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Secure State Estimation with Byzantine Sensors: A
Probabilistic Approach

Xiaoqiang Ren1, Yilin Mo2, Jie Chen3, and Karl H. Johansson4

Abstract—This paper studies static state estimation in multi-
sensor settings, with a caveat that an unknown subset of the
sensors are compromised by an adversary, whose measurements
can be manipulated arbitrarily. The attacker is able to com-
promise q out of m sensors. A new performance metric, which
quantifies the asymptotic decay rate for the probability of having
an estimation error larger than δ, is proposed. We develop an
optimal estimator for the new performance metric with a fixed δ,
which is the Chebyshev center of a union of ellipsoids. We further
provide an estimator that is optimal for every δ, for the special
case where the sensors are homogeneous. Numerical examples
are given to elaborate the results.

Index Terms—Security, Secure estimation, Byzantine attacks,
Large deviation

I. INTRODUCTION

In cyber-physical systems, numerous sensors with limited
capacity are spatially deployed and connected via ubiquitous
wired and wireless communication networks. This makes it
nearly impossible to guarantee the security of every single
sensor or communication channel. Therefore, security prob-
lems of cyber-physical systems have attracted much attention
recently, e.g., [1], [2].

Robust estimation has been studied over decades to deal
with uncertainties of input data [3]–[5]. The robustness is
usually measured by influence functions or breakdown point,
and several celebrated estimators have been developed, such
as M-, L-, and R-estimators. The limitation of this robustness
theory is the assumption that the bad data are independent [5],
which, however, is not the case in general for cyber attacks.
The fact that compromised sensors may cooperate and the es-
timation is done sequentially makes the “bad” data correlated
both spatially and temporarily.
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Recently, dynamic state estimation with some Byzantine
sensors has been discussed. Most approaches in the existing
literature can be classified into two categories: stacked mea-
surements [6]–[8] and Kalman filter decomposition [9], [10].
Fawzi et al. [6] used the stacked measurements from time k
to k + T − 1 to estimate the state at time k and provided l0
and l1-based state estimation procedures. Since deterministic
systems are concerned, the l0-based procedure can exactly
recover the state. Pajic et al. [7] extended the deterministic
systems in [6] to ones with bounded measurement noises
and obtained upper bounds of estimation error for both l0
and l1-based estimators. Mishar et al. [8] studied stochastic
systems with unbounded noises and proposed a notion of ε-
effective attack. The state estimation there is in essence an
attack detection problem; a Chi-squared test is applied to the
residues and the standard Kalman filter output based on the
measurements from the largest set of sensors that are deemed
ε-effective attack-free is used as the state estimate. Notice that
to detect the ε-effective attack-free sensors correctly with high
probability, the window size T must be large enough. The
authors did not provide estimators before detection decisions
are made. The authors of [9], [10] used local estimators at each
sensor and proposed a LASSO based fusion scheme. However,
their approach imposes some strong constraints on the system
dynamics. Furthermore, the estimate error of the proposed
algorithm when there are indeed attacks is not specifically
characterized.

In this paper, we deal with scenarios where noises are
not necessarily bounded and give a different characterization
of the estimator performance, i.e., the decaying rate of the
worst-case probability that the estimation error is larger than
some value δ rather than the worst-case error in [7], [9],
[10] and estimation error covariance in [8]. This is partially
motivated by the following three observations. Firstly, with
unbounded noise, the worst-case estimation error might result
in too conservative system designs. Notice also that even for
the bounded noise cases studied in [7], the upper bound of
the worst-case estimation error thereof increases with respect
to (w.r.t.) the window size T , which counters intuition since
more information should lead to better estimation accuracy.
Secondly, to mitigate the bad effects caused by Byzantine
sensors, one has to accumulate much enough information,
i.e., the time window T should be large enough. In this case,
the decaying rate is able to characterize the probability well
enough (just as, e.g., [8]). Lastly, the system operator may
pre-define the error threshold δ according to the performance
specification, which leads to a more flexible system design.

In the subsequent sections, we focus on the problem of
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secure static state estimation with Byzantine sensors. A fusion
center aims to estimate a vector state x ∈ Rn from mea-
surements collected by m sensors, among which q sensors
might be compromised. Without imposing any restrictions on
the attacker’s capabilities, we assume that the compromised
sensors can send arbitrary messages. Static state estimation has
a wide range of applications in power system, where the power
network states (i.e., bus voltage phase angles and bus voltage
magnitudes) are estimated from measurements collected by
Supervisory Control And Data Acquisition (SCADA) systems
(e.g., transmission line power flows, bus power injections,
and part of the bus voltages) through remote terminal units
(RTUs) [11], [12]. Considering the possibility that the RTUs
are controlled and the communicated data from SCADA
systems tampered with by malicious attackers, much work has
devoted to security problems of power systems, e.g. [13]–
[16]. The closest literature is [17], [18], which, however,
both focused on the one-shot scenario, while in this work
the observations are taken sequentially, the possible temporal
correlations of which make the analysis more challenging.
We should also note that both [17], [18] used the worst-
case estimate error as the performance metric rather than the
probabilistic approach in this paper. Moreover, the main results
of this work provide fundamental insights on the counterpart
for dynamical systems that we are still investigating.

The main contributions of this work are summarized as
follows.

1) We propose a new metric to characterize the perfor-
mance of an estimator when observation noise is not
necessarily bounded and an attacker may be present.

2) We provide an optimal estimator for a given estimation
error threshold δ (Theorem 2), which is the Chebyshev
center of a union of ellipsoids. We then propose an
algorithm to compute the optimal estimator (Algorithm 1
and Theorem 3).

3) When the sensors are homogeneous, we further provide
a uniformly optimal estimator, i.e., simultaneously opti-
mal for any error threshold δ (Theorem 4). The estimator
is just the “trimmed mean” of the averaged observations.

A preliminary version of this paper was presented in [19].
The main difference is threefold. Firstly, new results have
been provided in this paper, i.e., numerical implementation
of our algorithm (Section III-C) and uniformly optimal esti-
mator design (Section IV). Secondly, in [19], only proofs of
Lemmas 8 and 9 were presented due to page limitation. Lastly,
new simulations have been conducted in this paper for better
illustration.

Organization: In Section II, we formulate the problem
of static state estimation with Byzantine sensors, including
the attack model and performance metric. The main results
are presented in Section III. We first prove that one may
only consider estimators with certain “nice” structures. Based
on this, we then provide an optimal estimator for a given
error threshold and propose an algorithm to compute the
optimal estimator. Furthermore, a very simple yet uniformly
optimal estimator when sensors are homogeneous is provided
in Section IV. After showing numerical examples in Section V,

we conclude the paper in Section VI. All proofs are reported
in the appendix.

Notations: R (R+) is the set of (nonnegative) real numbers.
N (N+) is the set of nonnegative (positive) integers. For a
vector x ∈ Rn, define ‖x‖0 as the “zero norm”, i.e., the
number of nonzero elements of the vector x. For a vector
x ∈ Rn, the support of x, denoted by supp(x), is the set of
indices of nonzero elements:

supp(x) , {i ∈ {1, 2, . . . , n} : xi 6= 0}.

Define 1 as the column vector of ones and the size clear from
the context if without further notice. Let In be the identity
matrix of size n× n. For a matrix M ∈ Rm×n, unless stated
otherwise, Mi represents the i-th row, and MI the matrix
obtained from M after removing all of the rows except those
in the index set I. For a set of matrices A ⊆ Rm×n, we use
AI to denote the set of matrices keeping rows indexed by I,
i.e.,

AI , {MI : M ∈ A}.

For a set A, define the indicator function as 1A(x) = 1, if
x ∈ A; 0 otherwise. The cardinality of a set A is denoted as
|A|. Let M> denote the transpose of the matrix M . We write
M <N if M −N is a positive semi-definite matrix.

II. PROBLEM FORMULATION

A. System Model

Consider the problem of estimating the state x ∈ Rn
using m sensor measurements as depicted in Fig. 1. Let
M , {1, . . . ,m} be the index set of all the sensors. The
measurement equation for sensor i ∈M is

zi(k) = Hix+ wi(k),

where zi(k) ∈ R is the (“true”) measurement collected by
the sensor i at time k ∈ N+, Hi ∈ R1×n is the output
matrix associated with sensor i, wi(k) ∈ R is the observation
noise. It is assumed that wi(k) is Gaussian distributed with
zero mean and variance E[(wi(k))2] = Wi > 0 for any i, k1.
Furthermore, wi(k) are independent across the sensors and
over time, i.e., E[wi1(k1)wi2(k2)] = 0 if i1 6= i2 or k1 6= k2.

In the presence of attacks, the measurement received by the
fusion center is yi(k), with satisfies the following equation:

yi(k) = zi(k) + ai(k),

where ai(k) ∈ R is the bias injected by the attacker.

We assume the attacks are q-sparse:

Assumption 1 (q-sparse attack). There exists an index set C ⊆
M such that

1) for any sensor i ∈M \ C, ai(k) = 0 for any time k.
2) |C| = q.

1Actually, the main results in this paper hold for any noise distribution in
the exponential family; the details are discussed in Remark 2
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Fig. 1: The fusion center (FC) estimates the underlying state
x using sensor measurements that might be manipulated.

The sparse attack model, which is conventional in the
literature [6]–[10], [18], [20], [21], says that the set of com-
promised sensors is somewhat “constant” over time. This is
in essence the only restriction we impose on the attacker’s
capability. The bias ai(k) of a compromised sensor may take
any value and might be correlated across sensors and over
time. If the set of compromised sensors is time-varying, the
estimators (or detectors) in all the aforementioned literature
will be destroyed. That is, the estimators (or detectors) could
not work at all or the error could be arbitrarily large. In this
paper, without this constant property, even Lemma 1 provided
later (in particular, e.g., (34) and (35)), which is the basis for
Theorems 1 and 2, would not hold.

Assumption 2 (System knowledge). The system designer
knows the number q, but does not know the exact set of
compromised sensors C.

The quantity q might be determined by the a priori
knowledge about the quality of each sensor. Alternatively,
the quantity q may be viewed as a design parameter, which
indicates the resilience level that the designer is willing to pay
for. One finds more comments about the above assumption in
Remark 3.

Let H = [H>1 , H
>
2 , . . . ,H

>
m]> be the measurement matrix.

We assume that the matrix H is 2q-observable:

Assumption 3. The measurement matrix H is 2q-observable,
i.e., for every set I ⊆ M with |I| = m− 2q, the matrix HI
is of full column rank.

It has been shown in [6] that 2q-observability of the
measurement matrix is a necessary and sufficient condition to
recover the exact state under q-sparse attacks when there are
no observation noises. One finds the results if Assumption 3
is violated in Lemma 3 later. Notice that in power systems,
measurement redundancy is a common practice [12].

To introduce the knowledge available at the attacker, we
need the following definitions. Define the measurement from
all sensors at time k to be a column vector:

y(k) ,
[
y1(k) y2(k) . . . ym(k)

]> ∈ Rm. (1)

We further define Y (k) as a matrix of all measurements from
time 1 to time k:

Y (k) ,
[
y(1) y(2) . . . y(k)

]
∈ Rm×k. (2)

The quantities a(k),A(k) are defined in the same manner. At
time k, given measurements from all the sensors Y (k), the
fusion center generates a state estimate x̂k. The estimator f

might be random, i.e., given Y (k), x̂k is a random variable
governed by certain probability measure on Rn determined
by f .

Assumption 4 (Attacker’s knowledge). It is assumed that
1) the attacker knows the true state x;
2) the attacker knows the estimator f , the system parame-

ters (i.e., each Hi and Wi), and can access the historical
and current observations from the compromised sensors.

The above assumption as a whole has been adopted in
literature on sparse attack, e.g., [20]–[22], while the second
bullet prevails in literature on data-injection attack, e.g., [8],
[13], [23]. The parameters Hi and Wi might be developed by
an attacker using the a priori knowledge of the underlying
physical model. To obtain the true state, the attacker may
deploy its own sensor network. Though it might be difficult in
practice to obtain the accurate parameters and true state for an
attacker, this assumption is de facto when dealing with poten-
tial worst-case attacks. We should note that this assumption is
in accordance with the Kerckhoffs’s principle [24], namely the
security of a system should not rely on its obscurity. Interested
readers are referred to [25] to see more attack models in
cyber-physical systems. This assumption is leveraged later to
define the performance metric in (3) and characterize the attack
capacity in Theorems 1 and 2. In particular, one finds more
on how Assumptions 1 and 4 are utilized to derive (34) in
Remark 6 later.

B. Performance Metric
At time k, given the measurements Y (k)C , the bias A(k−

1), the set of compromised sensors C, and true state x, the
bias a(k) is generated according to some probability measure
on Rm. This bias injection mechanism is denoted by g. Let G
be the set of all attack strategies such that the generated bias
a(k) satisfies the q-sparse attack model in Assumption 1.

In this paper, we are concerned with the worst-case scenario.
Given an estimator f , we define

e(f, k, δ) , sup
C⊆M,g∈G,x∈Rn

Pf,g,x,C (‖x̂k − x‖2 > δ) (3)

as the worst-case probability that the distance between the
estimate at time k and the true state is larger than a certain
value δ ∈ R+ considering all possible attack strategies, the set
of compromised sensors and the true state. We use Pf,g,x,C
to denote the probability measure governing x̂k when the
estimator f , attack strategy g, the true state x, and the set
of compromised sensors C are given.

Ideally, one wants to design an estimator f such that
e(f, k, δ) is minimized at any time k for any δ. However, it is
quite difficult to analyze e(f, k, δ) when k takes finite values
since computing the probability of error usually involves
numerical integration. Therefore, we consider an asymptotic
estimation performance, i.e., the exponential rate with which
the worst-case probability goes to zero:

r(f, δ) , lim inf
k→∞

− log e(f, k, δ)

k
. (4)

Obviously, for any δ, the system designer would like to
maximize r(f, δ) by choosing a suitable estimator f .
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The threshold δ is chosen by the designer in accordance
with system accuracy requirement by noticing that a true state
x is perceived as the same with any point x′ lying inside its
neighbourhood, i.e., ‖x′− x‖2 ≤ δ by the above performance
metric. However, in some cases (see Section IV), there is
no need to determine δ since one can find an estimator that
simultaneously maximizes r(f, δ) for all δ.

C. Problems of Interest

The following three problems are to be addressed.
1) Performance limit. For any δ, what is the maximal rate

r(f, δ) that can be achieved by all possible estimators?
2) Optimal estimator. Given δ, what is the optimal estima-

tor that maximizes r(f, δ)?
3) Uniform optimality. Is there an estimator that simulta-

neously maximizes r(f, δ) for all δ > 0?

III. OPTIMAL ESTIMATOR

In this section, the first two problems in Section II-C shall
be addressed. We provide an estimator based on Chebyshev
centers, prove its optimality, and further present a numerical
algorithm to implement it.

A. Compressed and Deterministic Estimator

A generic estimator fk might randomly generate an estimate
x̂k based on all the information contained in Y (k). In other
words, given Y (k), the estimate x̂k might be a random
variable; and if any element (totally there are m × k) of
two observation matrices, say Y (k) and Y ′(k), is different,
the corresponding probability distributions of the estimate
x̂k might be different. In this subsection, however, we shall
show that, without loss of optimality, one may only consider
estimators with certain “nice” structure (i.e., the compressed
and deterministic estimators defined in Definition 3 later).

Define an operator avg(·) that averages each row of the
inputed real-valued matrix, i.e., for any matrix M ∈ Rn1×n2 ,

avg(M) ,M1/n2.

Hence, avg(Y (k)) is a vector in Rm and the i-th element
is the empirical mean of the observation from time 1 to k
available for sensor i.

We use Pf (x̂k|Y (k)) to denote the conditional probability
measure of estimate x̂k given any estimator f and the infor-
mation Y (k). Notice that an estimator f can be completely
characterized by the sequence of conditional probability mea-
sures from time 1 to ∞: (Pf (x̂1|Y (1)),Pf (x̂2|Y (2)), . . .).

Definition 1. An estimator f is said to be compressed if
at each time k, it only utilizes the averaged information
avg(Y (k)) to generate estimate x̂k, i.e., the conditional prob-
ability measures satisfy

Pf (x̂k ∈ A|Y (k)) = Pf (x̂k ∈ A|Y ′(k)) (5)

for any Borel set A ⊆ Rn whenever avg(Y (k)) =
avg(Y ′(k)).

Let F (Fc, resp.) be the set of all possible (compressed,
resp.) estimators. In the following lemma, we show that it
suffices to consider an estimator in Fc.

Lemma 1. For any estimator f ∈ F , there exists another
compressed estimator f ′ ∈ Fc such that for all δ > 0,

e(f ′, k, δ) ≤ e(f, k, δ), k = 1, 2, . . .

Proof. See Appendix A.

Remark 1. Intuitively, only measurements from benign sen-
sors provide “useful information” needed to estimate the
underlying state, while under the most harmful attack, com-
promised sensors will merely generate disturbing noises. In
our case, the averaged information avg(Y(k)) can fully
summarize the information contained in measurements from
benign sensors due to the fact that avg(Y(k)) is a sufficient
statistic for the underlying state x when there is no attacker.
Therefore, it suffices to consider a compressed estimator that
only utilizes the averaged information each time. This might
be counterintuitive as one expects that with more information,
i.e., using raw data Y(k), the compromised sensors could be
detected more easily and, thus, better performance could be
achieved. This, however, is not the case.

Remark 2. Lemma 1 says that avg(Y(k)) is a sufficient
statistic for the underlying state x whether or not the attacker
is present. In fact, one may verify, using the same idea in Ap-
pendix A, in particular, the construction technique in (30), that
Lemma 1 holds if the distribution of wi(k) is in the exponential
family and not necessarily Gaussian as we assume. This is
mainly due to the fact that, if the distribution of a one-shot
observation is in the exponential family, the sufficient statistic
of a set of i.i.d. observations is simply the sum of individual
sufficient statistics, the size of which will not increase as data
accumulate.

In the following, we refine the set F from another perspec-
tive.

Definition 2. An estimator f is said to be deterministic w.r.t
Y (k) if for every time k and observations Y (k), the estimate
f(Y (k)) is a single point in Rn.

Let Fd be the set of all estimators that are deterministic
w.r.t. Y (k). Then similar to the above lemma we have

Lemma 2. For any estimator f ∈ F , there exists another
deterministic one f ′ ∈ Fd such that for all δ > 0

r(f ′, δ) ≥ r(f, δ).

Proof. See Appendix B.

Based on the above two lemmas, we further refine F .

Definition 3. An estimator f is said to be compressed and
deterministic if it is deterministic w.r.t. avg(Y (k)), i.e., there
exists a sequences of functions {f̃k}k=1,2,... with f̃k : Rm →
Rn such that the estimate at each time k

f(Y (k)) = f̃k(avg(Y (k))).
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Let Fcd be the set of all compressed and deterministic
estimators. Obviously, Fcd ⊆ Fc,Fcd ⊆ Fd. In the following
theorem, we show that instead of F , one may only consider
the set Fcd for our problem.

Theorem 1. For any estimator f ∈ F , there exists another
compressed and deterministic estimator f ′ ∈ Fcd such that

r(f ′, δ) ≥ r(f, δ), ∀δ > 0.

Proof. See Appendix C.

B. Optimal Estimator Based on Chebyshev Centers

In this subsection, we propose an optimal compressed and
deterministic estimator. To this end, we need the following
definitions: The distance of a point x0 ∈ Rn to a bounded and
non-empty set A ⊆ Rn is defined as

dist(x0,A) , sup{‖x− x0‖2 : x ∈ A}.

Moreover, the set’s radius rad(A) ∈ R+ and Chebyshev center
chv(A) ∈ Rn are defined by

rad(A) , min
x0∈Rn

dist(x0,A), (6)

chv(A) , arg min
x0∈Rn

dist(x0,A). (7)

Notice that the Chebyshev center exists and is unique, since
Rn is uniformly convex and A is bounded [26, Part 5, §33].

Given y ∈ Rm, x ∈ Rn, define their inconsistency dx(y) as
the optimal value of the following optimization problem:

minimize
a ∈ Rm

1

2

m∑
i=1

(yi −Hix+ ai)
2/Wi

subject to ‖a‖0 ≤ q.
(8)

Further define the set X (y, φ), φ ≥ 0 as the set of x such that
the inconsistency with y is upper bounded by φ, i.e.,

X (y, φ) , {x ∈ Rn : dx(y) ≤ φ}. (9)

Given δ ≥ 0, define X(y, δ) as the biggest X (y, φ) of which
the radius is upper bounded by δ:

X(y, δ) ,
⋃

rad(X (y,φ))≤δ, φ≥0

X (y, φ). (10)

It is easy to see that X (y, φ) is monotonically increasing
w.r.t. φ. As a result, its radius is also increasing. Notice also
that given y, the radius rad(X (y, φ)) is right-continuous with
respect to φ (see details in Lemma 6 later). Therefore, it might
happen that rad(X(y, δ)) < δ for certain δ, while in most
cases rad(X(y, δ)) = δ is achieved. Let f∗δ be the estimator
such that the estimate at time k is the Chebyshev center of
X(avg(Y (k)), δ), i.e.,

f∗δ (Y (k)) = chv (X(avg(Y (k)), δ)) . (11)

For y ∈ Rm and δ > 0, we define u(y, δ) as the upper bound
of the inconsistency between y and the elements in X(y, δ):

u(y, δ) , sup
x∈X(y,δ)

dx(y). (12)

With a slight abuse of notation, we define u(δ) as the lower
bound of u(y, δ):

u(δ) , inf
y∈Rm

u(y, δ). (13)

We have our first main result about the estimator (11).

Theorem 2. Given any δ > 0, the estimator f∗δ in (11) is
optimal in the sense that it maximizes the rate (4), i.e., for
any estimator f ∈ F ,

r(f, δ) ≤ r(f∗δ , δ) = u(δ). (14)

Proof. See Appendix D.

Remark 3. Notice that our estimator involves q, as is the case
in [8], where the estimator (i.e., Algorithm 2 thereof) depends
on the perceived number of compromised sensors (or its upper
bound) as well. On the contrary, estimators in [6], [9] do not.
In practice, the number of actually compromised sensors, q0,
might be smaller or larger than the design parameter q. If
q0 < q, the performance of our estimator is lower bounded by
u(δ) in (13). The details are as follows. With a little abuse of
notation, in this remark, we use dx(y, q) (instead of dx(y)) to
denote the optimal value of optimization problem in (8), and
rewrite r(f∗δ , δ) as rq(f∗δ , δ). Then the performance of our
estimator when the number of compromised sensors is q0 < q
is:

rq0(f∗δ , δ) = inf
y∈Rm

sup
x∈X(y,δ)

dx(y, q0) ≥ u(δ). (15)

We should admit that it is challenging to design an estimator
that balances decently rq(f∗δ , δ) and rq0(f∗δ , δ) in our case.
Interested readers are referred to our previous work [21],
where an detector that achieves the “best” trade-off among
performances with different q’s in the binary hypothesis testing
case was provided. While if q0 > q, our estimator will be
destroyed, i.e., r(f∗δ , δ) = 0, as is the case in [8]. This is
not desirable in practice. Our future work will investigate
estimators independent of q.

In the following lemma, we consider the case where As-
sumption 3 is violated.

Lemma 3. If Assumption 3 is violated, the followings holds:
1) For any δ > 0, there exists y∗, x1, x2 (dependent on δ)

such that dx1
(y∗) = dx2

(y∗) = 0 and ‖x1 − x2‖2 > δ;
2) r(f, δ) = r(f∗δ , δ) = 0.

Proof. See Appendix E

The above first bullet yields that for any δ > 0, there exists
y (dependent on δ) such that X(y, δ) is empty.

C. Numerical Implementation

In this subsection, we provide an algorithm to compute the
estimator f∗δ proposed above. We shall first propose a method
to compute the Chebyshev center and the radius of X (y, φ)
for a given φ. This shares a similar spirit with [27]. We then
consider how to derive the appropriate φ using a modified
bisection method. To proceed, we need the following definition
and lemmas.
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A variation of dx(y), where the support of a in the definition
in (8) is given a priori, is defined as follows:

Definition 4. Given x ∈ Rn, y ∈ Rm, and index set I ⊆M,
the restricted inconsistency dx(y, I) is

dx(y, I) ,
1

2

∑
i∈I

(yi −Hix)2/Wi. (16)

It is clear that with a fixed set I, dx(y, I) is continuous
w.r.t. both x and y. Furthermore,

dx(y) = min
I⊆M, |I|=m−q

dx(y, I).

Lemma 4. When |I| ≥ m − 2q, the restricted inconsistency
dx(y, I) can be equivalently written as:

dx(y, I) = (x− κIyI)> var(I)(x− κIyI) + res(I) (17)

where the “variance”

var(I) =
1

2
H>IW

−1
{I}HI (18)

and the “residue”

res(I) =
1

2
(yI −HIκIyI)>W−1

{I}(yI −HIκIyI) (19)

with W{I} (different from WI) being the square matrix
obtained from W = diag(W1,W2, . . . ,Wm) after removing
all of the rows and columns except those in the index set I,
and

κI = (H>IW
−1
{I}HI)−1H>IW

−1
{I}. (20)

Proof. See Appendix F.

In the following, we show that computing the Chebyshev
center and radius of the set X (y, φ) introduced in (9) can be
transferred to a convex optimization problem. Notice that one
can rewrite X (y, φ) as:

X (y, φ) =
⋃
X (y, φ, I), (21)

where

X (y, φ, I) , {x ∈ Rn : dx(y, I) ≤ φ}.

In other words, X (y, φ) is a union of ellipsoids. It is worth
pointing out that if res(I) = φ, X (y, φ, I) degenerates to
a single point; and if res(I) > φ, X (y, φ, I) is empty.
Therefore, to differentiate these cases, we define

I(φ) , {I ⊆M : res(I) ≤ φ and |I| = m− q}, (22)

I+(φ) , {I ⊆M : res(I) < φ and |I| = m− q},
I0(φ) , I(φ) \ I+(φ).

Lemma 5. Given φ such that I(φ) is not empty. Consider the
following semidefinite programming problem:

minimize
τ∈R|I+(φ)|,c,ψ∈R

ψ

subject to ψ ≥ 0,

τi ≥ 0, ∀1 ≤ i ≤ |I+(φ)|,
τid(I)Θ(I, φ) < θ(c, ψ), ∀I ∈ I+(φ),[
ψ (κIyI − c)>
∗ In

]
< 0, ∀I ∈ I0(φ),

where

Θ(I, φ)

,

var(I) − var(I)κIyI 0
∗ (κIyI)> var(I)κIyI + res(I)− φ 0
0 0 0


with ∗ being recovered by symmetry,

θ(c, ψ) ,

 In −c 0
−c> −ψ c>

0 c −In

 ,
and id(·) : I+(φ) 7→ {1, 2, . . . , |I+(φ)|} is any one-to-one
function. Then

chv(X (y, φ)) = c∗, (23)

rad(X (y, φ)) =
√
ψ∗, (24)

where c∗ and ψ∗ are the optimal solution of the semidefinite
programming problem.

Proof. See Appendix F.

It follows from this lemma that, finding the Chebyshev
center and radius of the set X (y, φ) is a semidefinite pro-
gramming problem when y, φ are given. However, we are
interested in finding the optimal estimator that maximize the
rate r(f, δ), for a given δ. In the following lemma, we give
how rad(X (y, φ)) varies with φ, the illustration of which is
in Section V-A.

Lemma 6. Given any y ∈ Rm, the radius rad(X (y, φ)) have
the following properties:

1) rad(X (y, φ)) is increasing, right-continuous w.r.t. φ.
2) If rad(X (y, φ)) is discontinuous at a point φ0, then there

must exist a set I ⊆ M with |I| = m − q such that
res(I) = φ0.

3) When rad(X (y, φ)) > 0, rad(X (y, φ)) is strictly in-
creasing w.r.t. φ.

Proof. See Appendix F.

Given a predefined approximation bound ε > 0, we compute
the corresponding estimate x̂ for an averaged measurement
avg(Y (k)) ∈ Rm in Algorithm 1. Denoted by f̂ε the resulting
estimator, and by f̂(y, ε) the output of Algorithm 1 (i.e., the
estimate x̂) when the inputs are y, ε.

Notice that Algorithm 1 is a slight variation of the classic
bisection method. The distinguished part lies in (25), which
together with Lemma 6 assures that for any y ∈ Rm,

inf
x 6∈Bδ(f̂(y,ε))

dx(y) ≥ u(y, δ)− ε,

where u(y, δ) is defined in (12). Therefore, the following
theorem readily follows:

Theorem 3. Let an estimator f̂ε(Y (k)) = f̂(avg(Y (k)), ε)
be computed by Algorithm 1 with avg(Y (k) and ε > 0
as inputs, then for all δ > 0 this estimator possesses the
guaranteed performance:

r(f̂ε, δ) ≥ r(f∗δ , δ)− ε,
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where f∗δ is the optimal estimator in (11)

Clearly, a smaller ε in Algorithm 1 leads to a better
estimator, which, however, requires more iterations to run.

Algorithm 1 Approximate Optimal Estimator f∗δ in (11)
Inputs: averaged measurements y ∈ Rm,

performance error tolerance ε > 0.
Output: estimate x̂ ∈ Rn
Initialization: Let

φ = min{res(I) : I ⊆M, |I| = m− q}
, Υ,

and φ be such that rad(X (y, φ)) > δ.
Repeat:
1. If φ− φ < ε/2 then

φ = max{Υ, φ− ε/2}, (25)

x̂ = chv(X (y, φ))

Stop
EndIf

2. Let φ = (φ+ φ)/2.
3. If rad(X (y, φ)) = δ then

x̂ = chv(X (y, φ))
Stop

ElseIf rad(X (y, φ)) > δ then
φ = φ

Else φ = φ
EndIf

Remark 4. Though semidefinite programming problem can
be (approximately) solved in a polynomial time of program
size [28]. In our case, however, when φ is large enough,
|I+(φ)| = (mq ), where (mq ) is the binomial coefficient,
which renders the optimization problem in Lemma 5 rather
computationally heavy when φ and m are large. Nevertheless,
we defend our estimator from the following two aspects. First,
though efficient and optimal algorithms might exist in certain
problems, see e.g., [21], the resilient information fusion under
sparse attack is intrinsically of combinatorial nature, see
e.g., [6], [8], [29], since we basically need to search over
all combinations of possibly healthy sensors. Nevertheless, this
work is just a starting point, and we are planning to investigate
the approaches that could relieve the computational burden
(in certain cases) just as in [30]–[32]. Second, in practice,
a small δ would be usually chosen. Then the size of I+(φ)
will be small as well no matter how big m is, and, therefore,
the optimization problem in Lemma 5 could be efficiently
solved. Though finding Υ of Algorithm 1 is of combinatorial
nature, computing res(I) (given in (19)) for a given set I is
light (notice that W{I} is a diagonal matrix and its inverse,
therefore, is readily given). Therefore, the computation burden
of Algorithm 1 could be tolerated for a large m.

Remark 5. The resilience of the proposed optimal estimator
f∗δ in (11) may not be that apparent since Chebyshev center
itself is sensitive to noises, i.e., the Chebyshev center of a set
A can be driven to anywhere even if only one point of A is

allowed to be manipulated. Nevertheless, the resilience of the
estimator f∗δ can be heuristically explained by the following
two factors. First, when the time k is large enough, the
measurements from benign sensors can lead to rather accurate
estimate, i.e., the res(I∗) will be quite small, where I∗ is of
size m−q and contains no compromised sensors. Therefore, I∗
would be in the collection I(φ) defined in (22) and somehow
serves as an anchor when computing the estimate as in
Algorithm 1 and Lemma 5. Second, when the injected bias
of a compromised sensor is too large, the resulting res(I) for
any I containing this compromised sensor will be quite large
as well. Therefore, the set I will not be in the collection I(φ)
and the measurement from this compromised sensor will be
discarded when computing the estimate.

IV. UNIFORMLY OPTIMAL ESTIMATOR FOR
HOMOGENEOUS SENSORS

In this section we provide a simple yet uniformly optimal
estimator f such that r(f, δ) is simultaneously maximized for
all δ > 0 when the sensors are homogeneous, i.e., H1 = · · · =
Hm and W1 = · · · = Wm. Notice that when homogeneous
sensors are considered, to satisfy the 2q-observable assumption
in Assumption 3, the state has to be scalar, i.e., x ∈ R.

To proceed, we first provide an upper bound of the optimal
performance proved in Theorem 2, u(δ), for any δ and any
system models (instead of only homogeneous sensors).

Lemma 7. The optimal performance u(δ) in (14) is upper
bounded:

u(δ) ≤ ū(δ),

where ū(δ) = δ2ū(1) with ū(1) being the optimal value of the
following optimization problem:

minimize
x ∈ Rn, s ∈ Rm

1

2

m∑
i=1

(Hix+ si)
2/Wi

subject to ‖s‖0 ≤ 2q,

‖x‖2 = 1.

(26)

Proof. See Appendix G.

In the remainder of this section, we consider the case
where sensors are homogeneous and the system is scalar. Then
without loss of generality, we let Hi = 1 for any 1 ≤ i ≤ m.
We define the estimator f trm be the “trimmed mean”, i.e.,

f trm (Y (k)) = trm (avg(Y (k))) , (27)

where for any y ∈ Rm,

trm(y) ,
1

m− 2q

m−q∑
i=q+1

y[i] (28)

with y[i] being the i-th smallest element. In other words,
trm(y) first discards the largest q and smallest q elements
of y, and then averages over the remaining ones.

We show that the trimmed mean estimator f trm is uniformly
optimal in Theorem 4. The theorem is proved by showing
that f trm achieves the upper bound in Lemma 7 for every
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δ, which, in turn, means that the upper bound is tight when
homogeneous sensors are considered.

Theorem 4. When the sensors are homogeneous (and thus the
system state is scalar), f trm in (27) is uniformly optimal, i.e.,

r(f trm, δ) = u(δ)

holds for every δ.

Proof. See Appendix H.

V. NUMERICAL EXAMPLES

A. Illustration of X (y, φ) and rad(X (y, φ))

We illustrate how X (y, φ) and rad(X (y, φ)) vary with φ
in Fig. 2 and Fig. 3, respectively. The parameters used are
summarized as follows: m = 4 sensors used to estimate
x ∈ R2, q = 1 sensor might be manipulated, measurement
matrix H = [1, 0; 0, 1; 1, 2; 2, 1], covariance matrix W =
diag(1, 2, 2, 1), and observation y = [4;−4; 5;−5]. Let res[i]
be the i-th item of the set {res(I) : I ⊆ M, |I| = m − q}
sorted in an ascending order. Then we have, in our case, that
res[1] = 3.68182, res[2] = 5.78571, res[3] = 13.5, res[4] =
24.3.

From Fig. 2, one sees that X (y, φ) is indeed a union of
several ellipses. One also sees in Fig. 3 that rad(X (y, φ)) is
strictly increasing w.r.t. φ when rad(X (y, φ)) > 0, and dis-
continuous only at res[2] and res[3], which verifies Lemma 6.
Notice also that as φ crosses res[4] from below, the new ellipse,
which is indicated by the red one in the right-below sub-
figure of Fig. 2, is inside the blue dashed circle that covers the
previous three ellipses. Therefore, rad(X (y, φ)) is continuous
at φ = res[4].

B. Resilience of the Proposed Estimator

In the following, in order to verify the intuitive comments
of Remark 5 about the resilience of f∗δ (11), we use a
numerical example to show how the output of f∗δ varies with
the injected bias and δ. The parameters used are summarized
as follows: m = 4 sensors used to estimate x ∈ R2, mea-
surement matrix H = [1, 0; 0, 1; 1, 2; 2, 1], covariance matrix
W = diag(1, 2, 2, 1), and observation z = [1; 1; 3; 3]. We
let the fourth sensor be attacked, i.e., the first three elements
of y are [1; 1; 3] and y4 = z4 + a. In particular, we let a
vary from 0 to 15. We simulate our estimator f∗δ for two
different error thresholds δ = 1, 3, and further compare it
to the least squares estimator, which computes the estimate as
(H>W−1H)−1H>W−1y. When using Algorithm 1, we let
the performance error tolerance ε = 0.001.

The result is illustrated in Fig. 4. One sees that when
the bias injected a is too large, the estimation error of our
algorithm is zero, i.e., the attack effects are eliminated. This is
consistent with intuitive comments in Remark 5. Furthermore,
when using a smaller δ (i.e., δ = 1 in our example), the
estimator tends to discard the injected bias: the zero-error
range is a ∈ [3,∞] for δ = 1, which is contrasted with

3 4 5 6
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1

φ = 4

−5 0 5 10
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−5

0
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−10 −5 0 5 10
−15
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φ = 13.7
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−20

−10
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φ = 25

Fig. 2: The set X (y, φ) with different φ’s. In each of the
four sub-figures, x-axis is x1 and y-axis x2. The filled area
corresponds to X (y, φ). The blue “*” is the Chebyshev center
of X (y, φ), and blue dashed line the circle centered at the
Chebyshev center with radius rad(X (y, φ)).
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d
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Fig. 3: Radius rad(X (y, φ)) as a function of φ.

[8,∞] for δ = 3. This is because given the same observation
y, smaller δ is, smaller φ and, thus, the collection I(φ) are,
which means that the “abnormal” data (with large res(I)) will
be more likely to be discarded. It is clear that the naive least
squares estimator is not resilient to the attack.
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2
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6

f∗δ , δ = 3
f∗δ , δ = 1
Least squares estimator

Fig. 4: 2-norm of estimation error as a function of the bias
injected. Our algorithm with different δ and the least squares
estimator are compared.

C. Comparison with Other Estimators
In this section, we compare our estimator with the LASSO.

In our case, given avg(Y (k)) = y ∈ Rm, the LASSO reads

minimize
x∈Rn,a∈Rm

‖(W /k)−1/2(y −Hx− a)‖2 + λ‖a‖1, (29)

where λ is predefined parameter and the optimal solution x is
the estimate. Basically, the smaller λ is, the securer is LASSO.
Therefore, in our simulation, we set λ = 10−3. Notice that the
l0 and l1-based state estimation procedures [6], [7] works in
systems without noises or with (small) bounded measurement
noises, while the estimator in [8] (i.e., Algorithm 2 thereof)
is undecided for (many) certain observations, that is, it can
happen that no subset of sensors are deemed as attack free and,
therefore, no output will be generated. We should also note that
while [9] proves the resilience of LASSO when each sensor
is observable, i.e., Hi is scalar in our case, the LASSO under
sparse attack is not resilient in general; see [18]. Therefore,
we consider scalar state in this simulation and for simplicity,
we further assume the sensors are homogeneous.

We assume there are totally m = 5 sensors, of which q =
1 sensor is compromised. We let measurement matrix H =
[1; 1; 1; 1; 1] and covariance matrix W = diag(1, 1, 1, 1, 1).
When computing the worst-case probability e(f, k, δ) in (3),
we assume that, without loss of generality, the true state is
x = 0 and the fifth sensor compromised. We then simulate
the error probability for a fixed y5 with y = avg(Y (k)) being
the averaged measurement, the maximum of which is then
regarded as the worst-case probability e(f, k, δ). From Fig. 5,
one sees that for either δ = 1 or δ = 1.5, the performances
of f trm and f∗δ are quite close, which is consistent with the
uniform optimality of f trm stated in Theorem 4. One should
also note that both f trm and f∗δ outperform the LASSO.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provided a different perspective on secure
static state estimation with Byzantine sensors by introducing

1 5 10
10−20
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time

w
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st
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as
e

pr
ob

ab
ili

ty

f∗δ , δ = 1

f trm, δ = 1
LASSO, δ = 1
f∗δ , δ = 1.5

f trm, δ = 1.5
LASSO, δ = 1.5

Fig. 5: Worst-case probability e(f, k, δ) in (3) as a function
of estimator f (our proposed estimator f∗δ in Algorithm 1,
trimmed mean estimator f trm in (27), and LASSO in (29)),
time k (1, 5, 10), and error threshold δ (1, 1.5).

a new probabilistic performance metric, i.e., the decaying
rate of the worst-case probability that the estimation error
is larger than some value δ rather than the worst-case error
or estimation error covariance in the existing literature. This
new metric does not necessarily require bounded noise. With
this metric, we gave an optimal estimator for any given
error threshold δ, which is the Chebyshev center of a certain
set, and proposed an algorithm to compute it. A significant
byproduct is that if distribution of the observation noise
is in the exponential family, the sufficient statistic for the
underlying state remains the same whether or not the attacker
is present. When the sensors are homogeneous, we further
derived a simple yet uniformly optimal estimator, which, to
be specific, is the trimmed mean of the averaged observations
and simultaneously optimal for every δ.

For the future work, there are two interesting directions. One
is to extend the existing results into dynamic systems, while
the other one is to investigate the uniformly optimal estimator
when sensors are heterogeneous.

APPENDIX A
PROOF OF LEMMA 1

The proof is of constructive nature and mainly stems from
the fact that avg(Z(k)) is a sufficient statistic for the under-
lying state x, where Z(k) is the “true“ measurement matrix
when there are no attacks and is defined in the same manner
with Y (k).

In the following, for simplicity of presentation, we do not
distinguish the probability density function (pdf) for a con-
tinuous random variable and probability mass function (pmf)
for a discrete one. Therefore, in some cases the summation is
actually needed though we use integration universally.

For any f ∈ F , we let f ′ satisfy (30) and (31). For any
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y ∈ Rm, Borel set A ⊆ Rn, and time k,

Pf ′(x̂k ∈ A| avg(Y (k)) = y)

=

∫
Y ∈Rm×k

Pf (x̂k ∈ A|Y (k) = Y )

dP(Z(k) = Y | avg(Z(k)) = y). (30)

The above equation is the integral of Pf (·) over Y ∈
Rm×k with respect to the conditional probability measure
P(Z(k)| avg(Z(k)) = y). Notice that this conditional proba-
bility measure P(Z(k)| avg(Z(k)) = y) is well-defined since
avg(Z(k)) is a sufficient statistic of the “true” measurements
Z(k) for the underlying state x, i.e., for any state x,

Px(Z(k)| avg(Z(k)) = y) = P(Z(k)| avg(Z(k)) = y),

where Px(·) denotes the probability measure governing the
original measurements Z(k) when the state x is given. Notice
that RHS of (30) can be interpreted as “taking expectation” of
the conditional probability measure Pf (x̂k|Y (k)) given that
avg(Y (k)) = y and that Y (k) shares the same distribution
with Z(k).

Furthermore, let f ′ be in Fc, i.e.,

Pf ′(x̂k ∈ A|Y (k)) = Pf ′(x̂k ∈ A|Y ′(k)) (31)

for any Borel set A ⊆ Rn whenever avg(Y (k)) =
avg(Y ′(k)).

Let Bδ(x) denote the closed ball centered at x ∈ Rn with
radius δ > 0:

Bδ(x) , {y ∈ Rn : ‖y − x‖2 ≤ δ}. (32)

Regarding with f and f ′, in the remainder of this proof we
devote ourselves to showing that the following inequality holds
for any state x, set C, δ > 0 and time k:

sup
g∈G

Pf,g,x,C (x̂k 6∈ Bδ(x)) ≥ sup
g∈G

Pf ′,g,x,C (x̂k 6∈ Bδ(x)) ,

(33)

from which Lemma 1 follows straightforwardly.
We first identify the most harmful attack strategy for a

generic f . Given state x, set C, δ > 0, time k, and estimator
f , consider the following optimization problem:

max
Y2∈Rq×k

∫
Y1∈R(m−q)×k

Pf
(
x̂k 6∈ Bδ(x)

∣∣∣Y (k)M\C = Y1,

Y (k)C = Y2

)
dPx(Z(k)M\C = Y1). (34)

Denote its optimal solution (i.e., the “manipulated matrix”)
as mm(f, x, C, δ, k). Then one may see that changing the
measurements of the compromised sensors available at time
k, Y (k)C , to mm(f, x, C, δ, k) would maximize the error2

probability under estimator f . The optimal value of the opti-
mization problem (34) is just the worst-case error probability
supg∈G Pf,g,x,C (x̂k 6∈ Bδ(x)).

2For the sake of presentation, we call the event x̂k 6∈ Bδ(x) an error.

We then identify the most harmful attack strategy for the
compressed estimator f ′. Given state x, set C, δ > 0, time k,
and estimator f ′, consider the following optimization problem:

max
y2∈Rq

∫
y1∈Rm−q

Pf ′
(
x̂k 6∈ Bδ(x)

∣∣∣ avg(Y (k))M\C = y1,

avg(Y (k))C = y2

)
dPx(avg(Z(k))M\C = y1). (35)

Denote its optimal solution (i.e., the “manipulated vector”)
as mv(f ′, x, C, δ, k). One may verify that changing the mea-
surements of the compromised sensors available at time k
such that avg(Z(k))C = mv(f ′, x, C, δ, k) would maximize
the error probability under estimator f ′. The optimal value
of the optimization problem (35) is just the worst-case error
probability supg∈G Pf ′,g,x,C (x̂k 6∈ Bδ(x)).

For the sake of better presentation, in the remainder of this
proof, for any matrix M , we rewrite MM\C as M[1] and MC
asM[2]. We also omit the time index k of Z(k) and Y (k). The
set Bδ(x) is denoted by B. Notice that the “true” measurements
Z are independent across sensors given the underlying state
x. Therefore, we can rewrite (30) as follows:

Pf ′(x̂k ∈ A| avg(Y ) = y)

=

∫
Rq×k

∫
R(m−q)×k

Pf (x̂k ∈ A|Y[1] = Y[1],Y[2] = Y[2])

dP(Z[1] = Y[1]| avg(Z[1]) = y[1])

dP(Z[2] = Y[2]| avg(Z[2]) = y[2]).

Then one obtains that

sup
g∈G

Pf ′,g,x,C (x̂k 6∈ Bδ(x))

=

∫
Rm−q

∫
R(m−q)×k

∫
Rq×k

Pf (x̂k 6∈ B|Y[1] = Y[1],Y[2] = Y[2])

dP(Z[2] = Y[2]| avg(Z[2]) = mv(f ′, x, C, δ, k))

dP(Z[1] = Y[1]| avg(Z[1]) = z[1])

dPx(avg(Z[1]) = z[1])

=

∫
R(m−q)×k

∫
Rq×k

Pf (x̂k 6∈ B|Y[1] = Y[1],Y[2] = Y[2])

dP(Z[2] = Y[2]| avg(Z[2]) = mv(f ′, x, C, δ, k))

dPx(Z[1] = Y[1])

=

∫
Rq×k

∫
R(m−q)×k

Pf (x̂k 6∈ B|Y[1] = Y[1],Y[2] = Y[2])

dPx(Z[1] = Y[1])

dP(Z[2] = Y[2]| avg(Z[2]) = mv(f ′, x, C, δ, k))

≤ max
Y[2]∈Rq×k

∫
R(m−q)×k

Pf (x̂k 6∈ B|Y[1] = Y[1],Y[2] = Y[2])

dPx(Z[1] = Y[1])

= sup
g∈G

Pf,g,x,C (x̂k 6∈ Bδ(x)) ,

where the second equality follows from the law of total prob-
ability, and the inequality holds because P(Z[2]| avg(Z[2]) =
y[2]) is a probability measure for any y[2], i.e.,∫

Rq×k
dP(Z[2] = Y[2]| avg(Z[2]) = y[2]) = 1

for any y[2]. The proof is thus complete.
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In order for readers to have a better picture of relation-
ship between the main results obtained in this paper (e.g.,
Theorems 1 and 2) and the assumptions posed in Section II,
in particular, Assumptions 1 and 4, in the following remark,
we explain in detail how these assumptions are utilized to
derive (34).

Remark 6. Due to Assumption 1, one could split the sensors
into two groups: “good” ones inM\C and “bad” ones in C.
All the measurements from up to time k from good sensors
are not manipulated and, thus, denoted by Z(k)M\C . The
attacker can develop the term Px(Z(k)M\C = Y1) since it
knows the true state x and system parameters by Assumption 4.
Furthermore, since the attacker knows the estimator f and
has unlimited memory, it is proper to obtain the most harmful
attack strategy by (34).

APPENDIX B
PROOF OF LEMMA 2

A. Preliminaries

In the following lemma, we bound the area where a random
variable has a high probability showing up.

Given any random variable y ∈ Rn, we shall say that a
point x is δ-typical, if

P(y ∈ Bδ(x)) > n/(n+ 1), (36)

where Bδ(x) is the closed ball defined in (32). In other words,
y has a high probability lying in the δ-neighborhood of x.

Let Tδ(y) denote the set of all δ-typical point x w.r.t. a
random variable y, i.e.,

Tδ(y) , {x ∈ Rn : x is δ-typical w.r.t. y}. (37)

We have the following lemma to show that Tδ(y) lies in a ball
with radius δ:

Lemma 8. For any random variable y ∈ Rn, there exists
x∗ ∈ Rn such that

Tδ(y) ⊆ Bδ(x∗). (38)

To proceed, we need the following lemma:

Lemma 9. Let A1, . . . ,An be n random events with the same
underlying probability space, then it holds that

P(∩nj=1Aj) ≥
n∑
j=1

P(Aj)− n+ 1. (39)

Proof of Lemma 9.

P(∩nj=1Aj) = 1− P(∪nj=1Acj) ≥ 1−
n∑
j=1

P(Acj)

= 1−
n∑
j=1

(1− P(Aj)) =

n∑
j=1

P(Aj)− n+ 1,

where Ac is the complement of set A. The proof is thus
complete.

Proof of Lemma 8. If Tδ(y) is empty, then obviously Tδ(y) =
∅ ⊂ Bδ(0).

If Tδ(y) only contains j ≤ (n+1) elements, say, x1, . . . , xj .
Then Lemma 9 together with (36) yields that

P(y ∈ ∩ji=1Bδ(xi)) > j × n

n+ 1
− j + 1 ≥ 0,

which means that the set ∩ji=1Bδ(xi) is not empty. Then
Tδ(y) ⊆ Bδ(x∗) for some x∗ ∈ ∩ji=1Bδ(xi).

If Tδ(y) contains j > (n+1) elements (j might be infinite).
Then again by Lemma 9, one obtains that for any n + 1
elements, say, x1, . . . , xn+1, there holds

P(y ∈ ∩n+1
i=1 Bδ(xi)) > 0,

that is, ∩n+1
i=1 Bδ(xi) 6= ∅. Since Bδ(x) is compact and convex

for any x, then Helly’s theorem [33] means that

∩x∈Tδ(y)Bδ(x) 6= ∅.

Then Tδ(y) ⊆ Bδ(x∗) for some x∗ ∈ ∩x∈Tδ(y)Bδ(x). The
proof is thus complete.

Definition 5. Any point x∗ ∈ Rn is said to be a δ-center of
a random variable y ∈ Rn if it is such that (38) holds.

The following follows readily from Lemma 8.

Lemma 10. If x∗ ∈ Rn is a δ-center of a random variable
y ∈ Rn, then for any x ∈ Rn:

1− 1Bδ(x)(x
∗) ≤ (n+ 1)P(y /∈ Bδ(x)). (40)

B. Main Body

Consider any estimator f ∈ F , we construct a deterministic
one f ′ ∈ Fd: for any time k and observations Y (k), let
f ′k(Y (k)) be a δ-center of the random variable fk(Y (k)),
the existence of which is guaranteed by Lemma 8.

Hence, for any attack strategy g, true state x, set of
compromised sensors C, and time k, we have

Pf ′,g,x,C(‖x̂k − x‖ > δ)

=

∫
Y ∈Rm×k

1− 1Bδ(x)(f
′
k(Y )) dPg,x,C(Y (k) = Y )

≤
∫
Y ∈Rm×k

(n+ 1)P(fk(Y ) /∈ Bδ(x)) dPg,x,C(Y (k) = Y )

=(n+ 1)Pf,g,x,C(‖x̂(k)− x‖ > δ),

where the inequality follows from Lemma 10, and Pg,x,C(·)
denotes the probability measure governing Y (k) when g, x, C
are given. Then it is clear that

e(f, k, δ) ≥ e(f ′, k, δ)/(n+ 1). (41)

Recall that e(f, k, δ) is the worst-case probability defined
in (3). Then it follows that for any δ > 0:

r(f, δ) = lim inf
k→∞

− log e(f, k, δ)

k

≤ lim inf
k→∞

− log e(f ′, k, δ)/(n+ 1)

k

= lim inf
k→∞

− log e(f ′, k, δ)

k
(42)

=r(f ′, δ).

The proof is thus complete.
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APPENDIX C
PROOF OF THEOREM 1

Consider a compressed but possibly random estimator f ∈
Fc, we construct a deterministic one f ′ ∈ Fcd satisfying:
• for any time k and observations Y (k), f ′(Y (k)) is a
δ-center of the random variable f(Y (k));

• f ′(Y (k)) = f ′(Y ′(k)) if avg(Y (k)) = avg(Y ′(k)).
The existence of f ′ is guaranteed by Lemma 8 and the
fact that random variables f(Y (k)), f(Y ′(k)) have the same
distribution if avg(Y (k)) = avg(Y ′(k)).

Then as in Appendix B, one obtains r(f, δ) ≤ r(f ′, δ),
which, together with Lemma 1, concludes the proof.

APPENDIX D
PROOF OF THEOREM 2

We first prove that r(f, δ) is upper-bounded by u(δ) for
any f ∈ F in Lemma 12. We then show that r(f∗δ , δ) =
u(δ) in Lemma 13. Before proceeding, we need the following
supporting definitions and lemmas.

A. Supporting Definition and Lemmas

Lemma 11. For any A ⊆ Rn, if rad(A) > γ, there exists a
set A0 ⊆ A such that |A0| ≤ n+ 1 and rad(A0) > γ.

Proof. If |A| ≤ n + 1, then the lemma holds trivially by
letting A0 = A. When |A| > n + 1, we prove the lemma
by contradiction. Suppose for every subset A0 ⊆ A with
|A0| ≤ n+ 1, there holds rad(A0) ≤ γ. Then we have

∩x∈A0
Bγ(x) 6= ∅

for every A0 ⊆ A with |A0| = n+1. Since Bγ(x) is compact
and convex for every x ∈ A, Helly’s theorem [33] implies that

∩x∈ABγ(x) 6= ∅.

Hence, for any x0 ∈ ∩x∈ABγ(x), A ⊆ Bγ(x0). Therefore
rad(A) ≤ γ, which contradicts the condition rad(A) > γ.

With a slight abuse of notation, we use the sequence of
functions (f1(avg(Y(1))), f2(avg(Y(2))), . . .) from time 1 to
∞ to denote a compressed and deterministic estimator f ∈
Fcd.

Definition 6. Given a compressed and deterministic estimator
f ∈ Fcd, x ∈ Rn, δ > 0, and time k, let Y(f, x, δ, k) be the set
of averaged measurements avg(Y(k)) such that the estimate
x̂k lies outside the ball Bδ(x), i.e.,

Y(f, x, δ, k) , {y ∈ Rm : fk(y) 6∈ Bδ(x)}. (43)

B. Upper Bound

Lemma 12. For any estimator f ∈ F , there holds

r(f, δ) ≤ u(δ). (44)

Proof. We show that r(f, δ) < u(δ) + ε for any ε > 0 and
f ∈ F .

Given ε > 0, from the definition of u(δ), one obtains that
there must exist y∗ ∈ Rm and a set A ⊆ Rn such that:

1) dx(y∗) ≤ u(δ) + ε/2 for all x ∈ A;
2) rad(A) > δ.

Notice that the above y∗ and A can be constructed as follows.
By the definition of u(δ), there must exist a y∗ such that for
every x ∈ X(y∗, δ), dx(y∗) < u(δ) + ε/4 holds. Then we
construct A by cases. If rad(X(y∗, δ)) = δ, then there must
exist φ∗ < u(δ) + ε/4 such that X (y∗, φ∗) = X(y∗, δ). Let
A = X (y∗, φ∗+ ε/4), and, therefore, A ⊂ X (y∗, u(δ) + ε/2).
Also, by the third bullet of Lemma 6, rad(A) > δ holds.
If rad(X(y∗, δ)) < δ, then let φ∗ = min{φ : X(y∗, δ) ⊆
X (y∗, φ)} and A = X (y∗, φ∗). Then by Lemma 6, rad(A) >
δ and dx(y∗) ≤ u(δ) + ε/4 for all x ∈ A.

Lemma 11 yields that there exists A0 ⊆ A such that
rad(A0) > δ and |A0| ≤ n + 1. Let a∗(y, x) be the optimal
solution to the optimization problem in (8) given y ∈ Rm
and x ∈ Rn. Since dx(y, I) in (16) is continuous w.r.t.
y and |A0| ≤ n + 1, then one obtains that there exists a
ball Bβ(y∗), where β > 0 is dependent on ε, such that
dx(y,M \ supp(a∗(y∗, x))) < u(δ) + ε for every x ∈ A0

and every y ∈ Bβ(y∗).
By Theorem 1, one suffices to consider a compressed

and deterministic estimator f ∈ Fcd. Furthermore, since
rad(A0) > δ, one concludes that for every time k and
f ∈ Fcd, there holds

Bβ(y∗) ⊆ ∪x∈A0
Y(f, x, δ, k). (45)

Let Ln(·) denote the Lebesgue measure on Rn. Because of
countable additivity of Lebesgue measure [34], one obtains
that there must exist a point x∗ ∈ A0 such that

Lm(Bβ(y∗) ∩ Y(f, x∗, δ, k)) ≥ Lm(Bβ(y∗))/(n+ 1). (46)

For the sake of simplicity, let B(x∗, k) , Bβ(y∗) ∩
Y(f, x∗, δ, k) and I∗ , supp(a∗(y∗, x∗)). Then it is clear
that

e(f, k, δ)

≥ sup
g∈G

Pg,x∗,I∗ (avg(Y(k)) ∈ Y(f, x∗, δ, k))

≥ sup
g∈G

Pg,x∗,I∗ (avg(Y(k)) ∈ B(x∗, k))

= sup
avg(Z(k))I∗∈Rq

Px∗ (avg(Z(k)) ∈ B(x∗, k))

= sup
o∈Rq

Px∗
(
avg(Z(k))M\I∗ ∈ B(o, k)

)
, (47)

where B(o, k) with o ∈ Rq is the projected set of B(x∗, k):

B(o, k) , {yM\I∗ : y ∈ B(x∗, k), yI∗ = o}.

Further let B(k) be a set that satisfies:

Lm−q(B(k)) = sup
o∈Rq

Lm−q(B(o, k)),

and for any υ > 0, there exists o ∈ Rq such that

Lm−q(B(k) \ B(o, k)) < υ.

Roughly speaking, B(k) can be viewed as the supremum set.
Then one obtains that

sup
o∈Rq

Px∗
(
avg(Z(k))M\I∗ ∈ B(o, k)

)
≥ Px∗

(
avg(Z(k))M\I∗ ∈ B(k)

)
(48)



13

In the following, we focus on characterizing the term in (48).
Let px∗(·) : Rm−q 7→ R+ be the probability density of
avg(Z(k))M\I∗ conditioned on the underlying state x∗, i.e.,

px∗(z) = N (HM\I∗ ,W{M\I∗}/k, z),

where W = diag(Wi,W2, . . . ,Wm) is the diagonal matrix,
W{M\I∗} (different fromWM\I∗ ) the square matrix obtained
from W after removing all of the rows and columns except
those in the index setM\I∗, and N (µ,Σ,x) the probability
density function of a Gaussian random variable with mean µ
and variance Σ taking value at x. Then one obtains that

Px∗
(
avg(Z(k))M\I∗ ∈ B(k)

)
=

∫
Rm−q

1B(k)(z)px∗(z)dz.

From (46), some basic arguments mainly involving the reg-
ularity theorem for Lebesgue measure and the Heine–Borel
theorem [34] give that there exists γ > 0 such that

Lm−q(B(k)) > γLm−q(Bβ(y∗)M\I∗). (49)

Furthermore, γ can be determined by m,n, q, and β, which is,
in particular, irrelevant to time k. Let Z(x∗, k) ⊆ Bβ(y∗)M\I∗
be the pre-image of (p, p̄) under the function px∗(·), where
p , minz∈Bβ(y∗)M\I∗ px∗(z) is the minimum value3 and p̄ is
such that

Lm−q(Z(x∗, k)) = γLm−q(Bβ(y∗)M\I∗). (50)

Notice that p̄ exists since Lm−q({z : px∗(z) = p}) = 0 for
any p. Then one obtains that

Px∗
(
avg(Z(k))M\I∗ ∈ B(k)

)
≥Px∗

(
avg(Z(k))M\I∗ ∈ Z(x∗, k)

)
. (51)

Notice that the pre-image of an open set under a continuous
function is also open, Z(x∗, k) is thus open. Furthermore,
since both γ and Bβ(y∗) are independent of time k, Z(x∗, k)
will be an nonempty set whatever k is. Therefore, the follow-
ing holds:

lim sup
k→∞

1

k
logPx∗

(
avg(Z(k))M\I∗ ∈ Z(x∗, k)

)
≤ inf
z∈Z(x∗,k)

1

2
(z −HM\I∗x∗)>

(
WM\I∗

)−1
(z −HM\I∗x∗)

= inf
z∈Rm,zM\I∗∈Z(x∗,k)

dx∗(y,M\ I∗)

<u(δ) + ε, (52)

where first inequality is due to the Cramér’s Theorem [35]
and the fact that Z(x∗, k) is open and dx∗(·,M \ I∗) is
the corresponding rate function since the observation noise
wi(k) is i.i.d. across time and independent across the sensors;
the last inequality follows from the definitions of Z(x∗, k)
and Bβ(y∗). Then, combining with (47), (48) and (51), one
concludes the proof.

3Notice that this minimum can be attained since px∗ (z) is a continuous
function and Bβ(y∗)M\I∗ is compact.

C. Achievability

About the estimator f∗δ defined in (11), we have the follow-
ing lemma:

Lemma 13. There holds r(f∗δ , δ) = u(δ).

Proof. Notice that, by the definition of u(δ), for any x, δ
and k, if y ∈ Y(f∗δ , x, δ, k), then dx(y) ≥ u(δ). Recall that
Y(·, ·, ·, ·) is introduced in Definition 6. Let

Y∗(x) , {y : dx(y) ≥ u(δ)}.

Then Y(f∗δ , x, δ, k) ⊆ Y∗(x) holds. Therefore, for any k, x
and I:

sup
g∈G

Pg,x,I (avg(Y(k)) ∈ Y(f∗δ , x, δ, k))

≤ sup
g∈G

Pg,x,I (avg(Y(k)) ∈ Y∗(x))

≤Px
(
avg(Z(k))M\I ∈ Y∗(x)M\I

)
.

Then similar to (52), by the Cramér’s Theorem [35] and the
fact that Y∗(x)M\I is closed, one obtains that

lim inf
k→∞

1

k
logPx

(
avg(Z(k))M\I ∈ Y∗(x)M\I

)
≥ inf
z∈Rm,zM\I∈Y∗(x)M\I

dx(z,M\ I)

= inf
z∈Y∗(x)

dx(z,M\ I)

≥ inf
z∈Y∗(x)

dx(z)

≥u(δ).

Since the above argument holds for any x and I, one concludes
that r(f∗δ , δ) ≥ u(δ). Furthermore, r(f∗δ , δ) is upper bounded
by u(δ) due to Lemma 12, the proof is thus complete.

APPENDIX E
PROOF OF LEMMA 3

Using the same argument as in the proof of Lemma 12, one
readily obtains the second bullet of Lemma 3 from the first
one. Therefore, we focus on the first bullet in the sequel.

The proof is of constructive nature. Since H is not 2q-
observable, without loss of generality, we let HI∗ is not of
full column rank with I∗ = {2q + 1, . . . ,m}. For any δ, let
x1, x2 ∈ Rn be any two vectors such that

HI∗(x2 − x1) = 0, and ‖x2 − x1‖ > δ.

Let I1 = {1, . . . , q} and I2 = {q + 1, . . . , 2q}. We then
construct y∗ as follows:

y∗I∗ = HI∗x1,

y∗I1 = HI1x1,

y∗I2 = HI2x2.

Then it is easy to verify that dx1
(y∗) = dx2

(y∗) = 0. The
proof is thus complete.



14

APPENDIX F
PROOFS OF LEMMAS IN SECTION III-C

Proof of Lemma 4. For any index set I, there holds

dx(y, I) =
1

2
(yI −HIx)>W−1

{I}(yI −HIx)

=
1

2
(
√
W−1
{I}yI −

√
W−1
{I}HIx)>

(
√
W−1
{I}yI −

√
W−1
{I}HIx),

which holds since W−1
{I} is a diagonal matrix. For sim-

plicity of notation, in the remainder of this proof, we let
yw =

√
W−1
{I}yI and Hw =

√
W−1
{I}HI . By orthogonally

projecting yw onto the range of Hw using HwH
+
w , where H+

w

is the pseudo-inverse of Hw, one obtains

dx(y, I) =
1

2
(yw −HwH

+
w yw +HwH

+
w yw −Hwx)>

(yw −HwH
+
w yw +HwH

+
w yw −Hwx). (53)

Notice that (yw −HwH
+
w yw) is orthogonal to (HwH

+
w yw −

Hwx). Furthermore, Wi > 0 for each i, and by Assumption 3,
HI is of full column rank for any I with |I| ≥ m− 2q, Hw

is thus full column rank and H+
w = (H>wHw)−1H>w . One then

obtains (17) from (53). The proof is thus complete.

Proof of Lemma 5. It follows readily from [36, Lemma 2.8]
that a ball Bυ(c) ⊆ Rn covers a full dimensional ellipsoid
{x : (x−x0)>Q(x−x0) ≤ δ2}, where Q ∈ Rn×n is positive
definite and δ > 0, if and only if there exists τ ≥ 0 such that

τ

Q −Qx0 0
∗ x>0 Qx0 − δ2 0
0 0 0

 <

 In −c 0
−c> −υ2 c>

0 c −In

 . (54)

Also, it is clear that a ball Bυ(c) ⊆ Rn covers a point x ∈ Rn
if and only if

(x− c)>(x− c) ≤ υ2,

which, by Schur complement, is equivalent to[
υ2 (x− c)>
∗ In

]
< 0. (55)

Furthermore, for any φ such that I(φ) is not empty, the set
X (y, φ) is a union of some full dimensional ellipsoids (when
the set I+(φ) is not empty) and some single points (when
the set I0(φ) is not empty). Therefore, one can conclude
Lemma 5.

Proof of Lemma 6. It holds that X (y, φ0) ⊆ X (y, φ1) for any
y and φ0 ≤ φ1. Therefore, rad(X (y, φ)) is monotonically
increasing w.r.t. φ.

Let res[i] be the i-th item of the set {res(I) : I ⊆M, |I| =
m−q} sorted in an ascending order. Then by viewing X (y, φ)
as a union of ellipsoids as in (21), one obtains that for any

φ0 ∈
⋃(mq )−1
i=1

(
res[i], res[i+1]

)⋃(
res[(mq )],∞

)
, where (mq )

is the binomial coefficient, the following holds:

lim
φ→φ0

X (y, φ) = X (y, φ0),

and for any φ0 ∈
⋃(mq )
i=1 res[i],

lim
φ→φ+

0

X (y, φ) = X (y, φ0)

holds, where φ → φ+0 means that |φ − φ0| → 0 and φ −
φ0 > 0. Notice also that rad(X (y, φ)) = 0 for all φ ≤ res[1].
Therefore, one can conclude the first two bullets of Lemma 6.

By the first two bullets, in order to obtain the third one, it
suffices to show that when φ is in any of the (mq ) intervals⋃(mq )−1
i=1

(
res[i], res[i+1]

)⋃(
res[(mq )],∞

)
, rad(X (y, φ)) is

strictly increasing w.r.t. φ. Notice that when φ is in any of
these intervals, I0(φ) is empty and I+(φ) remains the same,
and, therefore, the optimal solution ψ∗ (i.e., the square of
rad(X (y, φ))) to the optimization problem in Lemma 5 is
strictly increasing w.r.t. φ. The third bullet is thus concluded
and, therefore, the proof is complete.

APPENDIX G
PROOF OF LEMMA 7

Let x∗, s∗ be the optimal solution to the optimization
problem (26). Further let x ∈ Rn be any vector and I0, I1
the two index sets such that I0 ∪ I1 = supp(s∗), |I0| ≤ q,
and |I1| ≤ q. We then construct the following three quantities
x0, x1 ∈ Rn and y∗ ∈ Rm:

x0 = x− δx∗, x1 = x+ δx∗, (56)
y∗M\supp(s∗) = (Hx)M\supp(s∗), (57)

y∗I0 = (Hx0)I0 , y
∗
I1 = (Hx1)I1 . (58)

Then one verifies that

‖x0 − x1‖2 = 2δ, (59)
dx0

(y∗) ≤ ū(δ), (60)
dx1

(y∗) ≤ ū(δ). (61)

Notice that (60) holds because by the definition of dx0
(y∗)

(i.e., the optimal value of (8)), we have

dx0(y∗) ≤ 1

2

m∑
i=1

(y∗i −Hix0 + ai)
2/Wi,

= ū(δ)

where ai = −Hi(x1 − x0) for i ∈ I1 and ai = 0 for i ∈
M\I1. The equation (61) can be obtained in the same manner.

Therefore, x0, x1 ∈ X (y∗, ū(δ)) by (60) and (61). Combin-
ing (59), one then obtains that

rad(X (y∗, ū(δ))) ≥ δ. (62)

Notice that since ū(δ) = δ2ū(1), we have for any ε, δ > 0,

ū(δ) + ε = ū(δ′),

where δ′ = δ
√

(ū(δ) + ε)/ū(δ) > δ. Then using the same
construction technique as in (56)-(58), one concludes that,
by (62), for any ε > 0, there exists y ∈ Rm such that

rad(X (y, ū(δ) + ε)) = rad(X (y, ū(δ′)))

≥ δ′ > δ.

Therefore, from the definition of u(δ), one obtains that u(δ) ≤
ū(δ) for any δ. The proof is thus complete.
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APPENDIX H
PROOF OF THEOREM 4

The proof is divided into two parts.
Part I. We show that for every y ∈ Rm,

dx(y) ≥ ū(|x− trm(y)|) (63)

holds for every x ∈ R, where recall that ū(δ) is the upper
bound in Lemma 7.

Since the sensors are homogeneous, then without loss of
generality, we let Wi = W/2 for any 1 ≤ i ≤ m. Then one
obtains that

ū(δ) = (m− 2q)δ2/W.

One further obtains that for any y ∈ Rm and x ∈ R,

dx(y) ≥
m−q∑
i=q+1

(y[i] − x)2/W

≥ (m− 2q)(
1

m− 2q

m−q∑
i=q+1

y[i] − x)2/W

= ū(|x− trm(y)|).

Therefore, (63) holds.
Part II. Notice that, for any x, δ and k, if y ∈

Y(f trm, x, δ, k), |x − trm(y)| ≥ δ holds, where Y(·, ·, ·, ·) is
introduced in Definition 6. Then (63) yields that dx(y) ≥ ū(δ)
for every y ∈ Y(f trm, x, δ, k).

Using the same argument as in the proof of Lemma 13, one
obtains that for any δ,

r(f trm, δ) ≥ ū(δ) ≥ u(δ).

Due to the optimality of u(δ), the above equation holds as
equality. The proof is thus complete.
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