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Abstract—In this paper, we address the problem of con-
structing a robust stealthy attack that compromises uncer-
tain cyber-physical systems having unstable zeros. We first
interpret the (non-robust) conventional zero-dynamics at-
tack based on Byrnes–Isidori normal form, and then present
a new robust zero-dynamics attack for uncertain plants. Dif-
ferent from the conventional strategy, our key idea is to
isolate the real zero-dynamics from the plant’s input–output
relation and to replace it with an auxiliary nominal zero-
dynamics. As a result, this alternative attack does not re-
quire the exact model knowledge anymore. The price to pay
for the robustness is to utilize the input and output signals
of the system (i.e., disclosure resources). It is shown that
a disturbance observer can be employed to realize the new
attack philosophy when there is a lack of model knowledge.
Simulation results with a hydro-turbine power system are
presented to verify the attack performance and robustness.

Index Terms—Disturbance observer, robustness, secu-
rity, uncertain system, zero-dynamics attack.

Manuscript received May 3, 2018; revised December 2, 2018; ac-
cepted February 3, 2019. Date of publication March 7, 2019; date of
current version December 3, 2019. This work was supported in part
by Institute for Information & Communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (2014-0-00065,
Resilient Cyber-Physical Systems Research), and in part by National
Research Foundation of Korea (NRF) grant funded by the Korea govern-
ment (Ministry of Science and ICT) (No. NRF-2017R1E1A1A03070342).
K. H. Johansson was partially supported by the Knut and Alice Wal-
lenberg Foundation, the Swedish Strategic Research Foundation, and
the Swedish Research Council. Recommended by Associate Editor Z.
Wang. This paper was presented in part at the material in this paper
was partially presented at the 55th IEEE Conference on Decision and
Control, Las Vegas, USA, December 2016 [1]. (Corresponding author:
Hyungbo Shim.)

G. Park is with the Center for Intelligent and Interactive Robotics, Korea
Institute of Science and Technology, Seoul 136-791, Korea (e-mail:,
gyunghoon.p@gmail.com).

C. Lee is with the Research & Development Division, Hyundai
Motor Company, Gyeonggi-do 18280, Korea (e-mail:, chanhwa.lee@
gmail.com).

H. Shim is with the ASRI, Department of Electrical and Computer
Engineering, Seoul National University, Seoul 08826, Korea (e-mail:,
hshim@snu.ac.kr).

Y. Eun is with the Department of Information & Communication En-
gineering, Daegu Gyeongbuk Institute of Science & Technology, Daegu
47988, Korea (e-mail:,yeun@dgist.ac.kr).

K. H. Johansson is with the ACCESS Linnaeus Centre, School of Elec-
trical Engineering, KTH Royal Institute of Technology, 144 28 Stockholm,
Sweden (e-mail:,kallej@kth.se).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2903429

I. INTRODUCTION

MODERN control systems often have complex structures
integrating physical plants and digital devices, which are

linked through communication networks. These cyber-physical
systems (CPS) offer great opportunities to achieve high cost effi-
ciency and productivity over traditional control systems [2]–[4].

Yet at the same time, CPS are vulnerable to malicious at-
tackers, as nowadays the data networks are easier to access by
anonymous users. Serious cyber threats to CPS already have
taken place in recent years, such as the attacks on the U.S. elec-
tric grid [5] and the Stuxnet malware [6]. In this context, it is
not surprising that security of the CPS has attracted widespread
attention with emerging resilient control and secure estimation
schemes [7]–[12].

With the increased interest, a variety of cyber attack sce-
narios have been studied from a control-theoretic perspective;
e.g., denial-of-service (DoS) attack, replay attack [13], zero-
dynamics attack [7], [8], [14], bias injection attack [7], opti-
mal linear attack [15], switching location attack [16], multi-rate
sampling attack [17], to name just a few. Among various pur-
poses of these attacks, stealthiness is of utter importance to
most adversaries: i.e., when an attack signal enters CPS, its im-
pact should not be detected by any anomaly detector. In view
of the adversary, one approach for achieving stealthiness is to
employ structural information of the plant in the attack design.
For instance, zero-dynamics attack is known as a model-based
attack strategy that remains stealthy [7], [8], [14]. In this attack
scenario, the adversary duplicates exactly the real unstable zero-
dynamics of non-minimum phase plants. As a result, the attack
signal conceals itself in the so-called output-nulling space, even
if a large amount of false data are injected into the plant [7],
[14].

Model-based attacks may easily lose their stealthiness when
the model knowledge is not perfect. Indeed, even small mis-
match between the real and estimated models leaves the zero-
dynamics attack detectable [14]. This fundamental limitation of
model-based attacks has led to recent developments of attack
prevention strategies, such as structural modification schemes
[14], [18]. Furthermore, exact model knowledge is not obtain-
able in many industrial problems, which is another hurdle to the
attacker. If so, are CPS be safe from these lethal stealthy attacks
thanks to model uncertainty?
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Fig. 1. Cyber-physical attack space [10] with model knowledge, dis-
ruption, and disclosure resources: The robust zero-dynamics attack is at
entirely new location.

Interestingly, we find in this paper that it may not be the case
when the attacker employs robust control techniques in their at-
tack designs. Specifically, we address the problem of construct-
ing a robust zero-dynamics attack that is stealthy for uncertain
non-minimum phase plants. Moving away from the traditional
methods, our key idea is: 1) to eliminate the effect of model
uncertainty and the real zero-dynamics from the input–output
relation in the plant’s dynamics, and 2) to build up an auxil-
iary nominal zero-dynamics which replaces the role of the real
counterpart. Then the actual zero-dynamics is left alone while
being unstable, and thus its state trajectory will diverge without
being detected. This new philosophy is realized by regarding the
terms to be eliminated as a so-called lumped disturbance, and
by designing a robust controller that estimates and compensates
the lumped disturbance. Actually, all this can be done by dis-
turbance observer [19], [20], which will play the role of attack
generator in this work. It is worth mentioning that the price to
pay for less model knowledge is the necessity of the control
input and the plant’s output information; in other words, the
proposed robust zero-dynamics attack requires more disclosure
resources [10], as depicted in Fig. 1.

Notation: For column vectors a and b, we write [a; b] for
col(a, b) = [a�, b�]�. For two sets A and B, the distance be-
tween the sets is defined as dist(A,B) := infa∈A,b∈B ‖a− b‖.
In addition, A is said to be strictly larger than B if A ⊃ B and
dist(∂A, ∂B) > 0 where ∂A indicates the boundary of A. For
a square matrixM , Λ(M) indicates the set of the eigenvalues of
M . The zero vector is denoted by 0k ∈ Rk , while 0k×m ∈ Rk×m

and Ik ∈ Rk×k indicate the zero and identity matrices, respec-
tively. For simplicity, we often write them without the subscripts
if their dimensions are obvious.

II. NORMAL FORM-BASED INTERPRETATION OF

ZERO-DYNAMICS ATTACK

Zero-dynamics attack is a systematic methodology to com-
promise a class of CPS whose physical plants are of non-
minimum phase [7], [9], [14], including a variety of mod-
ern control systems such as power generating systems [22],

autopilots for unmanned automated vehicles [23], water level
control systems [24], [25], to name just a few. The basic concept
of the attack is that the attack generator produces a signal based
on the unstable zero-dynamics of the physical plant and injects
its diverging output into the actuator channel. This consequently
leads to two important features: 1) the actual (zero-dynamics)
state diverges as time elapses, and 2) the plant’s state remains
close to the output-nulling space so that the corresponding out-
put is almost zero. By the latter property, the zero-dynamics
attack has been known as a stealthy attack.

In this section, we re-interpret the zero-dynamics attack. In
particular, while the geometric control theory [7] usually has
been employed as a tool for the analysis in the literature, we
here present another way to analyze the attack, based on the
Byrnes–Isidori normal form [21, Ch. 13]. This new approach
will allow us to gain further insight on the attack, especially on
its fundamental limitation against model uncertainty.

A. System Description

Consider a linear single-input single-output (SISO) plant un-
der an actuator attack, especially represented in the Byrnes–
Isidori normal form1

ż = Sz +Gy, (1a)

ẋ = Aν x+ Bν

(
ψ�z + φ�x+ g(u+ a)

)
, (1b)

y = Cν x

where z ∈ Rμ and x ∈ Rn−μ are the states with the relative
degree ν := n− μ ≥ 1, y ∈ R is the output,u ∈ R is the control
input, and a ∈ R is the attack signal that enters the actuator
channel. For an integer i ≥ 1, the matrices Ai , Bi , and Ci are
given by

Ai :=

[
0i−1 Ii−1

0 0�i−1

]

, Bi :=

[
0i−1

1

]

, Ci :=
[
1 0�i−1

]
.

The matrices S, G, ψ, and φ, and the scalar g are with suitable
dimensions. Without loss of generality, it is supposed that (1)
is controllable and observable, and the high-frequency gain g is
positive.

For now, it is assumed that at least one of the eigenvalues
of S lies in the open right half-plane (so that the plant (1)
is of non-minimum phase). Then without loss of generality,
the z-dynamics (1a) can be rewritten (by applying a suitable
coordinate change for z) as

[
żu

żs

]

=

[
Su 0

0 Ss

][
zu

zs

]

+

[
Gu

Gs

]

y (2)

where Su ∈ Rμu×μu and Ss ∈ Rμs×μs are square matrices with
μu ≥ 1 and μs := μ− μu, such that all the eigenvalues of Su

andSs are located in the open right half-plane and the closed left

1Any (strictly proper) SISO linear system can be transformed into the Byrnes–
Isidori normal form [21, Ch. 13]. In this form, the zeros of the transfer function
of the SISO linear system coincide with the eigenvalues of S . For this reason,
ż = Sz is called the zero-dynamics.
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half-plane, respectively. The matrices Gu and Gs are constant
and satisfy G = [Gu;Gs].

The control input u in (1) is supposed to be generated by an
output feedback controller

ċ = Pc+Q(r − y), u = Jc+K(r − y). (3)

Here c ∈ Rm is the controller state, and r ∈ R is the reference
signal, which is bounded and sufficiently smooth with bounded
time derivatives, andP ,Q,J , andK are some constant matrices.
We assume that without the attack (i.e., a(t) ≡ 0), the closed-
loop system (1) and (3) is stable. Note that we are not assuming
the plant (1) is stable.

As introduced in the previous works [7], [14], the zero-
dynamics attack is usually constructed by duplicating the zero-
dynamics of the plant (1). In particular, with the help of the
normal form representation, one can express the attack as

ża = Sza, aza = −1
g
ψ�za (4)

where za =: [za
u ; za

s ] ∈ Rμu+μs is the attacker’s state. (In what
follows, the superscript “a” is used to indicate signals generated
by the adversary.) To activate the unstable mode of the za-
dynamics (4), the initial condition za

u(t0) of the unstable part
is selected as a nonzero vector. (Hereinafter, we denote the
moment when the attack a(t) enters the system as t = t0 .)

B. Performance of Zero-Dynamics Attack

We start the analysis of the attack (4) with a new variable
χ := [x; c] ∈ Rν+m . Then the actual stable closed-loop system
(1) and (3) can be rewritten in a more compact form

ż = Sz +GCχ, (5a)

y = Cχ, χ̇ = Aχ+ Er +B
(
ga+ ψ�z

)
(5b)

where the matrices A, B, C, and E are given by

A :=

[
Aν + Bν

(
φ� − gKCν

)
gBν J

−QCν P

]

, (6a)

B :=

[
Bν

0m

]

, E :=

[
gBνK

Q

]

, C :=
[

Cν 0�m
]
. (6b)

For comparison, by putting a(t) ≡ 0 into (5) we obtain an
(auxiliary) attack-free closed-loop system

żo = Szo +GCχo, (7a)

yo = Cχo, χ̇o = Aχo + Er +Bψ�zo (7b)

where χo =: [xo; co] is the attack-free counterpart of χ.
Now, the nature of the zero-dynamics attack (4) is introduced

in the following proposition.
Proposition 1: The solution [za(t); z(t);χ(t)] of the closed-

loop system (5) under the attack a = aza in (4), initiated in
Rμ × Rμ × Rν+m , satisfies the following statements:

a) For any za(t0) ∈ Rμ such that za
u(t0) �= 0,

‖zu(t)‖ → ∞ as t→ ∞; (8)

b) For the solution [zo;χo] of the attack-free system (7)
initiated at [zo(t0);χo(t0)] = [z(t0);χ(t0)],
∥
∥χ(t) − χo(t)

∥
∥ ≤ k1e

−λ1 (t−t0 )‖za(t0)‖, ∀t ≥ t0

where k1 > 0 and λ1 > 0 are constant. �
Proposition 1 explicitly points out that the zero-dynamics at-

tack (4) is capable of damaging the internal state zu(t) of the
plant. We also note that just a small non-zero initial condition
‖za

u(t0)‖ of the attack generator (4) will do the job, while main-
taining stealthiness in the sense that

‖y(t) − yo(t)‖ = ‖Cχ(t) − Cχo(t)‖ < ε, ∀t ≥ t0 (9)

with a given threshold ε > 0.
Proof: Let us define an error variable z̃ := z − za. It is triv-

ial that ga+ ψ�z = ψ�z̃. It then follows that the closed-loop
system (5) is transformed into

˙̃z = ż − ża = S(z − za) +GCχ = Sz̃ +GCχ, (10a)

χ̇ = Aχ+ Er +Bψ�z̃ (10b)

which has exactly the same (stable) dynamics as the attack-free
one (7). Thus for some positive constants k1 and λ1 ,

∥
∥[z̃(t);χ(t)] − [zo(t);χo(t)]

∥
∥

≤ k1e
−λ1 (t−t0 )

∥
∥[z̃(t0);χ(t0)] − [zo(t0);χo(t0)]

∥
∥

= k1e
−λ1 (t−t0 )‖za(t0)‖

where the last equality results from z(t0) = zo(t0) and χ(t0) =
χo(t0). This directly implies the item (b). On the other hand,
the attacker’s state za(t) generated by (4) with nonzero za

u(t0)
must diverge as time goes on. It means that z(t) = za(t) + z̃(t)
also diverges, because the state z̃(t) of the stable system (10)
remains bounded. This completes the proof. �

Remark 1: From the analysis, it is clear that the lower-order
dynamics ża

u = Suz
a
u and aza = −(1/g)ψ�

u z
a
u (where ψu is a

suitable partition of ψ) is enough to realize the zero-dynamics
attack. �

C. Limitation of Zero-Dynamics Attack Against Model
Uncertainty

It is important to note that exact model knowledge on the plant
(1) is of necessity in the design of the zero-dynamics attack
(4). However, such a requirement is quite unrealistic. This is
because in most industrial systems, it is not always possible
for the attacker (nor for the defender) to obtain the exact plant
model. In other words, it is natural to assume that the physical
plant (1) has model uncertainty.

Assumption 1: The parameters S,G, ψ, φ, and g of the plant
(1) are uncertain, while the uncertain quantities are bounded and
their bounds are known to the attacker.2 In particular, 0 < g ≤
g ≤ g for some constants g and g. �

We assume that the controller (3) is appropriately designed to
robustly stabilize the uncertain plant satisfying Assumption 1.

2The attacker need not know exact bounds of uncertainties. Overestimate
would work.
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From now on, we take a glance at the situation when the
attacker tries to design a zero-dynamics attack, in the presence of
the model uncertainty in Assumption 1. Since the ideal structure
(4) is not available at this stage, a possible alternative would be

ża = Snz
a, aza = − 1

gn
ψ�

n z
a (11)

where Sn,ψn, and gn > 0 are selected as some nominal counter-
parts of S, ψ, and g, respectively. Then, the attack signal aza(t)
is exponentially diverging with rate determined by the unstable
modes of Sn. If these modes are different from the zeros of (5)
(i.e., the eigenvalues of S), then the output y(t) should diverge
with the same exponential rate as those modes. In fact, even
arbitrarily small differences will lead to a diverging output with
fixed rate.

From the discussion so far, it may seem that CPS are safe
from those stealthy attacks because model uncertainty exists in
practice. Unfortunately, we find in the next section that there is
another type of stealthy attack which is robust against model
uncertainty.

Remark 2: When the system (1) has a non-trivial transfer
function and is controllable but unobservable, then the unob-
servable eigenvalues are the transmission zeros. If those zeros
are unstable, then almost all signals a(·) can drive the unob-
servable states unbounded. An example is when φ = 0 and S
is not Hurwitz in (1). This attack does not require the model
knowledge, but we exclude these cases by assuming both con-
trollability and observability because such systems cannot be
stabilized by feedback. �

III. ROBUST ZERO-DYNAMICS ATTACK FOR UNCERTAIN

CYBER-PHYSICAL SYSTEMS

A. Problem Formulation

In what follows, we consider the closed-loop system (1) and
(3) (or equivalently, (5)) where the plant (1) of interest has
parametric uncertainty as in Assumption 1. Also, we suppose
that the initial conditions z(t0) and χ(t0) of the closed-loop
system (5) belong to some compact sets Z0 ⊂ Rμ and X0 ⊂
Rν+m , respectively.

The following (attack-free) nominal plant of (1) is taken into
account:

żn = Snzn +Gnyn,

ẋn = Aν xn + Bν

(
ψ�

n zn + φ�n xn + gnun
)
,

yn = Cν xn (12)

where zn ∈ Rμ and xn ∈ Rν are the nominal states, yn ∈ R is
the nominal output, and un ∈ R is the nominal input, which is
generated by the existing control law (3) as

ċn = Pcn +Q(r − yn), un = Jcn +K(r − yn) (13)

where cn represents the nominal state of the controller. The
parameters Sn,Gn, ψn, φn, and gn > 0 are nominal counterparts
of the actual (uncertain) S,G, ψ, φ, and g > 0, respectively, and
these are the attacker’s selection. The nominal model (12) is of
course different from the real plant (1), but it is assumed that

the parameters of (12) are within the uncertainty bounds of
Assumption 1, so that both (1) and (12) have the same relative
degree and the same sign of high-frequency gains g and gn. It will
be seen that the plant (1) behaves like the nominal model (12)
by the initiation of the proposed attack. In this context, it may be
better for stealthiness if the nominal model (12) coincides with
a design model used for designing the controller (3) (which,
however, requires that the design model is leaked to the attacker
a priori). For brevity, we often express the nominal closed-loop
system (12) and (13) with χn := [xn; cn] as

żn = Snzn +GnCχn, (14a)

yn = Cχn, χ̇n = Anχn + Enr +Bψ�
n zn (14b)

where An and En are the same as A and E defined in (6), with
S, G, ψ, φ, and g being replaced by their nominal counterparts.

We note in advance that similar to (7), the nominal closed-
loop system (14) (or equivalently (12) and (13)) will play the
role of a reference system in the attack design. For this, the
nominal closed-loop system (14) is supposed to be stable; i.e.,
the matrix

[
Sn GnC

Bψ�
n An

]

(15)

is Hurwitz.
Now, motivated by Proposition 1, we formulate the problem

of our interest with respect to the uncertain plant.
Problem Statement: For given zu > 0 and ε > 0, construct

a robust attack generator

q̇a = Φ(qa, u, y), a = Ψ(qa, u, y) (16)

that achieves the following properties simultaneously for all
admissible model uncertainties in Assumption 1:

a) ‖zu(t)‖ becomes eventually larger than zu > 0 within a
finite time t = tfin ≥ t0 ;

b) ‖y(t) − yn(t)‖ is smaller than the threshold ε > 0 until
the attack succeeds (i.e., for all t0 ≤ t ≤ tfin). �

The items in Problem Statement can be interpreted as some
refinements of those in Proposition 1. On one hand, item (a)
indicates the capability of the attack (16) to damage the plant’s
internal state z(t). Here, zu is one of the attacker’s design spec-
ifications. On the other hand, a new notion of stealthiness is
introduced in item (b). Indeed, the actual output y(t) under at-
tack is compared with the output yn(t) of the nominal system
(14), rather than with yo(t) of the (attack-free) uncertain system
(5) as in Proposition 1. At first glance, it may seem that item
(b) easily fails if the model uncertainty is large. However, this
is often not the case even for large model uncertainty, as long as
the existing controller (3) is robust against the parametric uncer-
tainties of Assumption 1. In fact, when a tracking or regulating
problem is (robustly) solved by (3) for both actual and nominal
systems (with no attack), their outputs yn(t) and yo(t) reach
the same reference r(t) in the end. It means that yn(t) ≈ yo(t)
during the steady-state operation of the system when the attack
is usually initiated. In summary, we claim in this paper that the
new stealthiness is also valid if the uncertainty is not large or if
the attack (16) enters the system in the steady state.
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Remark 3: The stealthiness defined in Problem Statement
is basically approximate in the sense that tfin �= ∞ and ε �= 0.
Nonetheless, this approximation is enough for the attackers to
remain undetected in practice, as long as: 1) the threshold ε is
of the order of measurement noise, and 2) the attack detector
is designed based on the corrupted output measurement y(t);
e.g., the observer-based fault detector in [26] consisting of a
Luenberger observer

[
˙̂z
˙̂x

]

= Ân

[
ẑ

x̂

]

+ B̂nu− L̂n

(

Ĉn

[
ẑ

x̂

]

− y

)

(17a)

for the (attack-free) nominal model (12) of (1), and a residual
signal

r̂n(t) = Ĉn

[
ẑ(t)
x̂(t)

]
− y(t) (17b)

to be monitored, in which

Ân :=

[
Sn GnCν

Bν ψ
�
n Aν + Bν φ

�
n

]

,

B̂n := [0ν ; gnBν ], Ĉn := [0�n−ν ,Cν ], and L̂n is the observer gain
matrix satisfying that Ân − L̂nĈn is Hurwitz. Indeed, under
the item (b) of Problem Statement, one can readily rewrite the
attacked output y(t) as y(t) = yn(t) + w(t) where w(t) is a
(noise-like) signal such that ‖w(t)‖ < ε for all t0 ≤ t ≤ tfin. In
that case, with the output feedback-based detectors like (17), it is
hardly possible to distinguish the effect of the attack from that of
the actual noise (at least until the attack succeeds) [26]. Similar
conclusion can be made with the conventional zero-dynamics
attack in Section II, which satisfies (9). �

We further remark that, different from traditional zero-
dynamics attack (4), the attack generator (16) explicitly makes
use of the signals u and y. This is in fact the price to pay for
the robustness against model uncertainty; i.e., instead of using
less model knowledge, the attacker relies more on the input and
output information of the plant to adjust to uncertain environ-
ment on-line. In short, more disclosure resources are needed as
follows.

Assumption 2: The plant output y(t) and the control input
u(t) are available to attackers. �

In addition, for a technical reason, we restrict our atten-
tion on the non-minimum phase systems with hyperbolic zero-
dynamics.

Assumption 3: At least one of the eigenvalues of S lies in the
open right half-plane, and none of the eigenvalues are located
on the imaginary axis of the complex plane. �

To distinguish (16) from the (non-robust) zero-dynamics at-
tack (4), we call (16) a robust zero-dynamics attack. Overall
configurations of these attack scenarios are depicted in Fig. 2.

B. A New Attack Policy on Unstable Zero-Dynamics

As an intermediate step, in this subsection we provide a new
attack strategy on the non-minimum phase plant (1). It is noted
in advance that the method to be provided here is not realizable
yet, but we will shortly make it feasible in the next section.

Fig. 2. Configurations of two different attack scenarios: The zero-
dynamics attack (4) requires the exact model knowledge, while the ro-
bust zero-dynamics attack (16) instead utilizes the disclosure resources
(i.e., u and y). (a) Conventional zero-dynamics attack (4). (b) Robust
zero-dynamics attack (16).

The first task is, using the information of the output y, to
duplicate the nominal zn-dynamics (18) as the form

ża
n = Snz

a
n +Gny (18)

where za
n(t0) is chosen in Z0 . With the auxiliary state za

n and the
nominal components ψn, φn, and gn, one can rewrite the time
derivative of xν in (1b) as

ẋν = ψ�z + φ�x+ g(u+ a) (19a)

= ψ�
n z

a
n + φ�n x+ gnu+ g(a− a�) (19b)

where a� ∈ R is defined as

a� :=
1
g

(− ψ�z + ψ�
n z

a
n + (φ�n − φ�)x+ (gn − g)u

)
. (20)

Then the actual closed-loop system (5) (i.e., (1)–(3)) with the
auxiliary dynamics (18) can be equivalently represented using
(20) by

ż = Sz +GCχ (same as (2)), (21a)

ża
n = Snz

a
n +GnCχ, (21b)

χ̇ = Anχ+ Enr +B
(
g(a− a�) + ψ�

n z
a
n

)
, (21c)

y = Cχ. (21d)

For now, we suppose that a� is available to the attacker, from
which the attack signal a is constructed as

a(t) = a�(t), ∀t ≥ t0 . (22)

It should be emphasized that under the attack a = a� , the
(za

n , χ)-dynamics (21b)–(21d) is exactly the same as the nom-
inal closed-loop system (14) where the auxiliary za

n-dynamics
disguises as the plant’s internal dynamics. At the same time,
the attack a = a� in (22) leaves the real (unstable) z-dynamics
(21a) decoupled from (21b)–(21d) so that the real internal state
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z(t) possibly diverges. The discussion so far is summarized in
the following proposition.

Proposition 2: The solution [z(t); za
n(t);χ(t)] of the closed-

loop system (5) under the attack (18), (20), and (22), initiated
in Z0 ×Z0 ×X0 , satisfies the following statements:

a) For almost every [z(t0); za
n(t0);χ(t0)],3

‖zu(t)‖ → ∞ as t→ ∞; (23)

b) For the solution [zn;χn] of the nominal system (14) initi-
ated at [zn(t0);χn(t0)] = [za

n(t0);χ(t0)],
[
za

n(t);χ(t)
]

=
[
zn(t);χn(t)

]
, ∀t ≥ t0 .

Moreover, [zs(t); za
n(t);χ(t)] ∈ Zs ×Zn ×X for all t ≥ t0

where Zs ⊂ Rμs , Zn ⊂ Rμ , and X ⊂ Rν+m are some compact
sets. �

Proof: The item (b) is trivial and omitted. From (b), the last
statement also follows straightforwardly since r(t) is uniformly
bounded. Now, for (a), let us define some matrices

As :=

⎡

⎢
⎣

Ss 0 GsC

0 Sn GnC

0 Bψ�
n An

⎤

⎥
⎦, C :=

[
0�μs

0�μ C
]
,

B :=

⎡

⎢
⎣

0μs

0μ
B

⎤

⎥
⎦, Es :=

⎡

⎢
⎣

0μs

0μ
En

⎤

⎥
⎦. (24)

Notice that As is Hurwitz. By this, one obtains the unique solu-
tion T ∈ Rμu×(μs+μ+ν+m ) of the Sylvester equation

TAs − SuT +GuC = 0. (25)

With these symbols and the coordination transformations

ζs := [zs; za
n ;χ] and ζu := zu + Tζs, (26)

we newly represent the overall system (21) as

żu = Suzu +GuCζs (27)

ζ̇s = Asζs +Esr +Bg(a− a�). (28)

Differentiating ζu along with these two dynamics gives

ζ̇u = żu + T ζ̇s

=
(
Suzu +GuCζs

)
+ T

(
Asζs + Esr +Bg(a− a�)

)

= Suζu + TEsr + TBg(a− a�). (29)

It is then clear that under a(t) ≡ a�(t), the above ζu- and
ζs-dynamics become

ζ̇s = Asζs + Esr, and ζ̇u = Suζu + TEsr, (30)

respectively, so that both are decoupled from each other. Among
them, the ζu-dynamics is anti-stable (i.e.,Su is anti-Hurwitz) and

3Throughout this paper, the statement “a property is satisfied for almost
every υ (in U ⊂ Rn )” should be interpreted as “a property is satisfied for every
υ ∈ U ⊂ Rn except those in a subset U� of Rn whose (Lebesgue) measure is
zero.” Note that any set U� ⊂ Rn whose dimension is smaller than n has the
measure zero.

the external signal r(t) is bounded. Then, almost all trajectories
ζu(t) diverge as time goes on: more precisely, the divergence
of ζu(t) occurs for all admissible initial condition ζu(t0) except
only one point

ζu(t0) = −
∫ ∞

t0

e−Su(v−t0 )TEsr(v)dv =: ζ�u,0 (31)

(which is well-defined because −Su is Hurwitz). This excep-
tional initial condition generates the bounded solution of (29)

ζ�u (t) = −
∫ ∞

t

e−Su(v−t)TEsr(v)dv, ∀t ≥ t0 . (32)

(The readers are referred to [29], [30] for more details on the
bounded solution ζ�u (t) for anti-stable system.)

Once ζu(t) diverges as time goes on, zu(t) = ζu(t) − Tζs(t)
also does because ζs(t) is bounded. Finally, one can summarize
the above arguments that (23) holds if [z(t0); za

n(t0);χ(t0)] ∈(Z0 ×Z0 ×X0
) \ L�za,0 with the set

L�za,0 :=
{[
z(t0); za

n(t0);χ(t0)
]

:

zu(t0) + T
[
zs(t0); za

n(t0);χ(t0)
]

= ζ�u,0

}
,

which concludes the proof. �
Remark 4: Item (a) of Proposition 2 highlights that unlike

the conventional attack (4), the present one (22) might fail to
damage the internal state zu(t) for the specific initial conditions
[z(t0); za

n(t0);χ(t0)] ∈ L�za,0 , defined in the proof above. Worse
yet, it is rarely possible to compute L�za,0 a priori, since ζ�u,0
is determined by the future information of the external input
r(t) (so ζ�u (t) is non-causal). Nonetheless, this may not be a
big problem to the adversary. Indeed, the Lebesgue measure of
L�za,0 is zero, which means that this unwanted scenario hardly
occurs. �

Remark 5: The effect of the attack (20) at time t0 is to re-
place the uncertain parameters and the state z in (19a) with the
nominal ones and the state za

n as in (19b). As a result, it is like
replacing the zero-dynamics (21a) with (21b) at time t0 . In or-
der to make this abrupt change as invisible as possible from the
output response, it would be better to have za

n(t0) ≈ z(t0). This
is possible in some situations: 1) the overall system is already in
the steady state (i.e., y(t) ≈ r(t)) before the attack is injected
so that the value of z is easily guessed (at least approximately);
or 2) the model uncertainty is not too large to run a state ob-
server before the initiation of the attack using the information
of y and u. If the attacker is not able to set za

n(t0) close to
z(t0), then a control action of (3) may cause a transient from
t = t0 . More discussion can be found in Section IV with some
simulations. �

Even though the new attack policy (22) seems to resolve the
considered problem directly (as in Proposition 2), there is still
a huge gap between (22) and the desired attack generator (16).
This is because a� used in (22) is composed of uncertain pa-
rameters and unmeasured states and thus it is not obtainable
in general. Yet, surprisingly, we observe that the considered
situation is analogous to one in robust control theory. Indeed,
a�(t) represents the discrepancy between the actual and nominal
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plants, which has been known in the literature under the name
of lumped disturbance (or total disturbance) [19], [27]. From
this viewpoint, the problem of our interest can be converted into
how to design a robust controller that estimates and compen-
sates the lumped disturbance a� . Motivated by this, in the next
section we will construct a disturbance observer [19], [20] as
the robust attack generator (16). We note in advance that the
disturbance observer to be presented will estimate and compen-
sate the lumped disturbance a�(t) (approximately but) quickly
and accurately enough, from which the ideal attack policy (22)
will be recovered in a practical sense.

C. Design of Robust Zero-Dynamics Attack Based on
Disturbance Observer Technique

For the design of the attack generator (16), we first com-
pute some bounds for the state variables of the overall system.
Take compact sets Ẑn ⊂ Rμ and X̂ ⊂ Rν that are strictly larger
than the bounded sets Zn and X in Proposition 2. Without loss
of generality, these sets are selected large enough to satisfy
dist(∂Zn, ∂Ẑn) > ε and dist(∂X , ∂X̂ ) > ε (where ε is given
in Problem Statement). We also choose a compact set Ẑs ⊃ Zs

such that the state trajectory zs(t) of (1a) belongs to Ẑs for all
initial condition z(t0) ∈ Z0 and for all χ(t) ∈ X̂ . In addition,
select a positive constant zu to be larger than the attack speci-
fication zu in Problem Statement. It will be shown shortly that
the state variable remains bounded as

‖zu(t)‖ ≤ zu and
[
zs(t); za

n(t);χ(t)
] ∈ Ẑs × Ẑn × X̂ (33)

until the attack (16) succeeds (in the sense of item (a) in Problem
Statement).

With these bounds, we consider the set

A :=
{
a� in (20) :

[
zu; zs; za

n ;χ
]

is bounded as (33)
}

which contains all possible values of a� of (20) with respect
to the model uncertainty, the (bounded) state variables, and
the values of r(t). The set A is clearly bounded under the
assumptions. Since computing the exact A can be a difficult
task, we instead choose any compact set Â strictly larger than
A, which is enough for the design of the attack generator.

On top of that, some components to be used in the disturbance
observer design are introduced below. First, let us choose a
saturation function s̄ : R → R that is of C1 and bounded, and
satisfies4

s̄(â) = â, ∀â ∈ Â and 0 ≤ ∂s̄

∂â
(â) ≤ 1, ∀â ∈ R. (34)

Also, define a diagonal matrix Γ(τ) := diag(τ, τ 2 , . . . , τ ν ) ∈
Rν×ν which is invertible for any positive constant τ . (Here, τ
is a design parameter to be determined in Theorem 1.) Next,
choose bi , i = 0, . . . , ν − 1, such that the transfer function

W (s) :=
sν + bν−1s

ν−1 + · · · + b1s+ (g/gn)b0
sν + bν−1sν−1 + · · · + b1s+ (g/gn)b0

(35)

4In other words, s̄ is any smooth bounded function whose slope is limited by
one and which is identity on Â.

is strictly positive real where g and g are the bounds of g in
Assumption 1.

Remark 6: Such coefficients bi can always be obtained in
the following two steps. First, simply select b1 , . . . , bν−1 such
that sν−1 + bν−1s

ν−2 + · · · + b1 is Hurwitz. After that, choose
sufficiently small b0 > 0 such that the Nyquist plot of

G1(s) =
b0

sν + bν−1sν−1 + · · · + b1s

does not encircle the disk in the complex plane whose diameter
is the real line segment between −gn/g and −gn/g. For more
details, see [20]. �

Finally, following the design methodology of [28], we pro-
pose the robust zero-dynamics attack (16) as the za

n-dynamics
(18) and

ṗa =
(
Aν − Γ−1βCν

)
pa +

b0
τν

Bν

(
u+ arza +

1
gn
ψ�

n z
a
n

)

+
b0
τν

1
gn

(
φn + Γ−1β

)
y, (36a)

arza = s̄

(
Cν p

a − b0
τν

1
gn
y

)
(36b)

where pa ∈ Rν and za
n ∈ Rμ are the states of the attack gen-

erator, φn := [φn,ν ; · · · ;φn,1 ] ∈ Rν and β := [bν−1 ; · · · ; b0 ] ∈
Rν . It is noted that the output arza ∈ R will serve as an estimate
of a� . We take pa(t0) in a compact set P0 ⊂ Rν while za

n(t0)
belongs to Z0 . (While P0 can be any compact set, for example,
P0 = {0} would work, it is preferred to have za

n(t0) ≈ z(t0) as
discussed in Remark 5.)

The following theorem describes our main result that the
proposed attack (18) and (36) recovers the attack performance
of the ideal attack policy (22) in a practical sense, while being
robustly stealthy against model uncertainty.

Theorem 1: Suppose that Assumptions 1–3 hold. Then for
given zu > 0 and ε > 0, there exists τ > 0 such that the solution
[z(t); za

n(t);χ(t); pa(t)] of the closed-loop system (5) under the
robust zero-dynamics attack a = arza in (18) and (36) with τ ∈
(0, τ), initiated in Z0 ×Z0 ×X0 × P0 , satisfies the following
statements:

a) For almost every [z(t0); za
n(t0);χ(t0); pa(t0)], there ex-

ists tfin ≥ t0 such that

‖zu(tfin)‖ > zu; (37)

b) For the solution [zn;χn] of the nominal system (14) initi-
ated at [zn(t0);χn(t0)] = [za

n(t0);χ(t0)],
∥
∥[za

n(t);χ(t)
]− [zn(t);χn(t)]

∥
∥ < ε (38)

for t0 ≤ t ≤ tfin. �

D. Proof of Theorem 1

The rest of this section is devoted to the proof of Theorem 1,
which is outlined as follows. In Lemma 1, we first introduce
a coordinate change for the attacker’s state pa, denoted by η,
which serves as an error variable between arza and a� in a
sense. After that, Lemma 2 carries out the stability analysis
of the η-dynamics, by which it is seen that the attack signal
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arza(t) quickly converges to and remains close to a�(t) as long
as ‖zu(t)‖ ≤ zu and τ is chosen sufficiently small. Then the
remainder of the proof is motivated by Proposition 2 in which
a(t) is set as the ideal attack a�(t) (i.e., a(t) ≡ a�(t)). Based on
the Lyapunov argument, it is shown that after the convergence
of arza(t), the actual state [za

n(t);χ(t)] behaves similar to the
nominal one [zn(t);χn(t)] until the attacker succeeds (and thus
the attack remains stealthy for a while). Finally, we observe that
the remaining state zu(t) of the plant eventually encounters the
set {zu : ‖zu‖ = zu} with a larger threshold zu > zu, for almost
every initial condition of the overall system.

To this end, we represent the attacked closed-loop system into
the singular perturbation form [21].

Lemma 1: With the coordinate changes (26) and

η1 = pa
1 −

b0
τν

1
gn
y − a� , (39a)

ηi = τ i−1
(
pa

1
(i−1) − b0

τν
1
gn
y(i−1)

)
, i = 2, . . . , ν, (39b)

the overall system (5), (18), (36), and a = arza is transformed
into the standard singular perturbation form:

(28), (29), and

τ η̇ =
(
Aν − Bν β

�)η + b0Bν

(
g − gn

gn

)
ã− τ

[
ȧ�

0ν−1

]
(40)

where β := [b0 ; · · · ; bν−1 ] ∈ Rν and

ã := −arza + a� = −s̄(Cνη + a�
)

+ a� . (41)

�
The proof of Lemma 1 is found in the Appendix.
With τ regarded as a perturbation parameter, from now on we

call η the fast variable, while the other states the slow variables.
The following lemma indicates that as long as the slow variables
remain in the region of interest, the fast variable η approaches
the boundary layer η = 0 during transient period.

Lemma 2: Suppose that [z(t); za
n(t);χ(t)] is bounded as in

(33) for t ≥ t0 . Then η(t) satisfies

‖η(t)‖ ≤ k2e
−λ2 ((t−t0 )/τ )‖η(t0)‖ + κ(τ),∀t ≥ t0 , (42)

for some positive constants k2 and λ2 , and a class-K function
κ : R → R. �

Proof: For convenience, define a (time-varying) nonlinear
function

sg(v, t) :=
g − gn

gn

[
s̄(v + a�(t)) − a�(t)

]
.

Then, under the hypothesis of the lemma, sg(0, t) ≡ 0 and

g − gn

gn
≤ ∂sg

∂v
=
g − gn

gn

∂s

∂v
≤ g − gn

gn

by the construction of s̄. Thus, sg(v, t) belongs to the sector
[(g − gn)/gn, (g − gn)/gn]. Now, in the frame of scaled time
σ := t/τ , the time derivative of η with respect to σ is computed
by

dη

dσ
=
(
Aν − Bν β

�)η − b0Bν sg(Cν η, t) − τ

[
ȧ�

0ν−1

]
(43)

in which t = τσ.

Regarding τ [ȧ� ; 0ν−1 ] as a perturbation term that vanishes
when τ = 0, we concentrate on the stability of the unperturbed
η-dynamics (i.e., (43) with τ = 0), which has the form of a
Lur’e-type nonlinear system

dη

dσ
=
(
Aν − Bν β

�)η + b0Bν û, ŷ = Cν η (44)

and a nonlinearity û = −sg(ŷ, t). It is noted that the transfer
function of the linear part (44) is computed by

Cν

(
sIν − Aν + Bν β

�)b0Bν

=
b0

sν + bν−1sν−1 + · · · + b0
=: G2(s).

This implies that the transfer function

1 + ((g − gn)/gn)G2(s)
1 + ((g − gn)/gn)G2(s)

is the same as W (s), and thus it is strictly positive real. The
circle criterion [21, Th. 7.1] concludes that the origin of the
unperturbed η-dynamics (44) is globally exponentially stable,
for which a quadratic Lyapunov function Vf(η) exists.

Finally, one can easily obtain the lemma by differentiating the
Lyapunov function Vf along with the perturbed system (43) and
by noting that ȧ� is a Lipschitz function of the state variables
and the external inputs r and ṙ. �

For further analysis, we define an error variable [z̃a
n ; χ̃] :=

[za
n − zn;χ− χn] on the slow variables, whose time derivative

is given (from (14) and (21)) by
[

˙̃za
n

˙̃χ

]

=

[
Sn GnC

Bψ�
n An

][
z̃a

n

χ̃

]

−
[

0

B

]

gã. (45)

We remark that (45) is a stable linear system with an addi-
tional external signal ã(t). In particular, one has a Lyapunov
function Vs(z̃a

n , χ̃) := [z̃a
n ; χ̃]�Ps[z̃a

n ; χ̃] where Ps = P�
s > 0

satisfies

Ps

[
Sn GnC

Bψ�
n An

]

+

[
Sn GnC

Bψ�
n An

]�
Ps = −I.

By differentiating Vs along with (45), we readily have

V̇s < −λ3Vs + k3‖ã‖ (46)

where λ3 and k3 are some positive constants. We note that
the initial value of Vs is zero, because the nominal trajectory
[zn(t);χn(t)] of interest is initiated at the same point as the real
one [za

n(t);χ(t)]. In addition, due to the saturation function s̄,
ã has a bounded value at t = t0 independent of η. From these
facts, one can select ttr > t0 sufficiently small such that

Vs
(
z̃a

n(t), χ̃(t)
)
< (ε2/2)min(Λ(Ps)), ∀t0 ≤ t ≤ ttr. (47)

Then the inclusions in (33) are satisfied for t0 ≤ t ≤ ttr. Notice
that the inequality (38) in Theorem 1 naturally holds during
the transient period t0 ≤ t ≤ ttr. Keeping this in mind, in what
follows we focus on the reduced time period t ≥ ttr.

Firstly, we claim that if the slow variables are bounded as
in (33) for t ≥ ttr, then the fast variable η(t) with small τ re-
mains around the boundary layer η = 0 for that time period.
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Indeed, it follows from (39) that η(t0) has the form of a poly-
nomial of 1/τ whose coefficients are determined by the initial
conditions of the state variables. In particular, with τ ∈ (0, 1)
we have ‖η(t0)‖ ≤∑ν

j=0 hj/τ
j where positive constants hj ,

j = 0, . . . , ν, are independent of τ . Lemma 2 implies that

‖η(t)‖ ≤ k2e
−λ2 ((t tr−t0 )/τ )

ν∑

j=0

hj
τ j

+ κ(τ) =: κ(τ), ∀t ≥ ttr

(48)
where κ : R>0 → R>0 is continuous on τ and satisfies κ(τ) →
0 as τ → 0 (because ttr − t0 > 0). This concludes the claim.
For further analysis, we particularly choose 0 < τ 1 < 1 such
that for all 0 < τ < τ 1 , the function κ(τ) satisfies

κ(τ) ≤ min
(
δ, (λ3/k3)ε2min(Λ(Ps))

)
(49)

where δ > 0 is a small constant such that

a� ∈ A and ‖η‖ < δ ⇒ s̄
(
a� + Cν η

)
= a� + Cν η.

Note that such δ always exists, since the saturation level set Â
of s̄ is selected strictly larger than A.

Next, we argue that for each 0 < τ < τ 1 , the inequality (38)
holds (and thus a�(t) belongs to A) until ‖zu(t)‖ ≤ zu is vio-
lated. To see this, it should be noted that if (33) holds for t ≥ ttr,
then it follows from (46), (48), and (49) that

V̇s < −λ3
(
Vs − ε2min(Λ(Ps))

)
.

This implies that the set

V :=
{
[z̃a

n ; χ̃] : Vs(z̃a
n , χ̃) ≤ ε2min(Λ(Ps))

}

is positively invariant. The proof of the argument is complete
by noting that the error variable [z̃a

n(t); χ̃(t)] is located inside V
at t = ttr, and that

‖[z̃a
n ; χ̃]‖ < ε ⇒ [za

n ;χ] = [zn + z̃a
n ;χn + χ̃] ∈ Ẑn × X̂ .

At last, we complete the proof of the theorem by showing
that with sufficiently small τ , there exists a finite time t = tfin
such that the partial state zu(t) satisfies (37) for almost every
[z(t0); za

n(t0);χ(t0); pa(t0)] in Z0 ×Z0 ×X0 × P0 . It is obvi-
ous from the arguments so far that as long as ‖zu(t)‖ ≤ zu and
0 < τ < τ 1 , the saturation function s̄ is inactive for t ≥ ttr. Then
one has ã = −Cν η and ȧ� = H1η +H2 [ζu; ζs] +H3 [r; ṙ] for
some constant matricesHi , i = 1, 2, 3. It follows that the overall
(transformed) system (28), (29), and (40) turns out to be linear;
in particular,

τ η̇ =
(
Aν − Bν β

�
g

+ τH1
)
η + τH2

[
ζu

ζs

]

+ τH3

[
r

ṙ

]

(50)

where

β
g

:= β +
g − gn

gn
b0Cν = [

(
g/gn

)
b0 ; b1 ; · · · ; bν−1 ] ∈ Rν .

For further analysis, let us consider the non-symmetric algebraic
Riccati equation

[
Es

0

]

+X

(
Aν − Bν β

�
g

+ τH1

)

− τ

[
Su 0

0 As

]

X − τRH2X = 0. (51)

Here, since the matrix Aν − Bν β
�
g

is Hurwitz, it follows from
[31, Sec. 2.2] that there exists 0 < τ ≤ τ 1 such that for fixed τ ∈
(0, τ), the solution X = X(τ) of (51) is uniquely determined
and its norm is bounded. Using this, we now take τ ∈ (0, τ) and
define a coordinate change

[ζ̂u; ζ̂s] := [ζu; ζs] + τXη

Then with X =: [Xu;Xs] ∈ Rμu×ν × R(μs+n+m )×ν , it is easy
to see that for t ≥ ttr,
⎡

⎣
˙̂
ζu

˙̂
ζs

⎤

⎦ =

[
Su 0

0 As

][
ζ̂u

ζ̂s

]

+

[
TEs

Es

]

r + τ

[
XuH3

XsH3

][
r

ṙ

]

.

(52)

Observe that the above ζ̂u-dynamics is an anti-stable linear sys-
tem with the bounded external signal r. Thus similar to the case
of Proposition 2, one has

zu(t) = ζ̂u(t) − Tζs(t) − τXuη(t)

diverges as time goes on, as long as

ζ̂u(ttr) �= −
∫ ∞

t tr

e−Su(v−t)
(

TEsr(v) + τXuH3

[
r(v)

ṙ(v)

])

dv

=: ζ̂�u,tr.

To find out the exceptional case at the initial time t = t0 (rather
than at t = ttr), let us consider the backward solution of the ζ̂u-
dynamics in (52). If the solution is initiated at ζ̂u(ttr) = ζ̂�u,tr, the

corresponding value ζ̂u(t0), denoted by ζ̂�u,0 , is uniquely deter-
mined. Using this, we can summarize that zu(t) must diverge if
[z(t0); za

n(t0);χ(t0); pa(t0)] is not located in a Lebesgue mea-
sure zero set L�rza,0 on which ζ̂u(t0) = ζ̂�u,0 holds.

IV. SIMULATION RESULTS: POWER GENERATING SYSTEMS

We consider the scenario when a malicious attack enters a
power generating system with a hydro turbine [32], [22], as
depicted in Fig. 3. A state-space representation of the plant is
given by

ξ̇1 = −(1/Tlm)ξ1 + (Klm/Tlm)(ξ2 − 2ξ3), (53a)

ξ̇2 = −(2/Th)ξ2 + (6/Th)ξ3 , (53b)

ξ̇3 = −(1/Tg)ξ3 + (1/Tg)
(
u+ a− (1/R)ξ1

)
, (53c)

whereu is the input, y = ξ1 is the output, and ξ := [ξ1 ; ξ2 ; ξ3 ] :=
[Δf ;ΔP + 2ΔX;ΔX] is the state consisting of the frequency
deviation Δf (Hz), the change in generator output ΔP (p.u.),
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Fig. 3. Configuration of a power generating system with a hydro turbine
[22].

and the change in governor valve position ΔX (p.u.). The
constants Tlm, Th, and Tg indicate time constants of load and
machine, hydro turbine, and governor, respectively, and R
(Hz/p.u.) is the speed regulation due to the governor action. The
detailed parameters of the plants are given byKlm = 1, Tlm = 6,
Tg = 0.2, and R = 0.05, while Th ∈ [4, 6] is uncertain [22]. To
robustly regulate the output of the uncertain plant, the control
input u is generated by a (band-limited) PID-type controller
K(s) = (1.8124s2 − 18.8558s+ 0.1523)/(0.01s2 + s).

For the attack design, with a suitable coordinate change

x1 := ξ1 ,

x2 := −(1/Tlm)ξ1 + (Klm/Tlm)ξ2 − (2Klm/Tlm)ξ3 ,

z := ξ2 + (3Tlm/Th)(1/Klm)ξ1 ,

we transform (53) into the Byrnes–Isidori normal form (1) as
follows:5

ż = Sz +Gy, (54a)

ẋ1 = x2 , (54b)

ẋ2 = ψ�z + φ�x+ g(u+ a) (54c)

where

φ1 = − 3
TlmTh

− 3
T 2

h
− 1
TlmTg

− 3
TlmTh

+
1
R

2Klm

Tlm

1
Tg
,

φ2 = − 1
Tlm

− 3
Th

− 1
Tg
,

ψ =
Klm

Tlm

1
Th

+
Klm

Tlm

1
Tg
, g = −2Klm

Tlm

1
Tg
,

S =
1
Th
, G = − 3

Klm

1
Th

− 3Tlm

Klm

1
T 2

h
.

Note that the resulting parameters φ, ψ,G, and S depend on Th,
and thus, are all uncertain, and that S = 1/Th > 0 so that the
power generating system (53) is of non-minimum phase. It can
also be seen that Δf = x1 , ΔP is a linear function of x1 and
x2 , and ΔX is a linear function of x1 , x2 , and z. Hence, with
diverging z(t), only ΔX(t) diverges when x1(t) and x2(t) are
bounded. So, the goal of the adversary is set to enforce the valve
position ΔX to become larger than 1 (p.u.) eventually, while

5The detailed derivation of the normal form representation and
the simulation files can be found in http://hdl.handle.net/10371/139645
and https://github.com/CDSL-GitHub/RobustZeroDynamicsAttack-Sim, re-
spectively.

Fig. 4. Simulation results with the conventional zero-dynamics attack
(11) when Th = 4 = Th,n (black dashed), Th = 5 (red dash-dotted), and
Th = 6 (blue solid). (a) Frequency deviation Δf (Hz). (b) Change in valve
position ΔX (p.u.). (c) Conventional zero-dynamics attack aza (p.u.).

the frequency deviation Δf = y remains small as |Δf | ≤ 0.02
(Hz). As a result, the attack leads to overuse of water in a forebay
for generating the same amount of power.

For comparison, we now construct two types of attack gener-
ator without knowledge on the value of Th. One is the conven-
tional zero-dynamics attack (11) with a nominal value Th,n = 4.
The other is the proposed robust zero-dynamics attack (18)
and (36) designed with the same Th,n, zu = 1.6, and a sat-
uration function s̄(â) whose inactive region Â is selected as
{â : |â| ≤ 20 000}. Initial conditions are set za(t0) = 0.001 for
(11), za

n(t0) = −0.001 for (18), and pa(t0) = [0; 0] for (36).
Selection for za

n(t0) is motivated by the fact that, in the steady
state, the regulated output Δf = y = 0 so that the steady state
values for ξ and z are zero. (The effect of small mismatch be-
tween z(t0) and za

n(t0) will be observed as a small transient of
y(t) in the simulation result around t = t0 .)

Figs. 4 and 5 depict the simulation results of applying the
conventional attack (11) and the proposed attacks (18) and (36)
with τ = 0.001 to the uncertain plant (53) at the time instant
t = t0 := 60 (sec). As shown in these figures, when there is no
uncertainty, both attacks work as desired and successfully spoils
the plant. However, the conventional scheme (4) immediately
fails to be stealthy if it encounters the uncertain plant (Fig. 4),
while the proposed attack (18) and (36) remains robust against
model uncertainty (Fig. 5). It is worth noting that ΔX with the
robust zero-dynamics attack diverges at different paces depen-
dent on the value of Th. Indeed, this results from the fact that the
real z-dynamics under the robust zero-dynamics attack is left
alone, so that the divergence of z(t) depends on the unstable

http://hdl.handle.net/10371/139645
https://github.com/CDSL-GitHub/RobustZeroDynamicsAttack-Sim
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Fig. 5. Simulation results with the proposed robust zero-dynamics at-
tack (18) and (36) when τ = 0.001, Th = 4 = Th,n (black dashed), Th = 5
(red dash-dotted), and Th = 6 (blue solid). (a) Frequency deviation Δf
(Hz). (b) Change in valve position ΔX (p.u.). (c) Robust zero-dynamics
attack arza (p.u.).

Fig. 6. Simulation results with the robust zero-dynamics attack (18) and
(36) where Th = 6 and τ = 0.005 (green dash-dotted) and τ = 0.001
(blue solid). (a) Frequency deviation Δf (Hz). (b) Change in valve posi-
tion ΔXG (p.u.).

mode of its dynamics (i.e., S = 1/Th). We also note that un-
like the conventional zero-dynamics attack, the proposed robust
zero-dynamics attack experiences a transient peak and varies by
model uncertainty, in order to adjust the unknown environment
by estimating and compensating a�(t) during a short transient
(Figs. 4(c) and 5(c)).

On the other hand, Fig. 6 depicts the plant’s output y under
the robust zero-dynamics attacks with different τ . The figure
points out that for success of the attack, it is necessary for the
adversary to take sufficiently small τ .

Fig. 7. Noisy output measurement Δf + w under the robust zero-
dynamics attack (18) and (36).

To investigate the presented attack further, we perform the
same simulation of Fig. 5 again, with Th = 6 and a noisy mea-
surement y = C2x+ w. Here,w(t) is selected to have the maxi-
mum magnitude as 2 × 10−3 (Hz) and have the uniform distribu-
tion. The simulation result is depicted in Fig. 7, which indicates
that the robust zero-dynamics attack still remains stealthy even
in the presence of measurement noise.

V. CONCLUDING REMARKS

We have shown in this paper that fatal attacks on CPS are
possible without exact system knowledge, particularly when
the adversary employs robust control techniques. Specifically,
we have presented a robust zero-dynamics attack that remains
stealthy under model uncertainty as well as enforces the internal
state of the plant to diverge.

All the results of this work indicate that more research is
called for to prevent the lethal cyber attack on CPS. Since the
robust zero-dynamics attack relies on the disclosure resources,
a possible remedy for its prevention is to encrypt the control
system [33] so that the input and output signals cannot be ob-
tained by the adversary. One might also employ watermarking
schemes [34] to detect the proposed attack.

While this paper deals with SISO systems for simplicity of
explanation, extending the result of Theorem 1 to a larger class
of multi-input multi-output (MIMO) plants is still possible. For
instance, it is shown in [35] that the disturbance observer scheme
in [20], [28] can be applied to a class of square MIMO systems
with a well-defined vector relative degree. Thus by employing
the modified version of the disturbance observer in [35] as an
attack generator in a form similar to (18) and (36), a robust
zero-dynamics attack is carried out for MIMO linear systems.
A similar result also would be expected for the nonlinear systems
cases, which will be addressed in future work.

APPENDIX

A. Proof of Lemma 1

We start by differentiating η1 and ηi , i = 2, . . . , ν − 1, as

η̇1 = pa
1
(1) − b0

τν
1
gn
y(1) − ȧ� =

1
τ
η2 − ȧ� (55)

and

η̇i = τ i−1
(
pa

1
(i) − b0

τν
1
gn
y(i)
)

=
1
τ
ηi+1 , (56)
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respectively. On the other hand, the time derivative of ην is given
by

η̇ν = τν−1
(
pa

1
(ν ) − b0

τν
1
gn
y(ν )

)
. (57)

In order to compute pa
1
(ν ) in (57), from now on we show that

for i = 1, . . . , ν − 1,

pa
1
(i) = pa

i+1 −
i∑

k=1

bν−k
τk

(
pa

1 −
1
gn

b0
τν
y

)(i−k)

+
b0
τν

1
gn

i∑

k=1

φn,ν−k+1xi−k+1 . (58)

This is proved by induction. When i = 1, the equality (58)
directly follows from (36a). Suppose that (58) is satisfied for
all i = 1, . . . , j − 1 and 1 ≤ j ≤ ν − 1. Then

pa
1
(j ) = (pa

1
(j−1))(1) = ṗa

j −
j−1∑

k=1

bν−k
τk

(
pa

1 −
b0
τν

1
gn
y

)(j−k)

+
b0
τν

1
gn

j−1∑

k=1

φn,ν−k+1 ẋ(j−1)−k+1 .

Noting that ẋ(j−1)−k+1 = xj−k+1 for k = 1, . . . , j − 1, and

ṗa
j = pa

j+1 −
bν−j
τ j

pa
1 +

b0
τν

1
gn

(
φn,ν−j+1 +

bν−m
τj

)
y

= pa
j+1 −

bν−j
τ j

(
pa

1 −
b0
τν

1
gn

)
y +

b0
τν

1
gn
φn,ν−j+1x1 ,

one can conclude that (58) holds when i = j.
Now using (58) with i = ν − 1 and

ṗa
ν = − b0

τν

(
pa

1 −
b0
τν

1
gn
y

)
+
b0
τν

1
gn
φn,1x1

+
b0
τν

(
u+ arza +

1
gn
ψ�

n z
a
n

)
, (59)

one has

pa
1
(ν ) = (pa

1
(ν−1))(1) = ṗa

ν −
ν−1∑

k=1

bν−k
τk

(
pa

1 −
b0
τν

1
gn
y

)(ν−k)

+
b0
τν

1
gn

ν−1∑

k=1

φn,ν−k+1 ẋν−k

= −
ν∑

k=1

bν−k
τk

(
pa

1 −
b0
τν

1
gn
y

)(ν−k)

+
b0
τν

1
gn

ν∑

k=1

φn,ν−k+1xν−k+1 +
b0
τν

(
u+ arza +

1
gn
ψ�

n z
a
n

)
.

(60)

It then follows from (39), (59), and (60) that

η̇ν = −1
τ

ν∑

k=1

bν−kην−k+1

+
b0
τ

[
arza − a� +

1
gn

(φ�n x+ ψ�
n z

a
n) + u− 1

gn
x

(ν )
1

]

= −1
τ

ν∑

k=1

bν−kην−k+1 +
b0
τ

[
arza − a� − g

gn
(arza − a�)

]

(61)

where the latter equality comes from x
(ν )
1 = ẋν = ψ�

n z
a
n +

φ�n x+ gnuc + g(arza − a�) (since (19)) and yields the lemma.
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