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Abstract—In this article, we study how to secure
distributed filters for linear time-invariant systems with
bounded noise under false-data injection attacks. A ma-
licious attacker is able to arbitrarily manipulate the ob-
servations for a time-varying and unknown subset of the
sensors. We first propose a recursive distributed filter con-
sisting of two steps at each update. The first step employs
a saturation-like scheme, which gives a small gain if the
innovation is large corresponding to a potential attack. The
second step is a consensus operation of state estimates
among neighboring sensors. We prove the estimation error
is upper bounded if the filter parameters satisfy a condi-
tion. We further analyze the feasibility of the condition and
connect it to sparse observability in the centralized case.
When the attacked sensor set is known to be time-invariant,
the secured filter is modified by adding an online local
attack detector. The detector is able to identify the attacked
sensors whose observation innovations are larger than the
detection thresholds. Also, with more attacked sensors be-
ing detected, the thresholds will adaptively adjust to reduce
the space of the stealthy attack signals. The resilience of
the secured filter with detection is verified by an explicit re-
lationship between the upper bound of the estimation error
and the number of detected attacked sensors. Moreover, for
the noise-free case, we prove that the state estimate of each
sensor asymptotically converges to the system state under
certain conditions. Numerical simulations are provided to
illustrate the developed results.

Index Terms—Attack detection, distributed state estima-
tion, false-data injection attack, sensor attacks.
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I. INTRODUCTION

ACYBER-PHYSICAL SYSTEM (CPS) is a physical sys-
tem controlled and monitored by computer-based algo-

rithms. During recent years, numerous applications in sensor
networks, vehicle networks, process control, smart grid, etc.,
have been investigated. With higher integration of large-scale
computer networks and complex physical processes, these sys-
tems are confronting more security issues both in the cyber
and physical layers. Thus, the research on the CPS security is
attracting more and more attention.

Sensors and sensor networks are utilized to collect environ-
mental data in a CPS. The quality of these sensors is essential
for decision making. However, with the increasing number of
complex tasks and the large-scale deployment of cheap and
low-quality sensors, the vulnerability of system operation is
inevitably increased. In this article, we consider the false-data
injection (FDI) attacks in sensors networks, which is illustrated
in Fig. 1, where a distributed sensor network with 30 sensors is
deployed to collaboratively observe the state of a CPS. In this
case, six sensors in red are under attack in the sense that their
observations can be arbitrarily manipulated. We are interested to
find a distributed filter to estimate the system state by employing
the information provided by the sensor network in Fig. 1.

A large number of distributed filters for sensor networks
have been proposed in the literature, e.g., [1] and [2]. These
filters, however, would not work well in attack scenarios like
Fig. 1. In order to degrade the filter performance, an attacker can
strategically inject false data into the observations of attacked
sensors based on its knowledge of systems. When probability
distributions of the observations are affected, the filters prior-
designed based on the distributions are no longer effective. For
the scenario in Fig. 1, the following questions are answered in
this article.

1) How to design a distributed filter such that it is resilient
when the sensor network is under FDI attacks?

2) What is the maximal number of sensors under FDI attacks,
such that filter stability is guaranteed?

3) How to detect which sensors are attacked and how to
remove their influence on the filter performance?

A. Related Work

The security problems of CPSs have been extensively studied
in the literature based on centralized frameworks, where a data
center is able to collect and process the data from all sensors.
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Fig. 1. Distributed sensor network under FDI attacks.

To find out whether sensors are under attack and to identify the
attack signals inserted to the systems, a study on attack detection
and identification for CPSs was given in [3], where the design
methods and analysis techniques for centralized monitors were
discussed as well. A probabilistic approach was given in [4] to
estimate a static parameter in a fusion center under sparse FDI
sensor attacks. To obtain attack-resilient state estimates, some
centralized state estimators or observers were proposed based
on optimization techniques [5]–[10], which usually face heavy
computational complexity in the brute force search.

In comparison with centralized frameworks, distributed
frameworks have no data center. Distributed methods rely on
local computation and neighbor communication, thus they out-
weigh centralized methods in scalability for large networks and
robustness to failures. In recent years, some investigations in
the study of sensor networks under Byzantine attacks/failures
have been made for the distributed state estimation of dynam-
ical systems [11], [12], the distributed identification of a static
vector parameter [13], and the distributed stochastic gradient
descent [14]. Although these articles studied the worst sensor
attacks (i.e., Byzantine attacks), they require complete connec-
tivity or strong robustness of graphs, which would be quite
restrictive for the systems suffering milder attacks (e.g., FDI
attacks). In this direction, a distributed observer with attack
detection was proposed to deal with a class of bias attacks in
the observer update or sensor communication [15]. Distributed
estimation for a static parameter under FDI sensor attacks was
studied in [16] and [17]. In [18], a distributed optimization-based
method was utilized to achieve convergence of the observer
under sparse observability for linear time-invariant (LTI) sys-
tems [19] suffering FDI sensor attacks. Nevertheless, the results
relied on the redesign of topology graph and infinite sensor
communications between two observation updates. The authors
in [20] studied the distributed dimensionality reduction fusion
estimation for CPSs under denial-of-service attacks. In [21], for
FDI attacks in communication networks, a distributed detection
problem was studied for a group of interconnected subsystems,
and an extended application to dc microgrids was given in [22].
In [23], a Bayesian framework-based joint distributed attack de-
tection and state estimation were investigated in a cluster-based

sensor network by considering FDI attacks in the communica-
tion between remote sensors and fusion nodes. However, the
accurate probability distribution of attacks was required. To the
knowledge of the authors, there were few results considering
how to achieve the codesign of a distributed estimator and an
attack detector.

B. Objectives and Contributions of this Article

In this article, we study the distributed state estimation prob-
lem for LTI systems with bounded noise over a sensor network,
where the observations of a time-varying and unknown subset
of sensors are arbitrarily manipulated by a malicious attacker
through FDI attacks.

The objective of this article is fourfold.
1) Design a resilient distributed filter for each sensor with

the potentially compromised observations and the data
received from neighboring sensors.

2) Analyze the main properties of the filter, including the
estimation error boundedness.

3) Design an attack detection-based filter if the compro-
mised sensor set is known to be time invariant.

4) Analyze the main properties of the detection-based filter.
Corresponding to the four objectives, this article makes four

contributions summarized in the following.
1) We design a secured distributed filter consisting of

two steps (see Algorithm 1). The first step employs a
saturation-like scheme, which gives a small gain if the
innovation is large corresponding to a potential attack.
The second step is a consensus operation of state estimates
among neighboring sensors.

2) We investigate some properties of the secured filter. First,
we prove that the estimation error is upper bounded if
the filter parameters satisfy a condition, whose feasibility
is studied by providing an easy-to-check sufficient and
necessary condition (see Theorems 1 and 2). We further
connect this condition to sparse observability in the cen-
tralized case (see Proposition 3). Moreover, we provide
a condition such that the observations of the attack-free
sensors will not be saturated after a finite time. Then, a
tighter error bound is obtained (seecTheorem 3).

3) We modify the secured distributed filter by adding an
attack detector (see Algorithm 2), when the set of attacked
sensors is known to be time invariant. The detector is
able to identify the attacked sensors whose observation
innovations are larger than the detector thresholds (see
Proposition 4). Moreover, with more attacked sensors
being detected, the thresholds will adaptively adjust to
reduce the space of the stealthy attack signals.

4) We study some properties of the secured filter with attack
detection. First, the resilience of the filter is verified by
an explicit relationship between the upper bound of the
estimation error and the number of detected attacked
sensors (see Theorem 4). Moreover, for the noise-free
case, we prove that the state estimate of each sensor
asymptotically converges to the system state under certain
conditions (see Theorem 5).
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This article designs a filter with an innovation-dependent
update gain, essentially different from conventional filters with
statistics-based gains (e.g., Kalman filter), in order to confine
the influence of attack signals to the estimation. To handle
the technical difficulties in performance analysis, a new tool
inspired by bounded-input–bounded-output (BIBO) stability is
provided to analyze boundedness of the estimation error. The
distribution assumption on attack signals in [15] is removed in
this article by allowing that the attacker can inject any attack
signals. Moreover, the assumption that the attacked sensor set
is fixed over time in both centralized frameworks [4]–[6], [8]–
[10], [24] and distributed frameworks [11], [12], [18], [25] is
extended to the time-varying case. The robustness requirement
of communication graphs in [11] and [12] for a wider range
of attacks and the requirement of infinite communication rate
between two updates in [18] are both removed in this article.
This article builds on the preliminary work presented in [26]
and [27]. The main difference is fourfold. First, the set of the
attacked sensors is extended from the time-invariant case to the
time-varying case. Second, a new section dealing with attack
detection and sensor isolation is added. Third, the results in [26]
and [27] are generalized and new theoretical results with proofs
are added. Fourth, more literature comparisons and simulation
results are provided.

The remainder of the article is organized as follows. Section II
is on the problem formulation. Section III provides the secured
distributed filter and its performance analysis. The secured
distributed filter with an online attack detector is studied in
Section IV. After numerical simulations in Section V, Section VI
concludes this article. The main proofs are given in Appendix.

Notations: Rn is the set ofn-dimensional real vectors. R+ and
Z+ are the sets of positive real scalars and integers, respectively.
Rn×m is the set of real matrices with n rows and m columns.
diag{·} represents the diagonalization operator. In stands for
the n-dimensional square identity matrix. 1N stands for the N -
dimensional vector with all elements being one. The superscript
“T ” represents the transpose. A⊗B is the Kronecker product
of A and B. ‖x‖ is the 2-norm of a vector x. ‖A‖ is the induced
2-norm of matrix A, i.e., ‖A‖ = supx �=0

‖Ax‖
‖x‖ . λmin(A), λ2(A),

andλmax(A) are the minimum, second minimum, and maximum
eigenvalues of a real-valued symmetric matrix A, respectively.
|Γ| is the cardinality of the set Γ.min{a, b} means the min-
imum between the real-valued scalars a and b. For a set A,
the indicator function Ia∈A = 1, if a ∈ A; Ia∈A = 0, otherwise.
−plx− left− lceil·� is the ceiling function.

II. PROBLEM FORMULATION

In this section, we first provide some graph preliminaries, and
then, set up the problem of this article.

A. Graph Preliminaries

We model the communication topology of N sensors by an
undirected graph G = (V, E) without self-loops, where V =
{1, 2, . . . , N} stands for the set of nodes, and E ⊆ V × V is
the set of edges. If there is an edge (j, i) ∈ E , the node i can

Fig. 2. Each sensor is equipped with a filter providing an estimate x̂i of
state x. The sensor observation yi is potentially compromised through
an attack signal ai.

exchange information with the node j, then the node j is called
a neighbor of the node i, and vice versa. Let the neighbor set
of the node i be Ni := {j ∈ V|(j, i) ∈ E}. The degree matrix
of G is DG = diag{|N1|, . . . , |NN |}. The adjacency matrix is
AG = [ai,j ], where ai,j = 1 if (i, j) ∈ E , otherwise ai,j = 0.
L = DG − AG is the Laplacian matrix. Graph G is connected if
for any pair of two different nodes i1, il, there exists a path from
i1 to il consisting of edges (i1, i2), (i2, i3), . . . , (il−1, il). On the
connectivity of a graph, we have the following proposition.

Proposition 1 [28]: The undirected graph G is connected if
and only if λ2(L) > 0.

B. System Model

For a sensor network G under FDI attacks, we illustrate the
scenario in Fig. 1, where each senor is equipped with a filter to
estimate the system state (see Fig. 2 for a diagram). The state-
space system model is given as follows:

x(t+ 1) = Ax(t) + w(t)

yi(t) = Cix(t) + vi(t) + ai(t), i = 1, . . . , N
(1)

where x(t) ∈ Rn is the unknown system state, w(t) ∈ Rn the
process noise, vi(t) ∈ R the observation noise, ai(t) ∈ R the
attack signal inserted by some malicious attacker, and yi(t) ∈ R
the observation of sensor i, all at time t. Moreover, A ∈ Rn×n is
the system state transition matrix, and Ci ∈ R1×n is the obser-
vation vector of the sensor i. Both A and Ci are known to each
sensor. We do not assume that (A,Ci) is observable. Without
losing generality, we assume that the observation vectors are
normalized, i.e., ‖Ci‖ = 1, i ∈ V = {1, . . . , N}. Otherwise, we
can reconstruct the observation equation of the system (1).

In this article, we consider the observation equation in (1)
with scalar outputs for each sensor. This conforms with the
centralized framework [5], where each row vector of the cen-
tralized observation matrix stands for the observation vector of
one sensor. For the case that outputs of some sensors are not
scalar, we can replace each of these sensors with a set of virtual
sensors with scalar outputs, which are completely connected
and connected to the neighbors of the original sensor. Then, the
problem will reduce to the one studied in this article.

The following assumptions are needed.
Assumption 1: The following conditions hold:

sup
t

‖w(t)‖ ≤ bw

max
i∈V

sup
t

‖vi(t)‖ ≤ bv

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:10:47 UTC from IEEE Xplore.  Restrictions apply. 



2846 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

‖x̂(0)− x(0)‖ ≤ η0

where x̂(0) is the estimate of x(0) shared by all sensors, and the
upper bounds are known to each sensor.

Assumption 2: Communication graph G is connected.

C. Attack Model

To deteriorate the estimation performance, a malicious at-
tacker can compromise the observations of some targeted sen-
sors by FDI attacks. However, due to resource limitation, the
attacker can only attack a subset of all sensors at each time.
Let A(t) and Ac(t) be the set of attacked sensors and the
set of attack-free sensors at time t, respectively. It holds that
|A(t)|+ |Ac(t)| = N. We require the following assumption on
the attack model.

Assumption 3: The attacker can implement the following FDI
attacks to system (1): for t = 1, 2, . . . ,

ai(t) ∈ R, i ∈ A(t), |A(t)| ≤ s

ai(t) = 0, i ∈ Ac(t)
(2)

where sets A(t) and Ac(t) are unknown to each sensor, but s is
known.

In Assumption 3, we consider the worst scenario on FDI
attacks that the attacker can inject attack signals with any distri-
bution, which is more general than results in the literature [15].
Moreover, Assumption 3 removes the requirement in [4]–[6],
[8]–[10], [24], and [29] that the attacked sensor set is fixed over
time.

D. Problem of Interest

Design a resilient distributed filter {x̂i(t)}i∈V for the system
(1) under Assumptions 1–3 by employing potentially compro-
mised sensor observations {yi(l)}tl=1 and the received neighbor
messages over the communication graph G, such that

lim sup
t→∞

‖x̂i(t)− x(t)‖ ≤ Δ

where Δ ≥ 0 reflects the performance of the proposed filter.
Moreover, find the answers to the questions 1)–3) in the intro-
duction.

III. SECURED DISTRIBUTED FILTER

In this section, we first design a secured distributed filter for
each sensor, and then, analyze some properties of the filter.

A. Filter Design

We consider the filter with two steps, namely, observation
update and estimate consensus. In the step of observation update,
by choosing β > 0, we design a saturation-like scheme to utilize
observation yi(t) as follows:

x̃i(t) = Ax̂i(t− 1) + ki(t)C
T
i (yi(t)− CiAx̂i(t− 1)) (3)

where

ki(t) =

{
1, if |yi(t)− CiAx̂i(t− 1)| ≤ β

β
|yi(t)−CiAx̂i(t−1)| , otherwise.

(4)

Different from the gains of conventional filters or state ob-
servers (e.g., Kalman filter), the gain ki(t) is related to the

Algorithm 1: Distributed Saturation-Based Filter.

1: Initial setting: (x̂i(0), α, β, L)
2: for t = 1, 2, . . . do
3: Observation update:

ki(t) = min{1, β
|yi(t)−CiAx̂i(t−1)| }

x̃i(t) =
Ax̂i(t− 1) + ki(t)C

T
i (yi(t)− CiAx̂i(t− 1))

4: Estimate consensus: Let x̂i,0(t) = x̃i(t)
5: for l = 1, . . . , L do
6: Sensor i receives x̂j,l−1(t) from neighbor sensor j,

x̂i,l(t) =
x̂i,l−1(t)− α

∑
j∈Ni

(x̂i,l−1(t)− x̂j,l−1(t))
7: end for
8: Let x̂i(t) = x̂i,L(t).
9: end for

estimation innovation (i.e., yi(t)− CiAx̂i(t− 1)). The design
of ki(t) in (4) makes sense, since if the innovation is large,
observation yi(t) is more likely to be compromised. Note that
|ki(t)(yi(t)− CiAx̂i(t− 1))| ≤ β, which ensures that the at-
tacker has limited influence to the local update. Scalar β is an
observation confidence parameter reflecting the usage tradeoff
between attack-free observations and attacked observations. If β
is very large, almost all attack-free observations will be utilized
without saturation. However, it will give much space for the
attacker to deteriorate the estimation performance. If β is very
small, although most attack signals {ai(t)} may be filtered,
attack-free observations will contribute little to the estimation.
The design of β will be discussed in the next subsection.

In the step of estimate consensus, we consider a two-time-
scale scheme with communication rate L ≥ 1, i.e., each sensor
can communicate with its neighbors for L ≥ 1 times between
two measurement updates. For l = 1, 2, . . . , L, and α > 0

x̂i,l(t) = x̂i,l−1(t)− α
∑
j∈Ni

(x̂i,l−1(t)− x̂j,l−1(t)) (5)

with x̂i,0(t) = x̃i(t) and x̂i(t) = x̂i,L(t). In the lth communica-
tion, the sensor j transmits its estimate x̂j,l−1(t) to its neighbors,
l = 1, . . . , L. The term α

∑
j∈Ni

(x̂i,l−1(t)− x̂j,l−1(t)) is to
make sensor estimates tend to consensus. The communication
rate L is vital to guarantee the bounded estimation error espe-
cially for the case that each subsystem is not observable (i.e.,
(A,Ci) is not observable). It can be proven that if communicate
rateL goes to infinity and parameterα is properly designed, esti-
mates {x̂i(t)}Ni=1 will converge to the same vector. However, an
infinite communication rate in [16] and [30] is not necessary in
this work. The design ofL andα is studied in the next subsection.
By (3)–(5), we provide the distributed saturation-based filter in
Algorithm 1.

B. Performance Analysis

Since filtering gains {ki(t)}Ni=1 in (4) are related to the state
estimates and potential compromised observations, the common
stability analysis approaches, such as Lyapunov methods, may
not be directly utilized. This is the main technique challenge
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of this article. Inspired by the BIBO stability, we provide the
following lemma to analyze boundedness of the estimation error.

Lemma 1: Consider a one-dimensional equation xt+1 =
F (xt)xt + q0 at time t ≥ 0, where x0 ≥ 0, q0 ≥ 0, and F (·) ∈
[0, 1] is a monotonically nondecreasing function. If setΓ = {t ≥
1|xt ≤ xt−1} is nonempty, the following conclusions hold.

1) If q0 �= 0 ∀t0 ∈ Γ

xt ≤ F t−t0(xt0)xt0 + q0
1− F t−t0(xt0)

1− F (xt0)
, t ≥ t0.

2) supt≥t0 xt ≤ xt0 ∀t0 ∈ Γ.
3) lim supt→∞ xt ≤ inft0∈Γ xt0 .

Proof: See Appendix A. �
If we treat xt as an upper bound of the norm of the estimation

error, based on the knowledge of xt0 , we are able to use 1) to
obtain a real-time upper bound of xt, and apply 2) and 3) to
obtain the uniform and asymptotic bounds of xt, respectively.
To proceed, denote

λ0 := min
J⊂{1,2,...,N}:|J |=N−s

λmin

(∑
i∈J

CT
i Ci

)
(6)

where s is the upper bound of the attacked sensor num-
ber, given in (2). Since

∑
i∈J CT

i Ci is positive semi-definite
and s ≤ N , we have λ0 ≥ 0. Moreover, it holds that λ0 ≤
(N − s)λmax(C

T
i Ci) = N − s, where the equality is due to

λmax(C
T
i Ci) = ‖Ci‖2 = 1 assumed after the system (1). Thus,

λ0 belongs to [0, N − s]. To apply Lemma 1, we construct
sequence {ρt ∈ R|ρt} in the following:

ρt+1 = F (ρt)ρt + q0, ρ0 = η0 (7)

where η0 is given in Assumption 1 and

F (ρt) = ‖A‖
(
1− k∗(ρt)

N
λ0

)

k∗(ρt) = min

{
1,

β

‖A‖ (p0 + ρt) + bw + bv

}

q0 =
N − s

N
(bw + bv + ‖A‖ p0) + bw +

sβ

N

p0 =

√
NβγL

1− ‖A‖ γL

γ =
λmax(L)− λ2(L)
λmax(L) + λ2(L) .

(8)

Under Assumption 2, we have γ ∈ [0, 1). Define γ−1 = +∞
if γ = 0. The following theorem studies boundedness of the
estimation error of Algorithm 1.

Theorem 1 (Bounds): Under Assumptions 1–3, consider
Algorithm 1 with α = 2

λ2(L)+λmax(L) . If there exist L >

ln ‖A‖/ ln γ−1, β, η0 > 0, such that

η0(1− F (η0)) ≥ q0 (9)

set Γ = {t ≥ 1|ρt ≤ ρt−1} is nonempty with 1 ∈ Γ, where se-
quence {ρt} is in (7). Furthermore, for i ∈ V , the estimation
error ei(t) = x̂i(t)− x(t) satisfies the following properties.

1) The estimation error is bounded at each time, i.e., ∀t0 ∈
Γ, t ≥ t0

‖ei(t)‖ ≤ R(F (ρt0), t) + p(t)

where

R(x, t) = xt−t0ρt0 + q0
1− xt−t0

1− x

p(t) =
√
NβγL 1− (‖A‖ γL)t

1− ‖A‖ γL
.

(10)

2) The estimation error has a finite uniform upper bound,
i.e., ∀t0 ∈ Γ

sup
t≥t0

‖ei(t)‖ ≤ ρt0 + sup
t≥t0

p(t).

3) The estimation error is asymptotically upper bounded,
i.e.,

lim sup
t→∞

‖ei(t)‖ ≤ inf
t0∈Γ

ρt0 +

√
NβγL

1− ‖A‖ γL
.

Proof: See Appendix B. �
If t0 = 1, the bounds in Theorem 1 directly depend on the

initial condition. With the increase of t0, the bounds become
tighter. The system designer with global system knowledge is
able to examine condition (9) and calculate the error bounds in
Theorem 1.

In the following theorem, we show that it is feasible to design
parameters L > ln ‖A‖

lnγ−1 , β, η0 such that condition (9) is satisfied
under the case that the system is either marginally stable or
unstable, i.e., ‖A‖ ≥ 1.

Theorem 2 (Feasibility): It is feasible to find positive parame-
ters β, η0 and L > ln ‖A‖

lnγ−1 , and a scalar ε > 0 such that condition
(9) holds for ‖A‖ ∈ [1, 1 + ε), if and only if

λ0 > s (11)

where s and λ0 are given in (2) and (6), respectively.
Proof: See Appendix C. �
The condition (11) means that the maximal number of at-

tacked sensors at each time, i.e., s, is less than scalar λ0, which
depends on the observation matrices of attack-free sensors as
shown in (6). Given s, it is straightforward to check (11) with
the knowledge of the system observation matrices {Ci}Ni=1.
For a particular system with Ci = 1, i = 1, . . . , N, we have
λ0 = N − s. Hence, (11) is equivalent to s ≤ �N/2� − 1, which
is the same maximum obtained under FDI sensor attacks in [5]
and [19].

In the following theorem, by adding another condition, we
show all the observations of attack-free sensors will eventually
not be saturated, which contributes to tighter bounds than those
in Theorem 1.

Theorem 3 (Bounds): Under the same conditions as in Theo-
rem 1, if there is a time t0 ∈ Γ (e.g., t0 = 1), such that

ρt0 + sup
t≥t0

p(t) <
β − bw − bv

‖A‖ (12)

the following results hold:
1) all the observations of attack-free sensors will eventually

not be saturated, i.e., ki(t) = 1 ∀i ∈ Ac(t) ∀t > t0;
2) compared to 1) of Theorem 1, a tighter upper bound of

the estimation error is ensured, i.e., ‖ei(t)‖ ≤ R(�, t) +
p(t)∀t > t0;
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3) compared to 3) of Theorem 1, a tighter asymptotic
upper bound of the estimation error is ensured, i.e.,

lim supt→∞ ‖ei(t)‖ ≤ q0
1−� +

√
NβγL

1−‖A‖γL < ∞
where ρt is in (7), p(t) and R(·, t) are given in (10), and

� = max
M⊂{1,2,...,N}:|M|=N−s

∥∥∥∥∥
(
In − 1

N

∑
i∈M

CT
i Ci

)
A

∥∥∥∥∥ .
Proof: See Appendix D. �
The main idea to design β is to minimize two asymptotic

upper bounds in Theorems 1 and 3 w.r.t. β under the con-
straints in (9) and (12), respectively. Since in 3) of Theo-
rem 1, inft0∈Γ ρt0 is not analytical w.r.t. β, we may choose
an upper bound of inft0∈Γ ρt0 , e.g., limt→∞ R(F (η0), t), as
the optimization loss function w.r.t. β. Note that the two op-
timization problems for the two cases in Theorems 1 and 3 are
nonconvex, where some heuristic optimization methods can be
utilized.

Algorithm resilience is on the relationship between the num-
ber of the attacked sensors and the estimation performance.
Recall that s is an upper bound of the attacked sensor number
given in Assumption 3, then we study the relationship between
s and an upper bound of the estimation error in the following
proposition.

Proposition 2: Under the same conditions as in Theorem 1,
for each sensor i ∈ V , the estimation error is asymptotically
upper bounded, i.e.,

lim sup
t→∞

‖ei(t)‖ ≤ f(s) (13)

where f(s) = q̄0
1−F (η0)

+
√
NβγL

1−‖A‖γL is a monotonically nonde-
creasing function w.r.t. s, in which q̄0 = bw +max{β, bw +
bv + ‖A‖p0} if ‖A‖ < 1, otherwise q̄0 = q0.

Proof: See Appendix E. �

C. Connection With Sparse Observability

The sparse observability in the following can be used in state
estimation under FDI sensor attacks.

Definition 1: The linear system defined by (1) is said to be s-
sparse observable if for every set Γ ⊆ {1, . . . , N} with |Γ| = s,
the pair (A,CΓ̄) is observable, whereCΓ̄ is the remaining matrix
by removingCj , j ∈ Γ from [CT

1 , C
T
2 , . . . , C

T
N ]T . Furthermore,

if the pair CT
Γ̄
CΓ̄ =

∑N
i=1,i/∈Γ C

T
i Ci � 0, the system is said to

be one-step s-sparse observable.
In centralized frameworks, if the observations of s sensors

are compromised, the system should be 2 s-sparse observable
to guarantee the effective estimation of system state [31]. The
direct relationship between (11) and the one-step s-sparse ob-
servability is given in the following.

Proposition 3 [17]: A necessary condition to guarantee λ0 >
s is that the system (1) is one-step 2 s-sparse observable. If the
observation vectors are orthogonal, one-step 2 s-sparse observ-
ability is also a sufficient condition to guarantee λ0 > s.

If the observations of any s sensors are compromised, based on
the results of Theorems 1 and 2 and Proposition 3, Algorithm 1
is able to to achieve effective estimation if the system (1) is
one-step 2 s-sparse observable.

IV. SECURED DISTRIBUTED FILTER WITH

ATTACK DETECTION

In this section, we modify Algorithm 1 by adding an attack
detection scheme, and then, analyze the properties of the revised
algorithm. In the sequel, we need the following assumption,
which is common in the literature [4]–[6], [8]–[12], [18], [24].

Assumption 4: The attacked sensor set is known to be time
invariant, i.e., A(t) ≡ A, such that |A| ≤ s.

Under Assumption 4, we denote Ac the complement of A in
the sensor set V , i.e., Ac

⋃A = V .

A. Detection-Based Distributed Filter

Denote Ii(t) the index set of detected attacked sensors known
to the sensor i at time t. Moreover, we let di(t) = |Ii(t)|. In
order to improve the estimation performance, we aim to isolate
the observations of sensors in the set Ii(t) in the following way:
If sensor i, i ∈ V , is detected to be under attack at a time T ∗,
i.e., i ∈ Ii(T ∗), the sensor i will no longer use its observations
for t ≥ T ∗. We define the following sequence {ρ̄t,i ∈ R}. For
each i ∈ V , t = 0, 1, . . . , let

ρ̄t+1,i = F̄ (ρ̄t,i, t)ρ̄t,i + q̄i(t), ρ̄0,i = η0 (14)

where

F̄ (ρ̄t,i, t) = ‖A‖
(
1− k∗(ρ̄t,i, t)

N
λ0

)

k∗(ρ̄t,i, t) = min

{
1,

β

‖A‖ (p(t) + ρ̄t,i) + bw + bv

}

q̄i(t) = q0 − di(t)β

N

and q0 is given in (8). Based on the sequence {ρ̄t,i ∈ R}, we
provide an attack detection condition in the following.

Detection Condition: Sensor i ∈ V is believed under attack if

|yi(t)− CiAx̂i(t− 1)| > ϕ̄i(t) (15)

where ϕ̄i(t) = ‖A‖(ρ̄t−1,i + p(t− 1)) + bw + bv , and ρ̄t−1,i is
given in (14).

Then, we propose a distributed saturation-based filter with
detection in Algorithm 2, which is modified from Algorithm 1 by
employing the detection condition and the observation isolation
operation.

Proposition 4: Consider Algorithm 2 under the same setting
as in Algorithm 1. Under the same conditions as in Theorem 1
and Assumption 4, the following results hold for every sensor i
and every time t ≥ 1.

1) The observation innovation of each attack-free sensor is
upper bounded, i.e.,

|yi(t)− CiAx̂i(t− 1)| ≤ ϕ̄i(t), i ∈ Ac. (16)

2) The sensors in set Ii(t) are under attack for sure, i.e.,
Ii(t) ⊆ A.

3) ϕ̄i(t) is monotonically decreasing w.r.t. the number of the
detected sensors (i.e., di(t− 1)).

Proof: We provide the proof idea as follows. To prove (16),
we just need to show ρ̄t−1,i ≥ ‖ẽ(t− 1)‖, where ẽ(t− 1) =

‖ 1
N

∑N
i=1 x̂i(t− 1)− x(t− 1)‖. This is done by referring to
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Algorithm 2: Distributed Saturation-Based Filter With
Detection.

1: Initial setting: (x̂i(0), Ii(0), α, β, L, s)
2: for t = 1, 2, . . . do
3: Update with detection: Let Ii(t) = Ii(t− 1)
4: if i ∈ Ii(t) then
5: x̃i(t) = Ax̂i(t− 1)
6: else if |Ii(t)| =: di(t) = s then
7: x̃i(t) = Ax̂i(t− 1) + CT

i (yi(t)− CiAx̂i(t− 1))
8: else if |yi(t)− CiAx̂i(t− 1)| > ϕ̄i(t), where ϕ̄i(t)

is in (15) then
9: x̃i(t) = Ax̂i(t− 1), let Ii(t) = Ii(t) ∪ {i}

10: else

11: ki(t) = min

{
1, β

|yi(t)−CiAx̂i(t−1)|

}
x̃i(t) =
Ax̂i(t− 1) + ki(t)C

T
i (yi(t)− CiAx̂i(t− 1))

12: end if
13: Estimate consensus:

x̂i,0(t) = x̃i(t), Ii,0(t) = Ii(t)
14: for l = 1, . . . , L do
15: Sensor i obtains {x̂j,l−1(t), Ij,l−1(t)} from sensor

j,
x̂i,l(t) = x̂i,l−1(t)− α

∑
j∈Ni

(x̂i,l−1(t)− x̂j,l−1(t))
Ii,l(t) =

⋃
j∈Ni

Ij,l−1(t)
⋃ Ii,l−1(t)

16: end for
17: Let x̂i(t) = x̂i,L(t), Ii(t) = Ii,L(t).
18: end for

(22)–(26) and by noting that the number of attacked but unde-
tected sensors is upper bounded by s− di(t− 1). The conclu-
sion 2) follows from 1). The conclusion 3) is satisfied, since
ρ̄t−1,i in (14) is monotonically decreasing w.r.t. di(t− 1). �

In our framework, an attack signal ai(t) is stealthy if the
compromised observation yi(t) violates detection condition
(15), i.e., a stealthy attack signal ai(t) is in set {ai(t) ∈
R| |ξi(t) + ai(t)| ≤ ϕ̄i(t)}, where ξi(t) is the attack-free ob-
servation innovation, i.e., ξi(t) = CiA(x(t− 1)− x̂(t− 1)) +
Ciw(t− 1) + v(t). Since this article considers bounded noise
processes, a single large attack signal (larger than ϕ̄i(t)) will
expose the attacked sensor for sure. In other words, if there is
a time t such that ai(t) ∈ {ai(t) ∈ R| |ξi(t) + ai(t)| > ϕ̄i(t)},
this attacked sensor i will be detected. Thus, this detection
scheme differs from the methods based on constructing statisti-
cal variables for hypothesis tests on the innovation distributions
(e.g., [32]). In our framework, the knowledge of the attacker on
the designed detector especially on threshold ϕ̄i(t) will largely
influence the detected sensor number.

B. Error Bounds and Convergence

Denote d(t) the maximal number of detected sensors at time
t, i.e., d(t) = maxi∈V{di(t)}, with d(0) = 0. Given any T ≥ 0
∀t ≥ T , we construct the following sequence {ρ̄t ∈ R|ρ̄t, t ≥
T}:

ρ̄t+1 = F (ρ̄t)ρ̄t + q̄0, ρ̄T = ρT (17)

where q̄0 = q0 − d(T )β
N , and ρT andF (·) are given in (7) and (8),

respectively. Then, the following theorem builds the connection
between d(T ) and an upper bound of the estimation error of
Algorithm 2.

Theorem 4: Consider Algorithm 2 under the same setting as
in Algorithm 1. Under the same conditions as in Theorem 1
and Assumption 4, the estimation error is asymptotically upper
bounded, i.e.,

lim sup
t→∞

‖ei(t)‖ ≤ W (T )∀T ≥ 0

where

W (T ) = inf
t0∈Γ

ρt0 +

√
NβγL

1− ‖A‖ γL
− d(T )β

N(1− F∗)

and F∗ = inft0∈Γ̄ F (ρ̄t0) ∈ [0, 1), Γ̄ = {t ≥ T |ρ̄t ≤ ρ̄t−1}.
Proof: See Appendix F. �
Algorithm 2 ensures that detected sensor number d(T ) is

nondecreasing asT increases. As more sensors are detected (i.e.,
d(T ) is increasing), we get a tighter bound in Theorem 4. Thus,
the bound in Theorem 4 is equal to or smaller than the bound
in 3) of Theorem 1. In practice, the system defender can use
d(T ) at different T to generate a sequence of nonincreasing
bounds, which can be used to estimate the asymptotic error
bound. In the following theorem, we provide the conditions such
that the state estimate of Algorithm 2 converges to the system
state asymptotically.

Theorem 5 (Convergence): Consider Algorithm 2 under the
same setting as in Algorithm 1. Under the same conditions as in
Theorem 1, Assumption 4, and the following conditions:

1) the system is noise-free, i.e., w(t) ≡ 0 and vi(t) ≡ 0 for
any i ∈ V;

2) the attacker compromises s sensors and they are detected
in finite time, i.e., there exists a finite time t̂0 and an i
such that di(t̂0) = s;

3) matrix G is Schur stable;
then the estimate in Algorithm 2 will asymptotically converge

to the state, i.e.,

lim
t→∞‖x̂i(t)− x(t)‖ = 0, i ∈ V

where

G =

(
2 ‖A‖ γL ‖A‖ γL

√
N − s

τ0 �

)

τ0 = max
M⊂V,|M|=N−s

∥∥∥∥ 1

N
(1T

N ⊗ In)C̄
T K̄MC̄(IN ⊗A)

∥∥∥∥
K̄M = diag{I1∈M, I2∈M, . . . , IN∈M} ∈ RN×N

where � is given in Theorem 3, and C̄ = diag{C1, . . . , CN}.
Proof: See Appendix G. �
Condition 2) can be satisfied when the attacker compromises

s sensors without using persistently stealthy attack signals. In
this case, the detector is able to identify all attacked sensors in
finite time and remove their influence. Otherwise, the attacker
can have influence to the estimation such that the estimation error
is not tending to zero, but the estimation error is still bounded as
we state in Theorems 1 and 4. It is worth noting that condition 2)
can be monitored by each sensor to know whether the number
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Fig. 3. Sensor network with different sets of attacked sensors over four time intervals.

Fig. 4. Estimation performance of Algorithm 1 for the sensor networks in Fig. 3.

of detected sensors reaches s. Condition 3) can be fulfilled if
the communication rate L is relatively large, the number of the
attack-free sensors (i.e., N − s) is relatively large, or the norm
of the transition matrix (i.e., ‖A‖) is small.

V. SIMULATION RESULTS

In this section, we provide numerical simulations to show the
effectiveness of the developed results.

Consider a second-order system monitored by a sensor net-

work with 30 nodes, where A =

(
1 0.1
0 1

)
, Ci = (0, 1) for

sensor i ∈ {2, 3, 5, 9, 12, 16, 17, 21, 22, 25, 26, 29}, and Ci =
(1, 0) for the rest of the sensors. All observation noise vi(t)
and process noise wj(t) follow the uniform distribution in
[0,0.01], where (w1(t), w2(t))

T =: w(t). The initial state is
x(0) = (25, 25)T . Each element of x̂(0) follows the uniform
distribution in [0, 25]. The bounds in Assumption 1 are assumed
to be bv = 0.01, bw = 0.02, and η0 = 50. We consider the time
interval t = 0, 1, . . . , 500, and suppose that the attacker inserts
signal ai(t) = 2(Cix(t) + vi(t)) if the sensor i is under attack.
We conduct a Monte Carlo experiment with 100 runs. Define
the average estimation error of the sensor i and the maximum
error over the whole network by

ηi(t) =
1

100

100∑
j=1

∥∥∥eji (t)∥∥∥

ηmax(t) =
1

100

100∑
j=1

max
i∈{1,...,30}

∥∥∥eji (t)∥∥∥

respectively, where eji (t) is the state estimation error of the
sensor i at time t in the jth run.

A. Secured Distributed Estimation

In this subsection, we verify the performance of Algorithm 1
by considering the case that the attacked sensor set is time
varying. Assume that the distributed sensor networks under
sensor attacks are switched in the way of Fig. 3 in each run,
where a node in red means the node is under attack.

By selecting β = 3 and L = 3 for Algorithm 1, estimation
errors ηi(t), i = 3, 5, 10, 26 are provided in Fig. 4(a). From
this figure, we see that there are three time instants, i.e., t =
125 250,375, around which the error dynamics of the plotted
sensors fluctuate. The reason why the error dynamics of one
sensor increase lies in two aspects. First, after a certain time
instant, this sensor is under attack. If so, its observations will be
compromised and the estimation performance of this sensor will
be degraded. For example, in Fig. 4 (a), the errors of sensor 5
after time t = 375, sensor 10 after time t = 125, and sensor 26
after time t = 250 all increase for this reason. The second aspect
is that after a certain time instant, the neighbor of one senor is
under attack. For this sensor, its error will also increase due to
the consensus influence. For example, in Fig. 4(a), the error of
sensor 3 increases after time t = 125, since a neighbor of sensor
3, i.e., sensor 10, is under attack after time t = 125. The reason
that the estimation error of sensor 26 is large in the time interval
250–375 in Fig. 4(a) is because of the following two reasons.

1) After t = 250, sensor 26 is persistently under attack until
t = 375.

2) The communication rate L = 1 is small.
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Fig. 5. Estimation performance of Algorithm 1 for the sensor network in Fig. 1.

Fig. 6. Resilience of Algorithm 1.

Since the state estimate is affected by the compromised sensor
observations, the estimation error will inevitably increase if the
information of neighbors is not available in time. However, Al-
gorithm 1 provides a way to improve the estimation performance
by increasing the communication rate L. In Fig. 4(b), the rela-
tionship between the estimation error η(t) and communication
rate L is studied. The result shows that with the increase of
the communication rate L, estimation error η(t) decreases. The
connection between the estimation error η(t) and parameter β
is studied in Fig. 4(c) under L = 4. The figure shows that the
estimation error with β = 5 is the smallest within the errors by,
respectively, settingβ = 0.1, 5, 2000. The result conforms to the
discussion on the design of β, which should not be too small or
too large in the algorithm setting.

To show the resilience of Algorithm 1, for the case that the
attacked sensor set is time invariant, under L = 4 and β = 5,
we study the relationship between |A| and η(t) in Fig. 6 by
randomly choosing a subset of the whole sensors (i.e., A). The
result of this figure shows that with the increase of |A|, the
estimation error η(t) becomes larger. Also, when |A| is equal to
or larger than half sensors, the estimation error is unstable.

B. Secured Distributed Estimation Under Detection

In this subsection, we consider the introduction case in Fig. 1
where the attacked sensor set is time invariant, withA(t) = A =
{3, 12, 13, 15, 23, 28}, under which the estimation performance
of Algorithms 1 and 2 is studied.

Fig. 7. Estimation error comparison of algorithms.

By selecting β = 3 and L = 3 for Algorithm 1, estimation
errors ηi(t), i = 3, 5, 10, 26 are provided in Fig. 5(a). Compared
to the result in Fig. 4(a), the estimation errors of these sensors
in Fig. 5(a) do no fluctuate. Since the attacked sensor set is time
invariant, the estimation errors become steady after transience
as shown in the figure. The relationships between parameters L
and β and estimation error η(t) are shown in Fig. 5(b) and (c).
Note that in Fig. 5(b), when L = 0, the estimation error η(t) is
divergent, since for the attacked sensors, the local observability
is violated. Fig. 5(b) also shows that with the increase of the
communication rate L, the estimation error of Algorithm 1 is
decreasing. In Fig. 5(c), parameter β = 5 can lead to the stable
estimation error, while in Fig. 4(c), the estimation error for
parameter β = 5 fluctuates due to the switching of the attacked
sensor set.

In order to compare with existing algorithms under the
situation in Fig. 1, we define the estimation errors for
the attacked sensor set and attack-free sensor set, re-
spectively: ηA(t) = 1

100

∑100
j=1 maxi∈A ‖eji (t)‖, and ηAc(t) =

1
100

∑100
j=1 maxi∈Ac ‖eji (t)‖. In Fig. 7, the estimation perfor-

mance of Algorithms 1 and 2 with L = 5, the local-filtering-
based resilient estimation (LFRE) [11] and the scalar-gain
consensus filter1 (SGCF) is compared. The figure shows that
Algorithms 1 and 2 provide estimates with stable estimation
errors for both attacked sensors and attack-free sensors, but the

1The filter has the same form as Algorithm 1 but ki(t) = 1 for t ≥ 1. It
follows the idea in [33], which did not consider the attack scenario.
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estimation errors of LFRE and SGCF are divergent. Compared
to Algorithm 1, Algorithm 2 provides smaller estimation errors
by successfully detecting all the attacked sensors.

VI. CONCLUSION AND FUTURE WORK

This article studied the distributed filtering problem for LTI
systems with bounded noise under false-data injection attacks in
sensors networks, where a malicious attacker can compromise
a time-varying and unknown subset of sensors and manipulate
their observations arbitrarily. First, we proposed a distributed
saturation-based filter. Then, we provided a sufficient condition
to guarantee boundedness of the estimation error. By confining
the attacked sensor set to be time invariant, we then modified
the filter by adding an attack detection scheme. Moreover, for
the noise-free case, we proved that the state estimate of each
sensor asymptotically converges to the system state under certain
conditions.

There are some future directions. Since this article employs
a two-time-scale scheme in the filter design, it is interesting
to develop algorithms that use one communication at each time.
Other directions include considering more general systems (e.g.,
nonlinear systems) and more complex sensor networks (e.g.,
random or communication-delayed networks).

APPENDIX A

A. Proof of Lemma 1

First, we prove 2). Due to t0 ∈ Γ, we have

F (xt0−1)xt0−1 + q0 = xt0 ≤ xt0−1. (18)

For t = t0 + 1, by (18) and the condition that F (·) ∈ [0, 1]
is a monotonically nondecreasing function, we have xt0+1 =
F (xt0)xt0 + q0 ≤ F (xt0−1)xt0−1 + q0 = xt0 . By recursively
applying the aforementioned procedure, we have supt≥t0 xt ≤
xt0 .

Next, we prove 1), which trivially holds for t = t0. Consider
the case of t > t0 in the following. If q0 �= 0, it follows from (18)
that F (xt0−1) ∈ [0, 1). Due to F (xt0) ≤ F (xt0−1), we have
F (xt0) ∈ [0, 1). By 2) and the condition that F (·) ∈ [0, 1] is
a monotonically nondecreasing function, we have F (xt−1) ≤
F (xt0). Then, xt ≤ F (xt0)xt−1 + q0 with F (xt0) ∈ [0, 1).
Thus, 1) is satisfied by recursively applying the inequality for
t− t0 times.

Finally, we prove 3). By 1) and the definition of
lim sup, we have lim supt→∞ xt = inft∈Z+ supm≥t xm ≤
inft∈Γ supm≥t xm ≤ inft∈Γ xt.

B. Proof of Theorem 1

Let ei(t) = ẽ(t) + ēi(t), where ēi(t) := x̂i(t)− x̂avg, and
ẽ(t) = x̂avg − x(t), and x̂avg(t) :=

1
N

∑N
i=1 x̂i(t). Besides, we

denote

X(t) = 1N ⊗ x(t) ∈ RNn

Ē(t) =
(
ēT1 (t), . . . , ē

T
N (t)

)T ∈ RNn

Y (t) =
(
yT1 (t), . . . , y

T
N (t)

)T ∈ RN

V (t) =
(
vT1 (t), . . . , v

T
N (t)

)T ∈ RN

X̂(t) =
(
x̂T
1 (t), . . . , x̂

T
N (t)

)T ∈ RNn

C̄ = diag{C1, . . . , CN} ∈ RN×Nn

K̄(t) = diag{k1(t), . . . , kN (t)} ∈ RN×N

PNn =
1

N
(1N ⊗ In)(1N ⊗ In)

T ∈ RNn×Nn. (19)

The idea for the proof is that we first show ‖ēi(t)‖ is upper
bounded by p(t), and then, we prove ‖ẽ(t)‖ is upper bounded
by the quantities in 1)–3) of the theorem. The following lemma
with a similar proof as in [27] ensures ‖ēi(t)‖ ≤ p(t).

Lemma 2: Consider Algorithm 1, and let Assumptions 1–2
hold. If α = 2

λ2(L)+λmax(L) , and L > ln ‖A‖
lnγ−1 , then for t ≥ 0∥∥Ē(t)

∥∥ ≤ p(t) (20)

where p(t) and Ē(t) are defined in (10) and (19), respectively.
Proof of Theorem 1: It follows from (7) and (9) that ρ1 ≤

ρ0 = η0, which means that 1 ∈ Γ = {t ≥ 1|ρt ≤ ρt−1}. In the
following, we prove 1)–3).

Under Assumption 3, there are at least N − s attack-free
sensors at each time. SupposeJ (t) is the set of theseN − s sen-
sors, i.e., J (t) ⊆ Ac(t) with |J (t)| = N − s. Denote J c(t) =
V \ J (t), which satisfies |J c(t)| = s due to |V| = N. By Al-
gorithm 1 and the notations in (19), we have the dynamics
of x̂avg(t) in (21). Due to (1T

N ⊗ In)PNn = (1T
N ⊗ In)(INn −

α(L ⊗ In))
L = (1T

N ⊗ In), we have

ẽ(t) = Mtẽ(t− 1)− m̄t + m̃t (22)

where Mt, m̃t, and m̄t are given in (21) shown at the bottom
of the next page. Note that m̃t can be rewritten in the following
way:

m̃t =
1

N

∑
i∈J c(t)

CT
i ki(t)(yi(t)− CiAx̂i(t− 1)).

Due to ki(t) = min{1, β
|yi(t)−CiAx̂i(t−1)| }, it holds that

|ki(t)(yi(t)− CiAx̂i(t− 1))| ≤ β. Since we assume
‖Ci‖ = 1 after the system model, it holds that ‖m̃t‖ ≤
1
N

∑
i∈J c(t) ‖CT

i ‖β ≤ |J c(t)| βN . Due to |J c(t)| = s, we have

‖m̃t‖ ≤ s

N
β. (23)

Regarding m̄t, by Assumption 3 and ki(t) ≤ 1, we have

‖m̄t‖ ≤ ‖w(t− 1)‖+ |J (t)|
N

(‖A‖ ∥∥Ē(t− 1)
∥∥

+ ‖w(t− 1)‖+ bv)

≤ N − s

N
(bw + bv + ‖A‖ p0) + bw (24)

where the second inequality is obtained by Lemma 2 and
supt≥0 p(t) ≤ p0, wherep0 is defined in (8). Based on (22)–(24),
we construct the sequence {ρt} in (7). In the following, we prove
that ‖ẽ(t)‖ ≤ ρt.

At the initial time, i.e., t = 0, by Assumption 1, we have
‖ẽ(0)‖ = ‖x̂avg(0)− x(0)‖ ≤ 1

N

∑N
i=1 ‖x̂i(0)− x(0)‖ ≤ η0.

Due to ρ0 = η0, ‖ẽ(t)‖ ≤ ρt for t = 0. Suppose at time t− 1,
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‖ẽ(t− 1)‖ ≤ ρt−1. At time t, for i ∈ J (t), we consider

|yi(t)− CiAx̂i(t− 1)|
≤ ‖A‖ ‖ei(t− 1)‖+ bw + bv

≤ ‖A‖ (‖ēi(t− 1)‖+ ‖ẽ(t− 1)‖) + bw + bv

≤ ‖A‖ (p0 + ρt−1) + bw + bv (25)

where the last inequality of (25) is obtained by noting that
supt≥0 ‖ēi(t)‖ ≤ supt≥0 p(t) ≤ p0 and p0 is defined in (8).
Recall the form of ki(t), by (25), for i ∈ J (t), we have ki(t) ≥
k∗(ρt−1) := min

{
1, β

‖A‖(p0+ρt−1)+bw+bv

}
> 0. Then

‖Mt‖ ≤ ‖A‖
∥∥∥∥∥∥
⎛
⎝In − k∗(ρt−1)

N

∑
i∈J (t)

CT
i Ci

⎞
⎠
∥∥∥∥∥∥

≤ ‖A‖
(
1− k∗(ρt−1)

N
λ0

)
. (26)

Taking norm on both sides of (22) and considering (7), (23),
(24), and (26), we have ‖ẽ(t)‖ ≤ ρt.

Since the definedF (ρt) in (8) is monotonically nondecreasing
function, conclusions 1)–3) of this theorem are obtained by
applying the results in Lemma 1, ‖ei(t)‖ ≤ ‖ẽ(t)‖+ ‖ēi(t)‖,
and (20).

C. Proof of Theorem 2

1) Sufficiency:
Case 1: For the case s > 0, we consider ‖A‖ ∈ [1, 1 +

ε) with ε = λ0−s
4(N−λ0)

, which is positive due to λ0 > s. If L is
sufficiently large, p0 > 0 in (8) will be sufficiently small. Thus,
given noise bounds bw and bv , considering N ≥ s+ λ0, it is
feasible to choose sufficiently large β, η0 and L > ln ‖A‖

lnγ−1 , such
that

β ≥ (1 + ε)(p0 + η0) + bw + bv

β ≤ min

{
(1 + ε+

λ0 − s

4 s
)η0,

N

s
(η0 − Q0

ε1
)

} (27)

where ε1 = ε
1+2ε > 0, and

Q0 :=
N − s

N
(bw + bv + ‖A‖ p0) + bw. (28)

By the first inequality and second inequality of (27), we
have k∗0 = min{1, β

‖A‖(p0+η0)+bw+bv
} = 1 and sβ

Nη0
< 1, re-

spectively. Then

m0 : =

(
1− sβ

Nη0

)(
1− k∗0λ0

N

)−1

=

(
N

s
− β

η0

)(
N − λ0

s

)−1

= 1 +

(
λ0

s
− β

η0

)
s

N − λ0

(a)

≥ 1 +

(
λ0

s
− 1− λ0 − s

4 s
− ε

)
s

N − λ0

= 1 +
3(λ0 − s)

4(N − λ0)
− εs

N − λ0

(b)

≥ 1 + 2ε (29)

where (a) is obtained by applying the second inequality of (27),
and (b) is derived by using λ0 − s = 4ε(N − λ0) and s ≤ N −
λ0. From the second inequality of (27), we obtain

ϑ0 := 1− Q0

η0

(
1− sβ

Nη0

)−1

≥ 1− ε1 =
1 + ε

1 + 2ε
. (30)

By (29) and (30), we have ϑ0m0 ≥ 1 + ε ≥ ‖A‖. It is easy to
check that ϑ0m0 ≥ ‖A‖ is equivalent equation (9). Thus, the
sufficiency is satisfied in this case with the above parameters,
i.e., ε = λ0−s

4(N−λ0)
, and β, η0 and L > ln ‖A‖

lnγ−1 satisfying (27).
Case 2: For the attack-free case, i.e., s = 0, we consider

‖A‖ ∈ [1, 1 + ε) with ε = λ0

4N−λ0
> 0. Similar to case 1, it is

feasible to choose sufficiently large β, η0 and L > ln ‖A‖
lnγ−1 , such

that
2β ≥ (1 + ε)(p0 + η0) + bw + bv

q0
η0

≤ λ0

4N
(1 + ε).

(31)

From the first inequality of (31), we see k∗0 =
min{1, β

‖A‖(p0+η0)+bw+bv
} ≥ 1

2 . With k∗0 ≥ 1
2 , it is easy

to check that (9) is satisfied if 1
‖A‖

η0−q0
η0

≥ 1− λ0

2N . This
inequality is satisfied due to ‖A‖ ∈ [1, 1 + ε) and the second
inequality of (31). Thus, the sufficiency is satisfied in this case
with ε = λ0

4N−λ0
, and β, η0 and L > ln ‖A‖

lnγ−1 satisfying (31).

x̂avg(t) = Ax̂avg(t− 1) +
1

N
(1T

N ⊗ In)PNn (INn − α(L ⊗ In))
L C̄T K̄(t)h(t)

K̄J (t) = diag{k1(t)I1∈J (t), . . . , kN (t)IN∈J (t)}, K̄J c(t) = diag{k1(t)I1∈J c(t), . . . , kN (t)IN∈J c(t)}

m̄t = w(t− 1) +
1

N
(1T

N ⊗ In)C̄
T K̄J (t)(t)

(
C̄((IN ⊗A)Ē(t− 1)− IN ⊗ w(t− 1))− V (t)

)
h(t) = Y (t)− C̄(IN ⊗A)X̂(t− 1), Mt = (In − 1

N

∑
i∈J (t)

ki(t)C
T
i Ci)A, m̃t =

1

N
(1T

N ⊗ In)C̄
T K̄J c(t)(t)h(t)

(21)
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Note that forη0 in the aforementioned two cases, we are able to
make it bigger such that the initial error condition in Assumption
1 holds.

2) Necessity: We use the contradiction method. If λ0 > s
does not hold, i.e., λ0 ≤ s. Equation (9) is equivalent to

η0 − q0
η0

(
1− k∗0λ0

N

)−1

≥ ‖A‖ ≥ 1. (32)

If sβ
Nη0

≥ 1, from the form of q0 in (8), we have η0 < q0. Then,
the left-hand side of (32) is negative, which contracts with the
right-hand side of (32). Thus, sβ

Nη0
< 1.With the same notations

as case 1 of the sufficiency proof, (32) is equivalent to ϑ0m0 ≥
‖A‖ ≥ 1. Due to sβ

Nη0
< 1, we have ϑ0 < 1. Then, m0 has to be

larger than 1, which leads to sβ
Nη0

<
k∗
0λ0

N . It is equivalent to s
λ0

<
k∗
0η0

β . Due to s
λ0

≥ 1, we have k∗
0η0

β > 1, which however cannot

be satisfied due to k∗0 = min{1, β
‖A‖(p0+η0)+bw+bv

}. Thus, the
conjecture λ0 ≤ s is not right, which means λ0 > s.

D. Proof of Theorem 3

First, we prove 1). For i ∈ Ac(t), by 2) of Theorem 1, we
have supt≥t0 ‖ei(t)‖ ≤ ρt0 + supt≥t0 p(t), thus

sup
t≥t0+1

|yi(t)− CiAx̂i(t− 1)|

≤ ‖A‖ sup
t≥t0+1

‖ei(t− 1)‖+ bw + bv

≤ ‖A‖ (ρt0 + sup
t≥t0

p(t)) + bw + bv.

If (12) holds, by Algorithm 1, all the observations of the attack-
free sensors will eventually not be saturated, i.e., ki(t) = 1∀i ∈
Ac(t), t ≥ t0 + 1.

Next, we prove 2). By 1) of this theorem, for i ∈ Ac(t), we
have ki(t) = 1 ∀t > t0, then ‖Mt‖ ≤ �, where Mt is defined
in (21). According to the error dynamics in (22) and inequalities
(23)–(24), the upper bound of ‖ẽ(t)‖ is obtained by applying
Lemma 1. It follows from (26) that the bound is tighter than the
one in 1) of Theorem 1. Due to ‖ei(t)‖ ≤ ‖ẽ(t)‖+ ‖ēi(t)‖ and
(20), the upper bound of ‖ei(t)‖ is obtained.

Finally, we prove 3). By the real-time upper bound of the
estimation error, it is straightforward to have its limit superior.
Next, we prove the limit superior bound is no larger than the
one in 3) of Theorem 1, i.e., q0

1−� ≤ inft0∈Γ ρt0 . Employing the
properties inf x+ y ≥ inf x+ inf y and inf xy ≥ inf x inf y for
x, y > 0 on F (ρt0)ρt0 + q0 = ρt0+1 ≤ ρt0 yields

inf
t0∈Γ

ρt0 ≥ q0
1− inf

t0∈Γ
F (ρt0)

(a)

≥ q0

1− ‖A‖ (1− 1
N λ0

)
≥ q0

1−�

where (a) holds by considering the expression of F (·) in (8).

E. Proof of Proposition 2

First, we consider the case of ‖A‖ < 1. By applying 1) of
Theorem 1 and choosing t0 = 1 and q̄0 = bw +max{β, bw +
bv + ‖A‖p0}, we have (13). From (6) and (8), we see thatF (η0)
is a monotonically non-decreasing function w.r.t. s. Thus, f(s)
is a monotonically nondecreasing function w.r.t. s.

Second, we consider the case of ‖A‖ ≥ 1. In the case, we
have (13), by applying 1) of Theorem 1, and by choosing t0 = 1
and q̄0 = q0. Next, we show the f(s) is a monotonically nonde-
creasing function w.r.t. s. As discussed previously that F (η0) is
a monotonically nondecreasing function w.r.t. s, we just need to
prove that q0 is a monotonically nondecreasing function w.r.t.
s. This is obviously ensured if β > bw + bv + ‖A‖p0. Next, we
prove this point by contradiction. In other words, we assume
β ≤ bw + bv + ‖A‖p0. Note that (9) is equivalent to

1− k∗(η0)
λ0

N
≤ 1

‖A‖
(
1− q0

η0

)
. (33)

Due to β ≤ bw + bv + ‖A‖p0, we have q0 ≥ β + bw. Then, a
necessary to ensure (33) is

1− k∗(η0)
λ0

N
≤ 1

‖A‖
(
1− β + bw

η0

)
. (34)

It follows from (8) that k∗(η0) = β
‖A‖(p0+η0)+bw+bv

. By substi-
tuting k∗(η0) into (34), we obtain

β

‖A‖ (p0 + η0) + bw + bv

λ0

N
≥ β + bw + (‖A‖ − 1)η0

‖A‖ η0
which cannot be satisfied due to λ0 ≤ N and 1 ≤ ‖A‖. There-
fore, the assumption β ≤ bw + bv + ‖A‖p0 does not hold.

F. Proof of Theorem 4

The proof is similar to the proofs of Theorems 1–3. In the
following, we just show the main points of this proof.

Given a time T > 0 and the maximal number of the detected
sensors at time t, i.e., d(T ), similar to the proof of Theorem 1
∀t ≥ T , we construct the following sequence {ρ̄t ∈ R|ρ̄t} in
(17). It is straightforward to prove that ∀t ≥ T , ‖ẽ(t)‖ ≤ ρ̄t,
where ẽ(t) = 1

N

∑N
i=1 x̂i(t)− x(t). Next, we study the rela-

tionship between ρ̄t in (17) and ρt in (7). Due to ρ̄T = ρT , we
have ρ̄T+1 = ρT+1 − d(T )β

N . Then, for t = T + 2, we have

ρ̄T+2 = F (ρ̄T+1)ρT+1 + q0 − (F (ρ̄T+1) + 1)
d(T )β

N

≤ ρT+2 − (F∗ + 1)
d(T )β

N

where F∗ = inft0∈Γ̄ F (ρ̄t0) ∈ [0, 1), and Γ̄ = {t ≥ T |ρ̄t ≤
ρ̄t−1}. By recursively applying the aforementioned operation,
for t ≥ T , we obtain

ρ̄t ≤ ρt − d(T )β

N

(
1− F t−T

∗
1− F∗

)
.

Then, by Lemma 1 and Theorem 1, we have
lim supt→∞ ‖ẽ(t)‖ ≤ inft0∈Γ ρt0 − d(T )β

N(1−F∗)
. Thus, the

first conclusion holds by applying Lemma 1, ‖ei(t)‖ ≤
‖ẽ(t)‖+ ‖ēi(t)‖, and (20).
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G. Proof of Theorem 5

Under condition 1), owing to the connectivity of the network
G, there is a common time t̃ ≥ t̂0, such that dj(t̃) = s ∀j ∈ V .
For t ≥ t̃, all the observations of the attacked sensors are dis-
carded. Then, we have the compact form of recursive state
estimates of Algorithm 2 in the following:

X̂(t) = (INn − α(L ⊗ In))
L

[
(IN ⊗A)X̂(t− 1)

+ C̄T K̄Ac(Y (t)− C̄(IN ⊗A)X̂(t− 1))

]
. (35)

Let Ē(t) = X̂(t)− 1N ⊗ x̂avg(t), i.e., Ē(t) =
[ēT1 (t), . . . , ē

T
N (t)]T . By referring to [27], we have∥∥Ē(t+ 1)

∥∥
≤ ‖(IN ⊗A)‖

∥∥∥(INn − α(L ⊗ In)− PNn)
L Ē(t)

∥∥∥
+
∥∥(INn − PNn) (INn − α(L ⊗ In))

L

C̄T K̄Ac(Y (t)− C̄(IN ⊗A)X̂(t− 1))
∥∥

≤ 2 ‖A‖ γL
∥∥Ē(t)

∥∥+ ‖A‖ γL
√
N − s ‖ẽ(t)‖ . (36)

Similar to (22), for i ∈ Ac, t ≥ t̃, ki(t) = 1, we have ẽ(t+ 1) =
M21ẽ(t)−M22Ē(t), where M21 = (In − 1

N

∑
i∈Ac CT

i Ci)A
and M22 = 1

N (1T
N ⊗ In)C̄

T K̄AcC̄(IN ⊗A). Then, it holds
that

‖ẽ(t+ 1)‖ ≤ τ0
∥∥Ē(t)

∥∥+� ‖ẽ(t)‖ (37)

where � is given in Theorem 3. By (36) and (37), if the matrix

(
2‖A‖γL ‖A‖γL

√
N − s

τ0 �
) is Schur stable, ‖ẽ(t)‖ and ‖Ē(t)‖

go to zero asymptotically. Thus, ‖ei(t)‖ is convergent to zero as
time goes to infinity.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for their
insightful comments and suggestions.

REFERENCES

[1] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano,
“Consensus-based linear and nonlinear filtering,” IEEE Trans. Autom.
Control, vol. 60, no. 5, pp. 1410–1415, May 2015.

[2] Q. Liu, Z. Wang, X. He, and D. Zhou, “Event-based distributed filtering
with stochastic measurement fading,” IEEE Trans. Ind. Inform., vol. 11,
no. 6, pp. 1643–1652, Dec. 2015.

[3] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identification
in cyber-physical systems,” IEEE Trans. Autom. Control, vol. 58, no. 11,
pp. 2715–2729, Nov. 2013.

[4] X. Ren, Y. Mo, J. Chen, and K. H. Johansson, “Secure state estimation with
sensors: A probabilistic approach,” IEEE Trans. Autom. Control, vol. 65,
no. 9, pp. 3742–3757, Sep. 2020.

[5] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for
cyber-physical systems under adversarial attacks,” IEEE Trans. Autom.
Control, vol. 59, no. 6, pp. 1454–1467, Jun. 2014.

[6] M. Pajic, I. Lee, and G. J. Pappas, “Attack-resilient state estimation
for noisy dynamical systems,” IEEE Control Netw. Syst., vol. 4, no. 1,
pp. 82–92, Mar. 2017.

[7] M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee,
“Design and implementation of attack-resilient cyberphysical systems:
With a focus on attack-resilient state estimators,” IEEE Control Syst. Mag.,
vol. 37, no. 2, pp. 66–81, Apr. 2017.

[8] Y. Shoukry, P. Nuzzo, A. Puggelli, A. L. Sangiovanni-Vincentelli, S.
A. Seshia, and P. Tabuada, “Secure state estimation for cyber-physical
systems under sensor attacks: A satisfiability modulo theory approach,”
IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 4917–4932, Oct. 2017.

[9] Y. Shoukry et al., “SMT-based observer design for cyber-physical systems
under sensor attacks,” ACM Trans. Cyber-Phys. Syst., vol. 2, no. 1, pp.
1–27, 2018.

[10] D. Han, Y. Mo, and L. Xie, “Convex optimization based state estimation
against sparse integrity attacks,” IEEE Trans. Autom. Control, vol. 64,
no. 6, pp. 2383–2395, Jun. 2019.

[11] A. Mitra and S. Sundaram, “ Distributed observers for systems,” Automat-
ica, vol. 108, 2019, Art. no. 108487.

[12] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram, “Resilient distributed
state estimation with mobile agents: Overcoming adversaries, communica-
tion losses, and intermittent measurements,” Auton. Robots, vol. 43, no. 3,
pp. 743–768, 2019.

[13] L. Su and S. Shahrampour, “Finite-time guarantees for Byzantine-resilient
distributed state estimation with noisy measurements,” IEEE Trans. Autom.
Control, vol. 65, no. 9, pp. 3758–3771, Sep. 2020.

[14] P. Blanchard, R. Guerraoui, J. Stainer, and E. M. EI Mhamdi, “Machine
learning with adversaries: Tolerant gradient descent,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 119–129.

[15] M. Deghat, V. Ugrinovskii, I. Shames, and C. Langbort, “Detection and
mitigation of biasing attacks on distributed estimation networks,” Auto-
matica, vol. 99, pp. 369–381, 2019.

[16] Y. Chen, S. Kar, and J. M. F. Moura, “Resilient distributed estimation: Sen-
sor attacks,” IEEE Trans. Autom. Control, vol. 64, no. 9, pp. 3772–3779,
Sep. 2019.

[17] Y. Chen, S. Kar, and J. M. Moura, “Resilient distributed parameter esti-
mation with heterogeneous data,” IEEE Trans. Signal Process., vol. 67,
no. 19, pp. 4918–4933, Oct. 2019.

[18] L. An and G.-H. Yang, “Distributed secure state estimation for cyber-
physical systems under sensor attacks,” Automatica, vol. 107, pp. 526–538,
Jan. 2019.

[19] M. S. Chong, M. Wakaiki, and J. P. Hespanha, “Observability of linear
systems under adversarial attacks,” in Proc. IEEE Amer. Control Conf.,
2015, pp. 2439–2444.

[20] B. Chen, D. W. Ho, W.-A. Zhang, and L. Yu, “Distributed dimensionality
reduction fusion estimation for cyber-physical systems under attacks,”
IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 2, pp. 455–468,
Feb. 2019.

[21] F. Boem, A. J. Gallo, G. Ferrari-Trecate, and T. Parisini, “A dis-
tributed attack detection method for multi-agent systems governed by
consensus-based control,” in Proc. IEEE Conf. Decis. Control, 2017,
pp. 5961–5966.

[22] A. J. Gallo, M. S. Turan, F. Boem, T. Parisini, and G. Ferrari-
Trecate, “A distributed cyber-attack detection scheme with applica-
tion to microgrids,” IEEE Trans. Autom. Control, vol. 65, no. 9,
pp. 3800–3815, Sep. 2020.

[23] N. Forti, G. Battistelli, L. Chisci, S. Li, B. Wang, and B. Sinop-
oli, “Distributed joint attack detection and secure state estimation,”
IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 1, pp. 96–110,
Mar. 2018.

[24] Y. Nakahira and Y. Mo, “Attack-resilient H2, H∞, and H1 state es-
timator,” IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4353–4360,
Dec. 2018.

[25] J. G. Lee, J. Kim, and H. Shim, “Fully distributed resilient state estimation
based on distributed median solver,” IEEE Trans. Autom. Control, vol. 65,
no. 9, pp. 3935–3942, Sep. 2020.

[26] X. He, X. Ren, H. Sandberg, and K. H. Johansson, “Secure distributed
filtering for unstable dynamics under compromised observations,” in Proc.
IEEE Conf. Decis. Control, 2019, pp. 5344–5349.

[27] X. He, X. Ren, H. Sandberg, and K. H. Johansson, “Design of secure
filters under attacked measurements: A saturation method,” 2020. [Online].
Available: https://www.researchgate.net/publication/340579534.

[28] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ, USA: Princeton Univ. Press, 2010.

[29] A. Mitra and S. Sundaram, “Secure distributed state estimation of an
system over time-varying networks and analog erasure channels,” in Proc.
IEEE Amer. Control Conf., 2018, pp. 6578–6583.

[30] C. Zhao, J. He, and J. Chen, “Resilient consensus with mobile detectors
against malicious attacks,” IEEE Trans. Signal Inf. Process. Netw., vol. 4,
no. 1, pp. 60–69, Mar. 2017.

[31] Y. Shoukry and P. Tabuada, “Event-triggered state observers for sparse
sensor noise/attacks,” IEEE Trans. Autom. Control, vol. 61, no. 8,
pp. 2079–2091, Aug. 2016.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:10:47 UTC from IEEE Xplore.  Restrictions apply. 



2856 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

[32] Z. Guo, D. Shi, K. H. Johansson, and L. Shi, “Optimal linear cyber-attack
on remote state estimation,” IEEE Control Netw. Syst., vol. 4, no. 1,
pp. 4–13, Mar. 2017.

[33] U. A. Khan and A. Jadbabaie, “Collaborative scalar-gain estimators for
potentially unstable social dynamics with limited communication,” Auto-
matica, vol. 50, no. 7, pp. 1909–1914, 2014.

Xingkang He (Member, IEEE) received the
B.S. degree from the Hefei University of Tech-
nology, Hefei, China, in 2013, and the Ph.D.
degree from the Academy of Mathematics and
Systems Science, Chinese Academy of Sci-
ences, Beijing, China, in 2018.

He is a Postdoctoral Researcher with the Di-
vision of Decision and Control Systems, KTH
Royal Institute of Technology, Stockholm, Swe-
den. His research interests include security and
privacy of cyber-physical systems, estimation

and control of networked systems, and social networks.

Xiaoqiang Ren (Member, IEEE) received the
B.E. degree in automation from Zhejiang Univer-
sity, Hangzhou, China, in 2012, and the Ph.D.
degree in control and dynamic systems from the
Hong Kong University of Science and Technol-
ogy, Hong Kong, in 2016.

He is a Professor with the School of Mecha-
tronic Engineering and Automation, Shanghai
University, Shanghai, China. Prior to his cur-
rent position, he was a Postdoctoral Researcher
with the Hong Kong University of Science and

Technology in 2016, Nanyang Technological University from 2016 to
2018, and KTH Royal Institute of Technology from 2018 to 2019. His
research interests include security of cyber-physical systems, sequential
decision, and networked estimation and control.

Henrik Sandberg (Member, IEEE) received the
M.Sc. degree in engineering physics and the
Ph.D. degree in automatic control from Lund
University, Lund, Sweden, in 1999 and 2004,
respectively.

He is a Professor with the Division of Deci-
sion and Control Systems, KTH Royal Institute
of Technology, Stockholm, Sweden. From 2005
to 2007, he was a Postdoctoral Scholar with
the California Institute of Technology, Pasadena,
CA, USA. In 2013, he was a Visiting Scholar

with the Laboratory for Information and Decision Systems (LIDS), Mas-
sachusetts Institute of Technology, Cambridge, MA, USA. He has also
held visiting appointments with the Australian National University, Can-
berra, Australia, and the University of Melbourne, Melbourne, Australia.
His current research interests include security of cyber-physical sys-
tems, power systems, model reduction, and fundamental limitations in
control.

Dr. Sandberg was the recipient of the Best Student Paper Award
from the IEEE Conference on Decision and Control in 2004, an Ingvar
Carlsson Award from the Swedish Foundation for Strategic Research in
2007, and a Consolidator Grant from the Swedish Research Council in
2016. He has served on the editorial board for the IEEE TRANSACTIONS
ON AUTOMATIC CONTROL and the IFAC Journal Automatica.

Karl Henrik Johansson (Fellow, IEEE) re-
ceived the M.Sc. and Ph.D. degrees from Lund
University, Lund, Sweden, in 1992 and 1997,
respectively.

He is Professor with the School of Electrical
Engineering and Computer Science and the Di-
rector with Digital Futures, KTH Royal Institute
of Technology, Stockholm, Sweden. He has held
visiting positions with UC Berkeley; California
Institute of Technology; Nanyang Technological
University; Institute of Advanced Studies, Hong

Kong University of Science and Technology; and Norwegian University
of Science and Technology. His research interests include networked
control systems and cyber-physical systems with applications in trans-
portation, energy, and automation networks.

Dr. Johansson is a member of the Swedish Research Council’s Sci-
entific Council for Natural Sciences and Engineering Sciences. He has
served on the IEEE Control Systems Society Board of Governors, the
International Federation of Automatic Control (IFAC) Executive Board,
and is currently the Vice-President of the European Control Association.
He was the recipient of best paper awards and other distinctions from
the IEEE, IFAC, and Association for Computing Machinery. He has been
awarded as Distinguished Professor with the Swedish Research Council
and Wallenberg Scholar with the Knut and Alice Wallenberg Foundation.
He was also the recipient of the Future Research Leader Award from
the Swedish Foundation for Strategic Research and the triennial Young
Author Prize from IFAC. He is a Fellow of the Royal Swedish Academy
of Engineering Sciences, and he is an IEEE Control Systems Society
Distinguished Lecturer.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on December 27,2022 at 17:10:47 UTC from IEEE Xplore.  Restrictions apply. 


