a linear
Gaussian plant in which the sensor measurements are commu-
nicated with an untrusted cloud controller. They studied the
optimal privacy filter design problem subject to a constraint
on the privacy of the states of the plant. The authors of [11]
studied the optimal privacy-aware control law for a Markov
decision process subject to a privacy constraint on an adversary
which has access to the input and output of the Markov chain.
We note that the information-theoretic approach to privacy has
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been extensively studied in the literature, e.g., [12]–[15]. In
such an approach, one observes a public random variable which
is correlated with a private variable. Here, the objective is to
generate a degraded version of the public variable such that the
distortion due to the privacy filter is minimized subject to an
information-theoretic constraint on the privacy. The interested
reader is referred to [16] for an overview of information-theoretic
approaches to privacy in estimation and control.

Privacy-aware solutions to estimation, filtering, and average
consensus problems have been developed in the literature based
on the notion of differential privacy. The authors in [17] devel-
oped a framework for privacy-aware filtering of the measure-
ments of a dynamical system using the concept of differential
privacy. Sandberg et al. [18] studied the state estimation in an
electricity distribution network subject to a constraint on the con-
sumers’ privacy. Privacy-aware average consensus algorithms
were developed in [19] and [20] to guarantee the privacy of
agents’ initial states. The authors of [21] developed a framework
based on differential privacy to address the privacy of the initial
state as well as the way-points of each agent in a distributed
control problem.

The statistical parameter privacy problem has been studied
in [22] and [23]. Bassi et al. [22] studied the statistical parameter
privacy of an independent and identically distributed (i.i.d.)
sequence of random variables where their common pdf depends
on a private parameter. In their setup, the privacy filter consists
of a randomly selected stochastic kernel which generates a
random output based on each observed random variable. They
characterized the leakage level of private information under the
Bayes statistical risk as the privacy measure. The authors in [23]
studied the optimal design of controller and privacy filter for
a linear Gaussian plant. The system dynamics should be kept
private from an adversary interested in inferring the system
dynamics based on the state measurements and control inputs.
Assuming Fisher information as privacy metric, they showed
that the optimal privacy filter is in the form of a state-dependent
Gaussian stochastic kernel.

C. Contributions

In this article, we consider a sequence of measurements,
observed by a sensor, whose joint pdf depends on a private
parameter. To ensure parameter privacy of the measurements, we
propose a filter design framework which consists of two parts:
a randomizer and a nonlinear transformation. The randomizer
takes the private parameter as input and randomly generates
a pseudoparameter. The nonlinear transformation alters the
measurements such that the joint pdf of the filter’s output is
characterized by the pseudoparameter rather than the private
parameter. The nonlinear transformation also ensures that the
joint pdf of the filter’s output belongs to the same family of
distributions as the measurements. The nonlinear transformation
has a feedforward–feedback structure which enables real-time
and causal computation of the disguised measurements with low
complexity.

In our setup, the randomizer is designed by minimizing the
average distortion due to the privacy filter subject to a privacy

constraint in terms of the mutual information between the private
and the pseudoparameters. Using information-theoretic inequal-
ities, we show that the performance of any estimator of the
private parameter based on the output of the privacy filter is
limited by the privacy constraint. We investigate the structure of
the nonlinear transformation for i.i.d., Markovian, and Gauss–
Markov measurements. Our results show that the structure of the
nonlinear transformation involves two one-step ahead Kalman
predictors in the Gauss–Markov case. The Kalman predictors
significantly reduce the complexity of generating the disguised
measurements. The result for i.i.d. measurements has appeared
in [24].

Different from [22] and [24], the current article develops
a privacy filter design framework without imposing the i.i.d.
assumption on the joint pdf of the measurements. In our setup,
the sensor measurements are processed by a nonlinear transfor-
mation, rather than a stochastic kernel, which ensures that the
distribution of the output of privacy filter belongs to the same
family of distributions as the measurements. This requirement
is not guaranteed by the frameworks in [22] and [23] since
stochastic kernels significantly alter the distribution of the mea-
surements.

Our mutual information privacy metric is fundamentally dif-
ferent from the Fisher information metric in [23], in the sense
that the mutual information provides a lower bound on the
error probability of any arbitrary estimator of private variables,
whereas Fisher information provides a lower bound on the mean
square error of any unbiased estimator of private parameters.

D. Outline

This article is organized as follows. Section II describes our
system model and standing assumptions. Section III introduces
the model randomization approach to parameter privacy. Sec-
tion IV investigates the structure of the nonlinear transforma-
tion in special cases. Section V presents the numerical results
followed by the concluding remarks in Section VI.

II. PROBLEM FORMULATION

A. System Model and Objectives

Consider a sensor that measures the stochastic processYk over
the time-horizon k = 1, . . . , T where Yk = [Y 1

k , . . . , Y
d
k ]

� is a
d-dimensional random vector. We assume that the joint pdf of the
measurements over the time-horizon 1, . . . , T is parameterized
by Θ which takes values in Θ = {θ1, . . . , θm} with probability
mass function Pr(Θ = θi) = pi. The value of the parameter Θ
is fixed during the time-horizon k = 1, . . . , T . The joint pdf
of {Yk}Tk=1 is denoted by pθi(y1, . . . , yT ) when Θ is equal to
θi. We refer to pθ(y1, . . . , yT ) as the statistical model of the
measurements which belongs to the family of pdfs

M = {pθ (y1, . . . , yT )}θ .
We assume that Θ carries private information and the sensor

sequentially communicates its measurements with an untrusted
party, hereafter named the “user,” for monitoring, control, or
storage purposes. Directly revealing the measurements to the
user will result in the loss of private information since the
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Fig. 1. Information sharing with an untrusted user via a privacy filter.

true value of Θ can be inferred from the measurements. A
common approach for ensuring privacy is to use a privacy
filter that mediates the information sharing between the sensor
and user as shown in Fig. 1. In this article, we develop a
privacy filter design framework that achieves the following three
objectives.

1) It ensures that the output of the privacy filter accurately
represents the sensor measurements.

2) It guarantees that an adversary with access to the out-
put of the privacy filter cannot reliably infer the value
of Θ.

3) The joint pdf of the output of the privacy filter belongs to
the family of distributions M.

In general, the output distribution of a privacy filter might be
arbitrarily complex. Objective 3 avoids this situation by ensuring
that the joint pdf of the privacy filter’s output belongs to the
same family of distributions as that of the measurements. This
is especially important when the filter’s output is used to perform
computations, such as filtering, whose complexity depends on
the underlying distribution of the data.

Note that adding noise to the measurements may not ensure
the privacy of the parameter Θ. To highlight this point, assume
that the Yks are i.i.d. according to a Gaussian distribution with
mean Θ and unit variance. Let Ỹk = Yk +Nk denote the shared
information with the user where {Nk}k is a sequence of zero
mean i.i.d. distributed random variables. Using the law of large
numbers, we have

1

T

T∑
k=1

Ỹk → Θ

almost surely as T tends to infinity, which indicates that the
user can reliably estimate the private parameter when T is large.
Hence, the noise addition mechanism does not ensure the privacy
of Θ. In this example, the statistical model of the measurements
belongs to the family of distributions

M =

{
1√
2π

e
1
2 (x−θ)2

}
θ∈R

where θ takes values in the set of real numbers. If the additive
noise terms Nks are Laplacian distributed [25], objective 3 is
not satisfied and the pdf of the shared information with the user
becomes intractable.

Remark 1: Although we assume thatΘ is fixed, our results can
be easily extended to the case that Θ is time-varying, e.g., when
the private parameter is given by Θ = [Θ1, . . . ,ΘT ] where Θk

is the parameter that characterizes the conditional distribution
of Yk, given Y1, . . . , Yk−1.

B. Motivating Example: Building Automation

Consider a building automation application in which a sensor
measures the CO2 level of a room over the time horizon k =
1, . . . , T . The response of CO2 concentration to the presence of
humans can be modeled as

Xk+1 = aXk +Wk + bΘ

Yk = Xk + Vk

wherea ∈ (0, 1) and b are constants,Xk denotes theCO2 level at
time-step k, Yk represents the sensor measurement, Wk denotes
the external disturbance, Vk denotes the measurement noise, and
Θ ∈ {0, . . . , L} denotes the occupancy level of the room, i.e.,
Θ = i indicates that there are i persons in the room during the
horizon k = 1, . . . , T .

In building automation, it is common to transmit the sen-
sor measurements over communication networks for control
or monitoring purposes. Note that Θ is the private statistical
parameter of the shared information {Yk}Tk=1. When the CO2

measurements are accessible by untrusted parties, e.g., a hacker
or a “cloud,” the occupancy level, which carries private infor-
mation, can be inferred from the measurements.

We examine the privacy of the occupancy information in two
cases: 1) when CO2 measurements are directly shared with the
user; 2) when a noise addition mechanism is employed to ensure
occupancy privacy. To this end, we first construct an estimator
of the occupancy level based on the shared information with the
user. Let Ỹk denote the shared information at time-step k and
define the averages Ȳk and ¯̄Yk as

Ȳk =
1

Th

k∑
i=k−(Th−1)

Ỹi

¯̄Yk =
1

Th

k−1∑
i=k−Th

Ỹi (1)

for k ≥ Th + 1 where Th is the window size. Let Θ̂k denote the
estimator of occupancy based on the shared information up to
time-step k, Ỹ1, . . . , Ỹk, which is defined as

Θ̂k =
Ȳk − ¯̄Yk

a
. (2)

Fig. 2 shows the output of the occupancy estimator, as a
function of time, when the true occupancy level is equal to 1 or 2.
The solid lines in Fig. 2 show the occupancy estimates when the
estimator has access to the CO2 measurements, i.e., Ỹk = Yk.
The dashed lines in this figure represent the occupancy estimates
under a noise addition privacy mechanism wherein Gaussian
noise is added to the measurements. In this case, the estimator
has access to Ỹk = Yk +Nk where {Nk}k is a sequence of i.i.d.
Gaussian random variables with zero mean and unit variance. In
our simulations, {Wk, Vk}k is assumed to be a sequence of i.i.d.
Gaussian random variables with zero mean and variance 0.1.

According to Fig. 2, the occupancy estimator in (2) can
reliably infer the occupancy level even if the noise addition
privacy mechanism is employed. This observation confirms that
directly sharing sensor measurements with an entrusted party
might result in the loss of private information. Moreover, based
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Fig. 2. Estimates of occupancy (Θ) as a function of time for different
levels of occupancy.

on Fig. 2, noise addition mechanisms may not be capable of
ensuring statistical parameter privacy.

C. Notations and Assumptions

The shorthand notation Y1:k is used to represent the sequence
of random variables Y1, . . . , Yk. The realization of Y1:k is de-
noted by y1:k. The shorthand notationY 1:l

k denotes the collection
of the first l components of Yk. The lth component of Yk is
denoted by Y l

k . When Θ is equal to θ, the joint pdf of Y1:k

is denoted by pθ(y1, . . . , yk) which is assumed to be nonzero
almost everywhere in Rk×d.

The conditional pdf of Y l
k given {Y 1:l−1

k = y1:l−1
k , Y1:k−1 =

y1:k−1,Θ = θi} is represented by

pθi
(
x
∣∣y1:l−1

k , y1:k−1

)
where its corresponding cumulative distribution function (cdf)
is assumed to be absolutely continuous with respect to the
Lebesgue measure. The conditional cdf of Y l

k given {Y 1:l−1
k =

y1:l−1
k , Y1:k−1 = y1:k−1,Θ = θi} is defined as

Fl,k,θi

(
z
∣∣y1:l−1

k , y1:k−1

)
=

∫ z

−∞
pθi

(
x
∣∣y1:l−1

k , y1:k−1

)
dx. (3)

The inverse function of Fl,k,θi(·|y1:l−1
k , y1:k−1) is denoted by

F−1
l,k,θi

(·|y1:l−1
k , y1:k−1). Note that, for all θi, the transformation

Fl,k,θi(·|·) is a mapping from Rl+(k−1)d to [0, 1] which is in-
creasing in its first argument when its second argument is fixed.

The following conventions are adopted in the rest of this
article:

F1,1,θi

(
z
∣∣y1:0k , y1:0

)
= F1,1,θi(z),

Fl,1,θi

(
z
∣∣y1:l−1

1 , y1:0
)
= Fl,1,θi

(
z
∣∣y1:l−1

1

)
,

F1,k,θi

(
z
∣∣y1:0k , y1:k−1

)
= F1,k,θi (z |y1:k−1 )

where F1,1,θi(z) is the conditional cdf of Y 1
1 given Θ = θi,

Fl,1,θi(z|y1:l−1
1 ) is the conditional cdf of Y l

1 given {Y 1:l−1
1 =

Fig. 3. Structure of the proposed privacy filter.

y1:l−1
1 ,Θ = θi}, and Fl,k,θi(z|y1:k−1) is the conditional cdf of
Y 1
k given {Y1:k−1 = y1:k−1,Θ = θi}.

III. MODEL RANDOMIZATION APPROACH

In this section, we discuss the model randomization frame-
work for ensuring the statistical parameter privacy of the sensor
measurements. In this framework, the privacy filter consists of
two components, a randomizer and a nonlinear transformation,
as shown in Fig. 3, which collectively attain the objectives 1),
2), and 3) in Section II. The randomizer takes the value of the
private variable Θ as input and generates a realization of the
pseudoparameter Θ̃ which remains constant during the horizon.
The pseudoparameter takes values in the set Θ̃ = {θ̃1, . . . , θ̃m̃}.
At each time-step k, the nonlinear transformation generates Ỹk

based on the sensor measurement at time-step k and the values
of Θ and Θ̃. Then, Ỹk is revealed to the user.

In this section, the design of the privacy filter is studied
without imposing any special structure on the joint pdf of the
sensor measurements. We start by discussing the structure of
the nonlinear transformation in the next subsection. Then, the
optimal design of the randomizer is discussed, followed by the
privacy analysis of Θ under the proposed framework.

A. Nonlinear Transformation

Let ỹk = [ỹ1k, . . . , ỹ
d
k]

� denote the realization of the output of
the privacy filter at time k. Assuming Θ = θi and Θ̃ = θ̃j , the
nonlinear transformation at time-step k generates ỹlk, i.e., the lth
entry of ỹk, according to

ỹlk = F−1
l,k,θ̃j

(
ul
k

∣∣ỹ1:l−1
k , ỹ1:k−1

)
(4)

where ul
k is given by

ul
k = Fl,k,θi

(
ylk

∣∣y1:l−1
k , y1:k−1

)
(5)

and Fl,k,θi(·|y1:l−1
k , y1:k−1) is the cdf of Y l

k given {Y 1:l−1
k =

y1:l−1
k , Y1:k−1 = y1:k−1,Θ = θi} defined in (3). According to

(4) and (5), the output of the privacy filter at time-step k is
generated based on the history of the measurements up to time-
step k. Moreover, the lth entry of ỹk is generated using its first
l − 1 entries, i.e., ỹ1:l−1

k , which implies that the entries of the
filter’s output are generated sequentially. The structure of the
nonlinear transformation at time-step k is illustrated in Fig. 4.

The feedforward–feedback structure of the nonlinear trans-
formation, in Fig. 4, is a unique aspect of the proposed privacy
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Fig. 4. Structure of the nonlinear transformation at time-step k.

filter. The feedforward component computes ui
ks, whereas the

feedback component computes ỹiks based on the past outputs
of the filter. This structure allows us to cast the proposed
privacy filter as a dynamical system enabling recursive com-
putation of the pdfs pθi(yk|y1:k−1) and pθj (ỹk|ỹ1:k−1). Under
the proposed scheme, pθi(yk|y1:k−1) and pθj (ỹk|ỹ1:k−1) can be
computed recursively over time to reduce the computational
cost of generating the disguised measurements. The recursive
structure significantly reduces the computational cost when the
measurements are generated by a linear Gaussian system (see
Section IV-C for more details).

In certain applications, it is important to generate the disguised
measurements in real time, i.e., ỹk must be causally generated
using the sensor measurements up to time k rather than all the
sensor measurements Y1, . . . , YT . The recursive structure of the
proposed privacy filter enables the causal (real-time) generation
of the disguised measurements.

The next theorem studies the joint pdf of the output of the
nonlinear transformation.

Theorem 1: Consider the nonlinear transformation in (4)
and (5) and assume that the joint pdf of the measurements
belongs to the family of distributions M = {pθ(y1, . . . , yT )}θ.
Given Θ = θi and Θ̃ = θ̃j , the joint pdf of the filter’s output is
pθ̃j (ỹ1, . . . , ỹT ) for all i, j.

Proof: See Appendix A. �
According to Theorem 1, the joint pdf of the output of the pri-

vacy filter over the horizon 1, . . . , T is characterized by the value
of the pseudoparameter Θ̃ rather than the value of the private
parameter Θ. Moreover, the nonlinear transformation ensures
that the joint pdf of the filter’s output also belongs to the family
of probability distributions M. Under the proposed framework,
the statistical model of the filter’s output, i.e., pθ̃(ỹ1, . . . , ỹT ),
is randomly chosen from the set of probability distributions
{pθ̃(ỹ1, . . . , ỹT )}θ̃∈Θ̃ where Θ̃ = {θ̃1, . . . , θ̃m̃} is the support
set of the randomizer’s output. Hence, we refer to this framework
as the model randomization approach to the parameter privacy.

B. Randomizer

The parameter Θ̃ is selected from the set Θ̃ = {θ̃1, . . . , θ̃m̃}
using a randomized mapping. More precisely, given Θ = θi, the

value of Θ̃ is randomly generated according to

Θ̃ =

⎧⎪⎨
⎪⎩

θ̃1 w.p. P1i,
...

... if Θ = θi
θ̃m̃ w.p. Pm̃i,

where
∑

j Pji = 1 for all i. Thus, the randomizer with probabil-

ity Pji selects θ̃j as the value of Θ̃ when Θ is equal to θi. The set
of randomization probabilities {Pji}ji are designed such that
the accuracy of the output of the privacy filter is maximized and,
simultaneously, a desired privacy level is achieved.

Due to the nonlinear transformation, the output of the privacy
filter might be different from its input. To quantify the difference
between the input and the output of the filter, we define the
average distortion between Y1:T and Ỹ1:T as

1

T

T∑
k=1

E
[
d
(
Yk, Ỹk

)]

where the distortion function d(·, ·) : Rd × Rd → R+ captures
the deviation of the output of the privacy filter from its input.

We consider the mutual information between the private pa-
rameter and pseudoparameter as the privacy metric. Let I[Θ; Θ̃]
denote the mutual information between Θ and Θ̃ which can be
written as

I
[
Θ; Θ̃

]

=
∑
i,j

Pr
(
Θ = θi, Θ̃ = θ̃j

)
log

Pr
(
Θ = θi, Θ̃ = θ̃j

)

Pr (Θ = θi)Pr
(
Θ̃ = θ̃j

) .

Note that I[Θ; Θ̃] captures the amount of information that
can be inferred about the private parameter by observing the
pseudoparameter. When the mutual information between Θ and
Θ̃ is zero, the pseudoparameter has no information about the
private parameter. Also, the mutual information between Θ and
Θ̃ achieves its maximum level when Θ can be correctly inferred
by observing Θ̃. Thus, a relatively large level of I[Θ; Θ̃] indicates
that Θ can be reliably inferred from Θ̃.

The optimal randomization probabilities are obtained by min-
imizing the average distortion subject to a privacy constraint.
More precisely, the optimal randomization probabilities are the
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solution of the following optimization problem:

minimize
{Pji}j,i

1

T

T∑
k=1

E
[
d
(
Yk, Ỹk

)]

Pji ≥ 0, ∀i, j∑
j

Pji = 1, ∀i

I
[
Θ; Θ̃

]
≤ I0 (6)

where the second constraint enforces the law of total probability
and the last constraint imposes an upper bound on the mutual
information between the private parameter and the pseudopa-
rameter. We refer to the last constraint as the privacy constraint
since it limits the amount of information that can be inferred
about Θ based on Θ̃. In what follows, we refer to I0 as the
leakage level of private information.

The next theorem investigates the structural properties of the
optimization problem (6).

Theorem 2: The objective function in (6) is linear in the
randomization probabilities. Also, the privacy constraint is a
convex constraint.

Proof: See Appendix C. �
Theorem 2 shows that the optimization problem (6) is a

convex optimization problem. Hence, the optimal randomization
probabilities can be computed efficiently.

Remark 2: In practice, the elements of Θ̃ can be selected
using a nested optimization problem where the optimal elements
of Θ̃ and the optimal randomization probabilities are computed
recursively such that the total distortion is minimized while the
privacy constraint is met. Although this results in a nonconvex
optimization problem, one can obtain a locally optimal solution
by alternating between the nested optimization problems.

Remark 3: It may not be always possible to find a closed-form
expression for the total distortion due to the structure of the dis-
tortion function and the distribution of the sensor measurements.
However, it is straightforward to approximate the total distortion
accurately using Monte Carlo simulations.

C. Privacy Level of Θ

In this subsection, we study the privacy level of the parameter
Θunder the proposed framework. To this end, let Θ̂(Ỹ1:T )denote
an arbitrary estimator of Θ, based on the output of the privacy
filter over the horizon 1, . . . , T , which is defined as a mapping
from RT×d to Θ = {θ1, . . . , θm}. The next theorem establishes
a lower bound on the error probability of the estimator Θ̂(Ỹ1:T ).

Theorem 3: Let Pr(Θ 
= Θ̂(Ỹ1:T )) denote the error probabil-
ity of the estimator Θ̂(Ỹ1:T ). Then, we have

Pr
(
Θ 
= Θ̂

(
Ỹ1:T

))
≥ H [Θ]− I0 − 1

log |Θ|
where H[Θ] is the discrete entropy of Θ, I0 is the leakage level
of private information in (6), and |Θ| denotes the cardinality of
the set Θ.

Proof: See Appendix D. �

According to Theorem 3, the error probability of any estimator
of the private parameter based on the output of the privacy filter is
limited by the leakage level of private information I0. The lower
bound in Theorem (3) increases as the leakage level of private
information becomes small. Thus, for a relatively small value of
I0, no estimator can reliably infer the private parameterΘwhich
implies that the proposed framework is capable of ensuring the
privacy of Θ.

In Appendix D, we show that the mutual information between
Θ and Ỹ1:T can be upper bounded as

I
[
Θ; Ỹ1:T

]
≤ I

[
Θ; Θ̃

]
. (7)

Note that I[Θ; Ỹ1:T ] quantifies the amount of information that
can be inferred about Θ by observing Ỹ1:T . Thus, the inequality
above implies that the leakage of information about the private
parameter via the output of the privacy filter is limited by the
mutual information between the input and the output of the
randomizer. Hence, the upper bound on the mutual information
between Θ and Θ̃ in (6) ensures the privacy of Θ.

Remark 4: To prove Theorem 3, we first show that the
Markov chain Θ −→ Θ̃ −→ Ỹ1:T holds (see Appendix A for
more details). This Markov chain along with the data processing
inequality [26] allow us to establish the inequality in (7). Finally,
the lower bound in Theorem 3 is obtained by combining Fano’s
inequality with inequality (7).

IV. SPECIAL CASES

In Section III, we studied the structure of the nonlinear trans-
formation without imposing any restriction on the joint pdf of
the measurements. In this section, we study the structure of the
nonlinear transformation in the special cases of i.i.d., Markovian,
and Gauss–Markov measurements.

A. Independent and Identically Distributed
Measurements

In this subsection, we assume that Y1, . . . , YT is a sequence
of i.i.d. random variables with the common pdf pθi(y

1, . . . , yd)
when Θ is equal to θi. Given Θ = θi and Θ̃ = θ̃j , the privacy
filter at time-step k generates ylk according to

ỹlk = F−1
l,θ̃j

(
ul
k

∣∣ỹ1:l−1
k

)
,

ul
k = Fl,θi

(
ylk

∣∣y1:l−1
k

)
where

Fl,θi

(
z
∣∣y1:l−1

k

)
=

∫ z

−∞
pθi

(
yl

∣∣y1:l−1
k

)
dyl.

Note that Ỹk is generated only using Yk when the measure-
ments are i.i.d.

B. Markovian Measurements

When measurements are Markovian, the conditional joint pdf
of Y1, . . . , YT given Θ = θi factorizes as

pθi (y1, . . . , yT ) = p1,θi (y1)

T−1∏
k=1

pk+1,θi (yk+1 |yk ) .
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In this case, the privacy filter at time-step k generates ỹlk
according to

ỹlk = F−1
l,k,θ̃j

(
ul
k

∣∣ỹ1:l−1
k , ỹk−1

)
,

ul
k = Fl,k,θi

(
ylk

∣∣y1:l−1
k , yk−1

)
where

Fl,k,θi

(
z
∣∣y1:l−1

k , yk−1

)
=

∫ z

−∞
pk,θi

(
yl

∣∣y1:l−1
k , yk−1

)
dyl.

Note that, different from the general case, Ỹk is generated
using Yk−1 and Yk in the Markovian case.

C. Gauss–Markov Measurements

Given Θ = θi in the Gauss–Markov case, the measurements
are generated by the following model:

Xk+1 = AiXk +Wk

Yk = CiXk + Vk (8)

where {Wk}k and {Vk}k are sequences of i.i.d. zero mean
Gaussian random vectors with the covariance matrices Qi

w and
Qi

v , respectively. We assume that X0 is a zero mean Gaussian
random vector with the covariance matrix Qi

0. We also assume
that {Wk}k and {Vk}k are mutually independent and X0 is
independent of {Wk, Vk}k. For all i, we assume that Ai is Schur
stable, (Ai, Ci) is observable, and the matricesQi

w, Q
i
v, and Qi

0

are positive definite.
In the Gauss–Markov case, the parameter θi =

(Ai, Ci, Q
i
w, Q

i
v, Q

i
0) characterizes the joint pdf of the

measurements. Given Θ̃ = θ̃j = (Aj , Cj , Q
j
w, Q

j
v, Q

j
0), the

objective of the nonlinear transformation is to sequentially
generate Ỹ1, . . . , ỸT such that their joint pdf is the same as the
joint pdf of a sequence generated by a Gauss–Markov model
with the parameters (Aj , Cj , Q

j
w, Q

j
v, Q

j
0).

Before proceeding with the structure of the nonlinear trans-
formation in the Gauss–Markov case, we introduce the structure
of the optimal output predictor of the model in (8). Let x̂k|k
denote the Kalman estimate ofXk based on {Y1 = y1, . . . , Yk =
yk,Θ = θi} which is given by (9) with x̂1|0 = 0 where Σi

k|k−1

is the one-step ahead prediction error covariance which satisfies
the algebraic Riccati recursion in (10).

x̂k|k = x̂k|k−1 +Σi
k|k−1C

�
i

(
CiΣ

i
k|k−1C

�
i +Qi

v

)−1

× (
yk − Cix̂k|k−1

)
.

x̂k|k−1 = Aix̂k−1|k−1 . (9)

Σi
k+1|k = AiΣ

i
k|k−1A

�
i +Qi

w −AiΣ
i
k|k−1C

�
i(

CiΣ
i
k|k−1C

�
i +Qi

v

)−1

CiΣ
i
k|k−1A

�
i . (10)

ˆ̃yk|k−1 = Cj
ˆ̃xk|k−1 ,

ˆ̃xk|k = ˆ̃xk|k−1 +Σj
k|k−1C

�
j

(
CjΣ

j
k|k−1C

�
j +Qj

v

)−1

×
(
ỹk − Cj

ˆ̃xk|k−1

)
.

ˆ̃xk|k−1 = Aj
ˆ̃xk−1|k−1 . (11)

Σj
k+1|k = AjΣ

j
k|k−1A

�
j +Qj

w −AjΣ
j
k|k−1C

�
j

×
(
CjΣ

j
k|k−1C

�
j +Qj

v

)−1

CjΣ
j
k|k−1A

�
j . (12)

Let ŷk|k−1 denote the one-step ahead Kalman predictor of Yk

based on {Y1 = y1, . . . , Yk−1 = yk−1,Θ = θi} which is given
by

ŷk|k−1 = Cix̂k|k−1

with the output prediction error covariance matrix Σo,i
k|k−1 de-

fined as

Σo,i
k|k−1 = CiΣ

i
k|k−1C

�
i +Qi

v.

The next lemma studies the pdf of the lth component of Yk

given {Y 1:l−1
k = y1:l−1

k , Y1:k−1 = y1:k−1,Θ = θi}. This result
will be used to study the structure of the nonlinear transformation
in the Gauss–Markov case.

Lemma 1: The conditional pdf of Y l
k given {Y 1:l−1

k =
y1:l−1
k , Y1:k−1 = y1:k−1,Θ = θi} is a Gaussian pdf with mean
μ̂li
k and variance σl,i

k given by

μ̂l,i
k = ŷlk|k−1 −Δl,i

k

[
Σo,i

k|k−1

]−1

l−1

(
y1:l−1
k − ŷ1:l−1

k|k−1

)

σl,i
k = Σl,o,i

k|k−1 −Δl,i
k

[
Σo,i

k|k−1

]−1

l−1

(
Δl,i

k

)�
(13)

where ŷlk|k−1 is the lth element of ŷk|k−1, ŷ1:l−1
k|k−1 is the vector of

the first l − 1 elements of ŷk|k−1, [Σo,i
k|k−1]l−1 is a matrix formed

by the elements in the first l − 1 rows and the first l − 1 columns
of Σo,i

k|k−1 with [Σo,i
k|k−1]

−1
0 = 0, Σl,o,i

k|k−1 is the lth diagonal entry

of Σo,i
k|k−1, and Δl,i

k is the vector of the first l − 1 elements in the

lth row of Σo,i
k|k−1.

Proof: See Appendix E. �
Lemma 1 implies that μ̂l,i

k is the minimum mean square
error (mmse) predictor of Yk given {Y 1:l−1

k = y1:l−1
k , Y1:k−1 =

y1:k−1,Θ = θi} and σl,i
k is the error variance associated with

μ̂l,i
k . The next theorem studies the structure of the nonlinear

transformation in the Gauss–Markov case.
Theorem 4: Consider the Gauss–Markov model with Θ = θi

and Θ̃ = θ̃j . Then, for 1 ≤ l ≤ d, the lth component of the Ỹ l
k

is generated according to

ỹlk = F−1
(
ul
k, μ̂

l,j
k , σl,j

k

)

ul
k = F

(
ylk, μ̂

l,i
k , σl,i

k

)

where F (·, μ̂, σ) is the cdf of a Gaussian random variable with
mean μ̂ and variance σ, F−1(·, μ̂, σ) is the inverse function of
F (·, μ̂, σ), ˆ̃yk|k−1 and Σo,j

k|k−1 are given by (11) and (12) with
ˆ̃x1|0 = 0, μ̂l,i

k and σl,i
k are defined in (13), and σl,j

k and μ̂l,j
k are

defined in a similar way.
Proof: According to Lemma 1, the conditional pdf of Y l

k

given {Y 1:l−1
k = y1:l−1

k , Y1:k−1 = y1:k−1,Θ = θi} is a Gaus-
sian pdf with mean μ̂li

k and variance σl,i
k . Thus, we have

pθi
(
x
∣∣y1:l−1

k , y1:k−1

)
=

1√
2πσl,i

k

e
− 1

2σ
l,i
k

(x−μ̂li
k )

2

.
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Fig. 5. Structure of the nonlinear transformation in the Gauss–Markov case.

This implies that Fl,k,θi(z|y1:l−1
k , y1:k−1) = F (z, μ̂l,i

k , σl,i
k )

where F (·, μ̂, σ) is the cdf of a Gaussian random variable with
mean μ̂ and variance σ. Using a similar argument, it is straight-
forward to show F−1

l,k,θ̃j
(z|ỹ1:l−1

k , ỹ1:k−1) = F−1(z, μ̂l,j
k , σl,j

k )

where F−1(·, μ̂, σ) is the inverse function of F (·, μ̂, σ). Using
these observations and Theorem 1, ỹlk, in the Gauss–Markov
case, is generated according to

ỹlk = F−1
(
ul
k, μ̂

l,j
k , σl,j

k

)
,

ul
k = F

(
ylk, μ̂

l,i
k , σl,i

k

)

which completes the proof. �
According to Theorem 4, the structure of the nonlinear trans-

formation in the Gauss–Markov case is characterized by two
types of predictors: one-step ahead Kalman predictors and one-
component ahead predictors. At time-step k, the Kalman pre-
dictors compute ŷk|k−1 and ˆ̃yk|k−1 which, respectively, are the
optimal prediction of Yk given {Y1:k−1 = y1:k−1,Θ = θi} and
the optimal prediction of Ỹk given {Ỹ1:k−1 = ỹ1:k−1, Θ̃ = θ̃j}.
At time-step k, the optimal one-component ahead predictors
use ŷk|k−1 and ˆ̃yk|k−1 to compute μ̂l,i and μ̂l,j which are
the mmse prediction of Y l

k given {Y 1:l−1
k = y1:l−1

k , Y1:k−1 =

y1:k−1,Θ = θi} and the mmse prediction of Ỹ l
k given {Ỹ 1:l−1

k =

ỹ1:l−1
k , Ỹ1:k−1 = ỹ1:k−1, Θ̃ = θ̃j}, respectively. The outputs of

these predictors are used to compute the parameters of the
nonlinear transformation in the Gauss–Markov case as shown
in Fig. 5.

Remark 5: The Kalman predictors significantly reduce the
computational complexity of generating the disguised measure-
ments. In the Gauss–Markov case, the proposed filtering scheme
requires the conditional pdfs pθi(yk|y1:k−1) and pθi(ỹk|ỹ1:k−1)
which can be computed (recursively) with low computational

costs using the filtering equations in (9)–(12). Note that the direct
computation of these pdfs becomes prohibitive when k is large.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the proposed framework in ensuring the occupancy privacy of
the CO2 measurements in a building automation application. To
this end, let Yk denote the CO2 measurement inside a room at
time-step k which evolves according to

Xk+1 = 0.95Xk +Wk + 10Θ,

Yk = Xk + Vk

where Θ denotes the number of occupants in the room,
{Wk, Vk}k is a sequence of i.i.d. Gaussian random variables
with zero mean and variance 10−1, and X0 is a Gaussian
random variable, independent of {Wk, Vk}k, with mean 100 and
variance 1. The occupancy parameterΘ is assumed to take values
in {0, 1} with the probabilities Pr(Θ = 1) = Pr(Θ = 0) = 0.5.
We also assume that the pseudo occupancy parameter Θ̃ takes
values in {0, 0.2, 0.4, 0.6, 0.8, 1}. The horizon length T was set
to 50 in our simulations.

Fig. 6 shows the percentage of the relative distortion, due to
the privacy filter, as a function of the leakage level of private
information I0. The relative distortion is defined as the ratio of
the average distortion between the input and output of the filter
over the averageCO2. According to Fig. 6, the relative distortion
increases as the leakage of private information becomes small
since the privacy constraint in (6) becomes tight in this case. The
maximum distortion and maximum privacy level are achieved
when leakage of private information is equal to zero. Note thatΘ
and Θ̃ are independent when I0 = 0which results in a high level
of relative distortion. The minimum distortion and minimum
privacy levels are achieved for I0 = 0.69. In this case, the privacy
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Fig. 6. Percentage of relative distortion versus the leakage level of
private information I0.

Fig. 7. Error probability of the occupancy estimator versus the leakage
level of private information I0.

constraint is relaxed, and, however, Θ can be correctly inferred
from Θ̃.

To study the performance of an adversary in estimating the
occupancy using Ỹk, we consider the following estimator of the
occupancy:

Θ̂
(
Ỹ
)
= arg min

θ∈{0,1}

∣∣∣∣∣
Ȳ − ¯̄Y

0.95
− θ

∣∣∣∣∣
where Ȳ and ¯̄Y are given by

Ȳ =
1

10

50∑
i=41

Ỹi,

¯̄Y =
1

10

49∑
i=40

Ỹi.

Fig. 7 shows the error probability of the proposed occupancy
estimator as a function of the leakage level of private information
I0. Based on this figure, the proposed estimator can reliably
estimate the occupancy information when the leakage of private
information is high. However, as I0 decreases from 0.68 to 0.3,

Fig. 8. Realizations of the true and disguised sensor measurements
as a function of time for Θ = 1 and Θ̃ = 0.6.

Fig. 9. Output of the occupancy estimator, based on the disguised
measurements, as a function of time.

the performance of the occupancy estimator degrades by more
than two orders of magnitude while the distortion due to the
privacy filter at I0 = 0.3 is approximately 0.8% . This is due to
the fact that the output of the filter ceases to be a reliable source
of information for estimating the occupancy as the leakage of
private information decreases.

Fig. 8 shows realizations of the true and disguised sensor
measurements as a function of time for Θ = 1 and Θ̃ = 0.6.
According to this figure, the privacy filter results in a certain
level of distortion between the true and disguised measurements.
Fig. 9 shows the output of the occupancy estimator in (2) when
the output of the nonlinear transformation is used as the input to
the estimator. According to this figure, the occupancy estimator
cannot accurately infer the occupancy based on the disguised
measurements.

VI. CONCLUSION

In this article, we proposed a privacy filter design frame-
work to ensure the statistical parameter privacy of a sequence
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of sensor measurements. Under the proposed framework, the
privacy filter has two components: a randomizer and a nonlinear
transformation. The optimal design of randomizer was studied
under a privacy constraint and it was shown than the optimal
randomizer is the solution of a convex optimization problem.
The privacy level of the proposed framework was examined
using information-theoretic inequalities. We also studied the
structure of the nonlinear transformation in special cases.

An important direction for our future research is to investigate
the optimal design of the randomization probabilities and non-
linear transformation for the privacy-aware closed-loop control
problem. Another important avenue for our future work is the
optimal design of the randomizer when the private parameter is
time-varying and the randomizer has the causal knowledge of
the private parameter, i.e., at each time-step, the randomizer only
has the knowledge of the current and past values of the private
parameter.

APPENDIX A
PROOF OF THEOREM 1

To prove this result, we first show that the Markov chain
Θ −→ Θ̃ −→ Ỹ1:T holds. To this end, we derive an expres-
sion for the conditional pdf of Ỹ l

k given the event {Ỹ 1:l−1
k =

ỹ1:l−1
k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j} in the next lemma.

Lemma 2: Let pỸ l
k
(ỹlk|ỹ1:l−1

k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j) de-

note the conditional pdf of Ỹ l
k given the event {Ỹ 1:l−1

k =

ỹ1:l−1
k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j}. Then, we have

pỸ l
k

(
ỹlk

∣∣∣ỹ1:l−1
k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)

= pθ̃j
(
ỹlk

∣∣ỹ1:l−1
k , ỹ1:k−1

)
where pθ̃j (ỹ

l
k|ỹ1:l−1

k , ỹ1:k−1) is obtained from pθ̃j (ỹ1, . . . , ỹT )
using the Bayes’ rule and marginalization.

Proof: See Appendix B �
Let pỸ1:T

(ỹ1:T |Θ = θi, Θ̃ = θ̃j) denote the conditional pdf of

Ỹ1:T given {Θ = θi, Θ̃ = θ̃j} which can be written as follows:

pỸ1:T

(
ỹ1:T

∣∣∣Θ = θi, Θ̃ = θ̃j

)

(a)
=

T∏
k=1

d∏
l=1

pỸ l
k

(
ỹlk

∣∣∣ỹ1:l−1
k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)

(b)
=

T∏
k=1

d∏
l=1

pθ̃j
(
ỹl
∣∣ỹ1:l−1

k , ỹ1:k−1

)

(c)
= pθ̃j (ỹ1, . . . , ỹT ) (14)

where (a) and (c) follow from the Bayes’ rule and (b) fol-
lows from Lemma 2. This implies that the conditional pdf
of Ỹ1, . . . , ỸT given Θ and Θ̃ only depends on Θ̃. Thus, the
following Markov chain holds Θ −→ Θ̃ −→ Ỹ1:T and, for all
i, j, we have

pỸ1:T

(
ỹ1:T

∣∣∣Θ̃ = θ̃j

)
= pỸ1:T

(
ỹ1:T

∣∣∣Θ = θi, Θ̃ = θ̃j

)

= pθ̃j (ỹ1, . . . , ỹT )

which completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Note that the conditional cdf of Ỹ l
k given the event {Ỹ 1:l−1

k =

ỹ1:l−1
k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j} can be written as

(15), where (a) follows from the definition of Ỹ l
k

Ỹ l
k = F−1

l,k,θ̃j

(
U l
k

∣∣∣Ỹ 1:l−1
k , Ỹ1:k−1

)

U l
k = Fl,k,θi

(
Y l
k

∣∣Y 1:l−1
k , Y1:k−1

)
and (b) follows from the fact that Fl,k,θ̃j

(·|·) is invertible with

respect to its first argument. We next show that U l
k given

{Ỹ 1:l−1
k = ỹ1:l−1

k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j} is a uni-
formly distributed random variable. To this end, let z denote
a real number from the interval [0, 1]. Then, we have (16) where
(a) follows from the fact that y1:l−1

k , y1:k can be uniquely ob-
tained from ỹ1:l−1

k , ỹ1:k since each nonlinear mapping Fl,k,θ(·|·)
is invertible with respect to its first argument and (b) follows
from the Markov chain Θ̃ −→ (Θ, Y 1:l−1

k , Y1:k) −→ Y l
k .

Combining (15) and (16), we have

Pr
(
Ỹ l
k ≤ ỹlk

∣∣∣ ỹ1:l−1
k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)

= Fl,k,θ̃j

(
ỹlk

∣∣ỹ1:l−1
k , ỹ1:k−1

)
which implies that the conditional pdf of Ỹ l

k given the event
{Ỹ 1:l−1

k = ỹ1:l−1
k , Ỹ1:k−1 = ỹ1:k−1,Θ = θi, Θ̃ = θ̃j} is given

by pθ̃j (ỹ
l
k|ỹ1:l−1

k , ỹ1:k).

Pr
(
Ỹ l
k ≤ ỹlk

∣∣∣ ỹ1:l−1
k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)

(a)
= Pr

(
F−1
l,k,θ̃j

(
U l
k

∣∣ỹ1:l−1
k , ỹ1:k−1

) ≤ ỹlk

∣∣∣ ỹ1:l−1
k ,

ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)

(b)
= Pr

(
U l
k ≤ Fl,k,θ̃j

(
ỹlk

∣∣ỹ1:l−1
k , ỹ1:k−1

)∣∣∣ ỹ1:l−1
k ,

ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)
(15)

Pr
(
U l
k ≤ z

∣∣ ỹ1:l−1
k , ỹ1:k−1,Θ = θi, Θ̃ = θ̃j

)

(a)
= Pr

(
Y l
k ≤ F−1

θi

(
z| y1:l−1

k , y1:k−1

)∣∣ y1:l−1
k ,

y1:k−1,Θ = θi, Θ̃ = θ̃j

)

(b)
= Fθi

(
F−1
θi

(
z| y1:l−1

k , y1:k−1

) ∣∣y1:l−1
k , y1:k−1

)
.

= z (16)

APPENDIX C
PROOF OF THEOREM 2

The objective function in (6) can be written as

1

T

T∑
k=1

E
[
d
(
Yk, Ỹk

)]

=
1

T

T∑
k=1

∑
i,j

E
[
d
(
Yk, Ỹk

)∣∣∣Θ = θi, Θ̃ = θ̃j

]
PjiPr (Θ=θi)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on April 15,2023 at 12:15:03 UTC from IEEE Xplore.  Restrictions apply. 



NEKOUEI et al.: MODEL RANDOMIZATION APPROACH TO STATISTICAL PARAMETER PRIVACY 849

=
1

T

T∑
k=1

∑
i,j

E
[
d
(
Yk,Φk

(
Y1:k, θi, θ̃j

))]
Pjipi

=
1

T

T∑
k=1

∑
i,j

Lk

(
θi, θ̃j

)
Pjipi (17)

where Φk(·, θ, θ̃) is the vector-valued transformation
that generates Ỹk using (Y1:k,Θ, Θ̃) and Lk(θi, θ̃j) =

E[d(Yk,Φk(Y1:k, θi, θ̃j))]. Thus, the objective function is
linear in the randomization probabilities. Also, it can be
shown that the privacy constraint is convex in the optimization
variables [26]. Thus, the optimization problem in (6) is convex.

APPENDIX D
PROOF OF THEOREM 3

Using Fano’s inequality [26], we can lower bound the error
probability of any estimator of Θ, based on Ỹ1:T , as

Pr
(
Θ 
= Θ̂

(
Ỹ1:T

))
≥

H
[
Θ
∣∣∣Ỹ1:T

]
− 1

log |Θ| ,

(a)
=

H [Θ]− I
[
Θ; Ỹ1:T

]
− 1

log |Θ| (18)

where H[Θ|Ỹ1:T ] denotes the conditional entropy of Θ given
Ỹ1:T and (a) follows from the definition of the mutual informa-
tion. In Appendix A, we show that the following Markov chain
holds

Θ −→ Θ̃ −→ Ỹ1:T .

Hence, using the data processing inequality [26], we have

I
[
Θ; Ỹ1:T

]
≤ I

[
Θ; Θ̃

]
. (19)

Combining (19) and (18), we have

Pr
(
Θ 
= Θ̂

(
Ỹ1:T

))
≥

H [Θ]− I
[
Θ; Θ̃

]
− 1

log |Θ|
(a)

≥ H [Θ]− I0 − 1

log |Θ|
where (a) follows from the fact that the mutual information
between the private parameter and the pseudoparameter is upper
bounded by the leakage level of private information in (6).

APPENDIX E
PROOF OF LEMMA 1

Note that the distribution of Yk given {Y1:k−1 = y1:k−1,Θ =
θi} is Gaussian with mean ŷk|k−1 and covariance Σo,i

k|k−1 where

ŷk|k−1 = E [Yk| y1:k−1]

= Cix̂k|k−1

and

Σo,i
k|k−1 = E

[(
Yk − ŷk|k−1

) (
Yk − ŷk|k−1

)�]

= CiΣ
i
k|k−1C

�
i +Qi

v

where x̂k|k−1 is the optimal predictor of Xk based on {Y1:k−1 =
y1:k−1,Θ = θi} and Σi

k|k−1 is the error covariance matrix as-

sociated with x̂k|k−1. Note that the joint pdf of Y 1:l
k given

{Y1:k−1 = y1:k−1,Θ = θi} is also a Gaussian distribution with
mean ŷ1:lk|k−1 and covariance [Σo,i

k|k−1]l where [Σo,i
k|k−1]l is a

matrix formed by the elements in the first l rows and the first
l columns of Σo,i

k|k−1. Thus, using the conditional distribution
formula for Gaussian random variables, the conditional pdf
of Y l

k given {Y 1:l−1
k = y1:l−1

k , Y1:k−1 = y1:k−1,Θ = θi} is a
Gaussian distribution with mean μ̂l,i

lk and variance σi,l
lk where

μ̂l,i
k = ŷlk|k−1 −Δl,i

k

[
Σo,i

k|k−1

]−1

l−1

(
y1:l−1
k − ŷ1:l−1

k|k−1

)

σl,i
k = Σl,o,i

k|k−1 −Δl,i
k

[
Σo,i

k|k−1

]−1

l−1

(
Δl,i

k

)�
.

Σl,o,i
k|k−1 is the lth diagonal entry of Σo,i

k|k−1 and Δl,i
k is the vector

of the first l − 1 elements in the lth row of Σo,i
k|k−1.
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