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Causality Countermeasures for Anomaly
Detection in Cyber-Physical Systems

Dawei Shi , Ziyang Guo , Karl Henrik Johansson , Fellow, IEEE, and Ling Shi

Abstract—The problem of attack detection in cyber-
physical systems is considered in this paper. Transfer-
entropy-based causality countermeasures are introduced
for both sensor measurements and innovation sequences,
which can be evaluated in a data-driven fashion without
relying on a model of the underlying dynamic system. The
relationships between the countermeasures and the system
parameters as well as the noise statistics are investigated,
based on which conditions that guarantee the time con-
vergence of the countermeasures are obtained. The effec-
tiveness of the transfer entropy countermeasures in attack
detection is evaluated via theoretical analysis, numerical
demonstrations, as well as comparative simulations with
classical χ2 detectors. Four types of attacks are consid-
ered: denial-of-service, replay, innovation-based deception,
and data injection attacks. Abnormal behavior of the trans-
fer entropy can be observed after the occurrence of each of
these attacks.

Index Terms—Anomaly detection, causality countermea-
sures, cyber-physical systems, transfer entropy.

I. INTRODUCTION

THE increased importance of communication networks in
control systems and the emergence of cyber-physical sys-

tems have reinforced safety and security requirements in con-
trol system design. Recently reported security related accidents
(e.g., the Maroochy water bleach [1], the StuxNet malfare [2],
smart grid attacks [3]) evidently indicate the impendence of
these requirements, as vulnerabilities in civil infrastructures
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and industrial processes may cause devastating consequences
to economy, national security, and even human life.

Attack detection and secure control system design has re-
ceived a lot of attention during the past few years. A number of
results focus on specific types of attacks, and the goals are to
design detection schemes or to build attack-resilient controllers
based on the feature of the attacks considered. False data injec-
tion attacks were analyzed in [4]–[7]. Specifically, the effect of
false data injection attacks on state estimation of a discrete-time
linear time-invariant Gaussian system was investigated in [6],
and a quantitative measure of the resilience of the system to
the attacks was proposed by characterizing the set of abnormal
measurements that could blind a failure detector. In [7], two
scenarios of false data injection attacks in electric power grids
were considered, and the stealthiness of the attacks was demon-
strated numerically. Replay attacks were considered in [8]–[10].
For this type of attacks, the feasibility condition and counter-
measures were considered in [8] and [9], while a stochastic game
theoretic approach was investigated to solve the attack detection
problem in [10]. Denial-of-service (DoS) attacks were studied
in [11]–[15]. In [11], a problem of security constrained optimal
control under DoS attacks was investigated. The worst case at-
tack policies against remote state estimation were investigated
in [12] and [13]. In [14], a problem of risk-sensitive stochastic
control under a Markov DoS model was investigated using the
reference probability measure approach, and a separation prin-
ciple for the stochastic control problem was proved. In [15], the
frequency and duration of DoS attacks to maintain input-to-state
stability of the closed-loop system was characterized.

In many scenarios, however, it is difficult to know a priori
what type of attacks may be inserted into the system. For exam-
ple, almost all deception attacks that prevent the controller from
knowing the real sensor measurements share the same aim of
deteriorating the system performance without being detected,
but the specific policies used to generate the false measurement
data are different and difficult to be distinguished until the at-
tacks are identified. In fact, identification of the attack type is
not always necessary, since the ultimate goal is to detect the
existence of the attack (rather than its type) and, then, eliminate
it to ensure safe and secure operation. So systematic approaches
to attack detection and secure estimation policies applicable to
different attack scenarios have been developed as well. In [16],
the problem of attack detection and identification was solved
utilizing system- and graph-theoretic approaches; centralized
and distributed attack detection and identification monitors were
proposed. In [17], the maximum number of tolerable attacks that
allow accurate reconstruction of the system state was character-
ized, and an efficient algorithm capturing the sparsity pattern of
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the attack policies was proposed and analyzed; based on these
results, a procedure for attack-resilient state estimation of sys-
tems with noise and modeling errors was developed in [18]. In
[19], adversary models were proposed for different attack poli-
cies and the impact of the attacks was quantified by the concept
of safe sets. A finite-state stochastic modeling framework was
introduced in [20], based on which the problem of secure esti-
mation was investigated. For further results and developments,
see also [21]–[28] and the recent special issue on cyber-security
of networked control systems [29].

It is important to consider the effect of process and measure-
ment noises in secure controller design, due to the inevitable ex-
istence of disturbances and unmodeled dynamics. When noises
are considered, χ2 detectors or residue detectors are normally
utilized for attack detection [5], [7], [9], [30]; these detectors
have been extensively utilized in process monitoring and fault
detection [31], but may not be able to capture the stealthy at-
tacks. Therefore, it is necessary to figure out efficient counter-
measures that are capable of detecting the existence of different
attacks for dynamic systems affected by noises or disturbances.
In this paper, a type of countermeasures that potentially satisfy
these requirements is investigated. The main results obtained
are summarized as follows.

First, transfer entropy countermeasures are introduced for
anomaly detection in cyber-physical systems. For these coun-
termeasures, the common causation feature of different attacks
is characterized. The intuition is that in a large number of sce-
narios, the intervention of malicious attacks invariably disturb
the cause-effect relationships between different variables and
affect the underlying causality properties of the original dy-
namic system. The notion of transfer entropy was originally
introduced in [32] as a measure of information transfer, and
has been extensively utilized for causality analysis in different
disciplines [33]–[38]. In this paper, transfer entropy measures
based on sensor measurements and innovation sequences are
used to detect the existence of attacks for discrete-time lin-
ear Gaussian systems. The qualitative relationships between the
transfer entropy measures and the parameter matrices of the
system dynamics as well as the noise statistics are explored
for the unattacked system (see Proposition 1). Conditions that
guarantee the convergence of the transfer entropy measures with
respect to time are provided (see Theorems 1 and 2), and we
show that the condition for the innovation-based transfer en-
tropy is weaker than that for the transfer entropy based on sensor
measurements.

Second, the effect of different attacks on the transfer en-
tropy countermeasures are investigated through both theoretical
analysis and numerical verifications. Four types of attacks are
considered: the DoS, replay, innovation-based deception, and
data injection attacks. For all attacks considered, we show that
the changes in transfer entropy are expected when attacks are
deployed. The feasibility of the approach is not only showed
theoretically, but also numerically observed in simulation ex-
amples, where χ2 detectors are included for comparison. An-
other benefit of the transfer entropy measure is that it allows
data-driven implementation [36], which is preferable in attack
detection, as the model developed based on unattacked data
may not remain effective in characterizing the dynamics of the
attacked system.

In this paper, the transfer entropy countermeasures are utilized
for anomaly detection of cyber-physical systems. The hindsight

is that when a signal is affected by attacks, it is likely to lose the
authenticity required to maintain the original causal relation-
ship with other signals in a control system, as is validated by
the extensive simulation studies presented in this paper—The
existence of attacks do change the transfer entropy readings in a
certain way in many scenarios, indicating the change of causal
relationships of the signals. On the other hand, causality is a
fundamental property that is associated with the signals in a
dynamic system, a property that has been investigated for a long
time in different disciplines but is not extensively considered in
control system analysis, which intrigues us to utilize this prop-
erty in detecting the attacks launched by an intelligent attacker.
It is also interesting to note that in a very recent paper [39],
a related idea exploiting the notion of “information flow” was
employed in cyber-security design of control systems. To our
best knowledge, the notion of information flow also builds on
the idea of analyzing the cause-effect relationship for different
processes (objects). The notion of information flow in [39] orig-
inated from software security [40], while the transfer entropy
notion utilized in our work was originally proposed to detect
asymmetry in the interaction of subsystems for causality analy-
sis [32]. On the other hand, we note that the information flow in
[39] was quantified via the Kullback–Leibler (KL) divergence
between the distribution of the output under attack and the dis-
tribution of the output under normal operation; transfer entropy
can also be regarded as a special form of KL divergence, al-
though the transfer entropy countermeasure considered in this
paper attempts to achieve anomaly detection by analyzing the
cause-effect relationship of two different signals in a control
system.

The rest of the paper is organized as follows: Section II
presents the system description and problem formulation. The
transfer entropy countermeasures are introduced and analyzed
in Section III. Section IV investigates the effect of different at-
tacks on transfer entropy. Discussions on application issues are
presented in Section V. Numerical examples and comparisons
are provided in Section VI. Some concluding remarks and dis-
cussions on future work are provided in Section VII. Discussions
on implementation issues of transfer entropy are summarized in
Appendix A.

Notation: For i, j ∈ N and i ≤ j, we use the shorthand nota-
tion xi:j := {xi, . . . , xj}. For a probability measure P , we use
E(·) to represent the expectation operator, use Cov(·) to repre-
sent the covariance of random processes, and use f(·) to denote
a probability distribution density function. Let A ∈ Rm×n and
B ∈ Rp×q , then A ⊗ B denotes the Kronecker product of A
with B, and vec A denotes the vectorization of matrix A; when
m = n, σ(A) denotes the set of eigenvalues of A. Finally, for
x ∈ R and x > 0, log x denotes natural logarithm of x, namely,
the logarithm of x to base e.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider the attack detection scheme in Fig. 1. The nominal
process is first assumed to have the following form:

xk+1 = Axk + wk (1)

where xk ∈ Rn denotes the set of process state variables, and
wk ∈ Rn denotes the process noise. The information of the
process is measured using a number of sensors of the form

yi
k = Cixk + vi

k (2)
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Fig. 1. Attack detection scheme based on causality countermeasures.

where vi
k denotes the measurement noise of sensor i. We as-

sume the number of sensors equals M . We assume the initial
state x0 is zero-mean Gaussian with covariance P0 , wk and vi

k
are zero-mean Gaussian white noises with covariance matrices
Q and Ri , respectively, and in addition, x0 , wk , and vi

k are mu-
tually uncorrelated. Although the system setup considered for
linear Gaussian processes cannot exactly describe the nonlinear
dynamics of a complex system, it serves as a reasonable approx-
imation of the systems considered in many cases; in terms of
attack detection, the simple structure of the model considered
helps understand how the countermeasures manage to detect the
changes caused by the stealthy attacks. Due to attacks on sensor
measurements, the received measurement ηi

k may be different
from the actual measurement process yi

k :

ηi
k = F(yi

k , θi
k ) (3)

indicating that ηi
k may depend on the sensor measurement in-

formation as well as another parameter θi
k ; in fact, in certain

attack scenarios, ηi
k does not reflect the true measurement yi

k at
all, e.g., replay attacks. The attacks may directly insert data into
the process as well; in this case, we assume the attacked process
inserted has the following form:

xk+1 = Axk + Bak + wk (4)

where ak is the attack signal.
The goal of this paper is to propose efficient generic coun-

termeasures that are able to detect the existence of attacks, and
to evaluate the effectiveness of the countermeasures in attack
detection. A baseline assumption in countermeasure design is
that the type of attack on the system is unknown, so the pro-
posed measure should be effective to different attack policies.
Specifically, the countermeasures considered in this paper take
advantage of the causality or connectivity relationships between
signals in Fig. 1, as will be introduced in detail in the next
section.

III. CAUSALITY COUNTERMEASURES AND

TRANSFER ENTROPY

In this section, transfer entropy countermeasures are intro-
duced. For the considered system model, the countermeasures
are derived and their convergence properties are analyzed.

The process structural properties and the relationships be-
tween sensor measurements are captured by causality coun-
termeasures. Causality analysis has been extensively utilized
in econometric inference, biosciences, climatology, functional
magnetic resonance imaging, and more recently industrial alarm
system design [36], [41], [42], to identify topological properties

of the underlying complex networks. For two sensor measure-
ment processes yi and yj , the transfer entropy quantifies the
causal relationship between the two variables; to be specific, for
positive integer-valued parameters τ , μ, l, and k ≥ max{μ, l},
the transfer entropy from yj to yi at time instant k + τ is
defined as

Ty j →y i (k + τ) =
∫

f(yi
k+τ , yi

k−μ+1:k , yj
k−l+1:k )

× log
f(yi

k+τ |yi
k−μ+1:k , yj

k−l+1:k )
f(yi

k+τ |yi
k−μ+1:k )

× dyi
k+τ dyi

k−μ+1:kdyj
k−l+1:k (5)

where we recall that f denotes relevant probability density func-
tions. Obviously, this measure is asymmetric, namely,

Ty j →y i (k + τ) �= Ty i →y j (k + τ)

in general. In the following, we analyze several properties of
this causality measure based on the nominal process models in
(1) and (2), which help provide benchmarks for different attack
scenarios studied in the next section.

By Bayes’ rule, we have∫
f(yi

k+τ , yi
k−μ+1:k , yj

k−l+1:k )

× log f(yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k )

× dyi
k+τ dyi

k−μ+1:kdyj
k−l+1:k

=
∫

f(yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k )

× log f(yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k )dyi

k+τ

× f(yi
k−μ+1:k , yj

k−l+1:k )dyi
k−μ+1:kdyj

k−l+1:k .

For the nominal process, since x0 is Gaussian, and wk and vi
k

are Gaussian white noises, yi
k+τ , yi

k−μ+1:k , yj
k−l+1:k are jointly

Gaussian. Therefore, yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k is also Gaussian;

for notational brevity, we write

yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k ∼ N (ȳi

k+τ ,Φi
k+τ ).

We have∫
f(yi

k+τ |yi
k−μ+1:k , yj

k−l+1:k )

× log f(yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k )dyi

k+τ

= − 1
2

∫
1√

(2π)m det Φi
k+τ

× exp
[
−1

2
(yi

k+τ − ȳi
k+τ )	(Φi

k+τ )−1(yi
k+τ − ȳi

k+τ )
]

×
[
(yi

k+τ − ȳi
k+τ )	(Φi

k+τ )−1(yi
k+τ − ȳi

k+τ )

+ log[(2π)m det Φi
k+τ ]

]
dyi

k+τ

= − m

2
log(2πe) − 1

2
log det Φi

k+τ (6)
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which implies∫
f

(
yi

k+τ , yi
k−μ+1:k , yj

k−l+1:k

)

× log f(yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k )dyi

k+τ dyi
k−μ+1:kdyj

k−l+1:k

= −m

2
log(2πe) − 1

2
log det Φi

k+τ . (7)

Similarly, yi
k+τ |yi

k−μ+1:k ∼ N (ŷi
k+τ ,Ψi

k+τ ), so we have∫
f

(
yi

k+τ , yi
k−μ+1:k , yj

k−l+1:k

)

× log f(yi
k+τ |yi

k−μ+1:k )dyi
k+τ dyi

k−μ+1:kdyj
k−l+1:k

= − m

2
log(2πe) − 1

2
log det Ψi

k+τ . (8)

Therefore, we have

Ty j →y i (k + τ) = 0.5 log
(
det Ψi

k+τ /det Φi
k+τ

)
. (9)

The transfer entropy Ty j →y i (k + τ) measures the amount of
improvement when using past information of both yi and yj to
predict the future of yi , compared with that obtained using yi

only. It reflects the causation link from yj to yi . To analyze how
the transfer entropy measure reflects connectivity properties of
the process (1)–(2), it suffices to derive the expressions for Ψi

k+τ

and Φi
k+τ . To do this, we introduce a few matrix operators. For

notational brevity, write

C = [(Ci)	 (Cj )	]	, R = diag{Ri,Rj}.
Define the matrix operators h(·): Sn

+ → Sn
+ , g̃i(·), g̃(·), gi(·)

and g(·): Sn
+ → Sn

+ as follows:

h(X) := AXA	 + Q (10)

g̃i(X) := X − X(Ci)	[CiX(Ci)	 + Ri ]−1CiX (11)

g̃(X) := X − XC	(CXC	 + R)−1CX (12)

gi(X) := g̃i(h(X)), g(X) := g̃(h(X)). (13)

Let

ϑ :=

{
i, if μ ≥ l

j, otherwise
. (14)

Since wk and x0 are zero-mean Gaussian, xk−max{μ,l} is zero-
mean Gaussian as well with covariance Pk−max{μ,l} satisfying

Pk−max{μ,l} = hk−max{μ,l}(P0). (15)

Since vi
k and vj

k are Gaussian white noises and are mutu-
ally uncorrelated with wk and x0 , it is easy to verify that
xk |yi

k−μ+1:k , yj
k−l+1:k is Gaussian with covariance

P̄k = gmax{μ,l}−|μ−l| ◦ g
|μ−l|
ϑ (Pk−max{μ,l}). (16)

Therefore, xk+τ |yi
k−μ+1:k , yj

k−l+1:k is Gaussian with covari-
ance

P̄k+τ = hτ ◦ gmax{μ,l}−|μ−l| ◦ g
|μ−l|
ϑ (Pk−max{μ,l}). (17)

Finally, since vi
k and wk are mutually uncorrelated, we have

Φi
k+τ = CiP̄k+τ (Ci)	 + Ri. (18)

Following a similar argument, we have that xk+τ |yi
k−μ+1:k is

Gaussian with covariance

P̂k+τ = hτ ◦ gμ
i ◦ hk−μ(P0). (19)

Since wk and vi
k are uncorrelated, we have

Ψi
k+τ = CiP̂k+τ (Ci)	 + Ri. (20)

From the above discussions, we observe that the transfer en-
tropy measure not only points out the direction of causality, but
also quantitatively reflects the connectivity properties of the un-
derlying dynamic system determined by the state-space model
parameters and the noise statistics.

In many remote estimation scenarios, the sensor measure-
ments are not directly transmitted to the remote estimator; in-
stead, the sensor measurement yi

k is preprocessed and only the
innovation

zi
k := yi

k − E(yi
k |yi

0:k−1) (21)

is transmitted. In this case, it is necessary to evaluate the trans-
fer entropy measure for the innovation processes; for positive
integer-valued parameters τ , μ, l, and k ≥ max{μ, l}, it is de-
fined as

Tz j →z i (k + τ) =
∫

f
(
zi
k+τ , zi

k−μ+1:k , zj
k−l+1:k

)

× log
f

(
zi
k+τ |zi

k−μ+1:k , zj
k−l+1:k

)

f
(
zi
k+τ |zi

k−μ+1:k

)

× dzi
k+τ dzi

k−μ+1:kdzj
k−l+1:k . (22)

Now, we derive (22) for the process (1)–(2). First we notice
that since the process model is linear, E(yi

k |yi
0:k−1) is a linear

combination of y0 , ..., yk−1 . Since yi
0:k and yj

0:k are jointly
Gaussian, zi

0:k and zj
0:k are jointly Gaussian as well. In this way,

following the line of argument for the derivation of (5), we have

Tz j →z i (k + τ) =
1
2

log
det Πi

k+τ

det Υi
k+τ

(23)

where

Πi
k+τ := Cov(zi

k+τ |zi
k−μ+1:k ) (24)

Υi
k+τ := Cov(zi

k+τ |zi
k−μ+1:k , zj

k−l+1:k ). (25)

Since the innovation sequence {zi
k} is a zero-mean random

process and satisfies E[zi
k (zi

t )
	] = 0, we have

Πi
k+τ = Cov(zi

k+τ ) = Cigk+τ−1
i (P0)(Ci)	 + Ri. (26)

The calculation of Υi
k+τ is more complicated, as E[zi

k (zj
t )	] �=

0 holds in general. We start from

Γk := Cov([zi
k+τ , zi

k−μ+1:k , zj
k−l+1:k ]	). (27)

This matrix has the following structure:

Γk =

[
Γ1,1

k Γ1,2
k

(Γ1,2
k )	 Γ2,2

k

]
(28)

where Γ1,1
k := Cov([zi

k+τ , zi
k−μ+1:k ]	) and Γ2,2

k :=
Cov([zj

k−l+1:k ]	) are block-diagonal matrices and easy
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to calculate based on the orthogonality between zi
k and zi

t

for k �= t, and Γ1,2
k := E([zi

k+τ , zi
k−μ+1:k ]	[zj

k−l+1:k ]). To

calculate Γk , it suffices to evaluate Γ1,2
k , which requires us to

find the expression of Cov[zi
k (zj

t )	]. Without loss of generality,
we assume k ≤ t. For zi

k , we observe that

zi
k = yi

k − E(yi
k |yi

0:k−1) = Cixk − Cix̂i
k + vi

k

where x̂i
k satisfies

x̂i
k = Ax̄i

k−1

x̄i
k = x̂i

k + P̂ i,i
k (Ci)	[CiP̂ i,i

k (Ci)	 + Ri ]−1(yi
k − Cix̂i

k )

and P̂ i,i
k = Cov(xk − x̂i

k ) satisfies P̂ i,i
k = h(g̃i(P̂

i,i
k−1)). Writ-

ing êi
k := xk − x̂i

k , we have

êi
k+1 = Âi

k êi
k + wk + Ki

kvi
k (29)

zi
k = Ciêi

k + vi
k (30)

Âi
k = A − AP̂ i,i

k (Ci)	[CiP̂ i,i
k (Ci)	 + Ri ]−1Ci (31)

Ki
k = AP̂ i,i

k (Ci)	[CiP̂ i,i
k (Ci)	 + Ri ]−1 . (32)

In this way, we have

E[zi
k (zj

t )
	] = CiE[êi

k (êj
t )

	](Cj )	. (33)

Define

P i,j
k,t := E[êi

k (êj
t )

	] (34)

for brevity, we write P i,j
k := P i,j

k,k . To calculate P i,j
k,t , we first

find an expression for P i,j
k = E[êi

k (êj
k )	]. By assumption, for

k = 0, we have P i,j
0 = P0 . Since wk , vi

k , and vj
k are mutually

uncorrelated, from (29), we have

P i,j
k+1 = Âi

kP i,j
k (Âj

k )	 + Q. (35)

Starting from P i,j
k , we further find a recursive expression for

P i,j
k,t in terms of t. Obviously, we have P i,j

k,t = P i,j
k,k for t = k,

which can be calculated based on (35). For t + 1, we observe

êj
t+1 = Âj

t ê
j
t + wt + Kj

t vj
t

and, thus, we have

P i,j
k,t+1 = E[êi

k (êj
t+1)

	] = P i,j
k,t (Â

j
t )

	. (36)

Summarizing the above discussions, the expression of Γk can
be obtained by combining (27), (28), (33), (35), and (36).

To calculate Υi
k+τ , we recall the following lemma.

Lemma 1 (see [43]): Let x and y be jointly Gaussian with
covariance

Cov([x	 y	]	) =
[

Σxx Σxy

Σ	
xy Σyy

]
.

The covariance of the conditional distribution of x on y is Σxx −
ΣxyΣ−1

yy Σ	
xy .

To calculate Υi
k+τ , we consider an alternative parameteriza-

tion of Γk :

Γk =

[
Γ̌1,1

k Γ̌1,2
k

(Γ̌1,2
k )	 Γ̌2,2

k

]
(37)

where Γ̌1,1
k := Cov([zi

k+τ ]	) and Γ̌2,2
k := Cov([zi

k−μ+1:k ,

zj
k−l+1:k ]	) are block-diagonal matrices easy to calculate based

on the orthogonality between zi
k and zi

t for k �= t, and Γ̌1,2
k :=

E([zi
k+τ ]	[zi

k−μ+1:k , zj
k−l+1:k ]). From Lemma 1, we have

Υi
k+τ = Γ̌1,1

k − Γ̌1,2
k (Γ̌2,2

k )−1Γ̌2,1
k . (38)

We summarize the above derivations in the following proposi-
tion.

Proposition 1:
1) For the transfer entropy measure in (5), we have

Ty j →y i (k + τ) = log (det Ψi
k+τ /det Φi

k+τ )
1
2

with Ψi
k+τ determined by (15), (17) and (18), and Φi

k+τ

by (19) and (20);
2) For the transfer entropy measure in (22), we have

Tz j →z i (k + τ) = log (det Πi
k+τ /det Υi

k+τ )
1
2

where Πi
k+τ is determined by (26), and Υi

k+τ by (27),
(28), (33)–(38).

The above proposition completes the exploration of the theo-
retic expressions for the transfer entropy measures defined in (5)
and (22) in terms of the model parameters and noise statistics
of the system in (1)–(2), which provides the basis to analyze
the asymptotic properties of the transfer entropy countermea-
sures. In the following, we analyze the convergence property
of the two transfer entropy measures introduced above. We first
present a technical lemma.

Lemma 2 (see [44, Theorem 4.2.12]): Let A ∈ Rn×n and
B ∈ Rm×m . Let σ(A) = {λ1 , . . . , λn} and σ(B) =
{ξ1 , . . . , ξm}. Then

σ(A ⊗ B) = {λiξj |i = 1, . . . , n, j = i, . . . ,m}.
Now, we are ready to present the results on the convergence

of the transfer entropy measures.
Theorem 1: Assume the values of τ , μ, and l are fixed. Then,
1) there exists T̄y i →y j ∈ [0,∞) such that limk→∞

Ty i →y j (k + τ) = T̄y i →y j if A is stable;
2) there exists T̄z i →z j ∈ [0,∞) such that limk→∞

Tz i →z j (k + τ) = T̄z i →z j if (A,Q) is stabilizable and
(Ci,A) and (Cj ,A) are detectable.

Proof: First we analyze the convergence of Ty i →y j (k + τ).
From (17)–(20), since the values of τ , μ, and l are fixed and
finite, we focus on the property of limk→∞ hk (P0). As h(·) is
a Lyapunov operator, it follows that limk→∞ hk (P0) exists if
A is stable, which completes the proof of the first part of the
theorem.

To prove the second part of the theorem, it suffices to an-
alyze the convergence of Γk . To do this, we first provide
a more explicit form of the structure of Γk . Since Γ1,1

k :=
Cov([zi

k+τ , zi
k−μ+1:k ]	),

Γ1,1
k = diag

{
Cov(zi

k+τ ),Cov(zi
k−μ+1), . . . ,Cov(zi

k )
}

= diag
{

CiP̂ i,i
k+τ (Ci)	 + Ri,

CiP̂ i,i
k−μ+1(C

i)	 + Ri, . . . , CiP̂ i,i
k (Ci)	 + Ri

}
.
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Similarly, we have

Γ2,2
k = diag

{
Cov(zj

k−l+1), . . . ,Cov(zj
k )

}

= diag
{
CjP̂ j,j

k−l+1(C
j )	 + Rj , . . . , Cj P̂ j,j

k (Cj )	 + Rj
}
.

Therefore, the convergence of Γ1,1
k and Γ2,2

k with respect to k

is determined by the convergence of P̂ i,i
k and P̂ j,j

k , which can
be guaranteed by the stabilizability of the pair (A,Q) and the
detectability of the pairs (Ci,A) and (Cj ,A) according to the
theory of Riccati equations [45]. On the other hand, since

Γ1,2
k = E([zi

k+τ , zi
k−μ+1:k ]	[zj

k−l+1:k ])

it is composed of entries in the form of E[zi
k+α (zj

k+β )	], where

α, β ∈ [−max{l, μ} + 1, τ ]. We observe that E[zi
k+α (zj

k+β )	]
can be calculated based on the recursive equations in (35)–(36)
and (33). Since τ , μ and l are finite, the convergence of the
entries in Γ1,2

k is determined by the convergence of P i,j
k in (35),

namely,

P i,j
k+1 = Âi

kP i,j
k (Âj

k )	 + Q. (39)

Since (A,Q) is stabilizable and (Ci,A) and (Cj ,A) are de-
tectable, limk→∞ Âi

k and limk→∞ Âj
k exist. We write

Āi := lim
k→∞

Âi
k , Āj := lim

k→∞
Âj

k

and only focus on the steady-state form of (39), namely,

P i,j
k+1 = ĀiP i,j

k (Āj )	 + Q. (40)

Before continuing, we note that the stabilizability of the pair
(A,Q) and the detectability of the pairs (Ci,A) and (Cj ,A)
ensure that Āi and Āj are stable matrices. Write

Xi,j
k = vec(P i,j

k ).

From (40), we have

Xi,j
k+1 = (Āi ⊗ Āj )Xi,j

k + vec(Q). (41)

Since Āi and Āj are stable, from Lemma 2, Āi ⊗ Āj is a stable
matrix as well. Furthermore, since Q is a constant matrix, there
exists a bounded vector X̄i,j such that

lim
k→∞

Xi,j
k = X̄i,j .

This implies that limk→∞ vec(P i,j
k ) exists as well, which proves

the convergence of {P i,j
k }. In this way, the convergence of {Γk}

is achieved. Based on Lemma 1, we obtain the convergence of
Υi

k . Since the convergence of Πi
k is guaranteed by the stabi-

lizability of (A,Q) and the detectability of (Ci,A), the exis-
tence of T̄z i →z j is proved. Finally, we note that T̄y i →y j ≥ 0
and T̄z i →z j ≥ 0 follow from that Ψi

k ≥ Φi
k ≥ 0 and Πi

k ≥
Υi

k ≥ 0. �
The above theorem provides a generic convergence result for

transfer entropy of linear dynamical systems. In the first part of
Theorem 1, we show that the transfer entropy measure for the
measurement processes converges for stable systems; the under-
lying intuition is that the state process {xk} exponentially con-
verges to a stationary process, which enforces the convergence
of the transfer entropy. One interesting observation, however,

is that the convergence of the transfer entropy measure can be
maintained beyond the stability of the system. To see this, we
can consider the simple case that xk is scalar-valued and A > 1
(unstable); in this case, although the covariance Pk of xk goes
to infinity as k → ∞, we still have that for X ∈ R,

lim
X→∞

g̃(X) = lim
X→∞

(X−1 + C	R−1C)−1 = (C	R−1C)−1

(and a similar result for limX→∞ g̃i(X)). This limit guarantees
the existence of limk→∞ Ty i →y j (k). For the transfer entropy
measure defined for innovation processes, weaker conditions
on detectability and stabilizability are sufficient to guarantee
convergence.

For anomaly detection, the convergence of the nominal val-
ues of the countermeasures is important, as the causality coun-
termeasures should remain constant during routine operations.
The values of the causality countermeasures should change,
however, when attack signals are inserted into the system. In
the following, the asymptotic properties of the transfer entropy
measures with respect to τ for fixed values of k , μ, and l are
further analyzed. These results provide guidelines on the choice
of τ in attack detection.

Theorem 2: Assume the values of k, μ, and l are fixed. Then,
1) if A is stable, it holds that

lim
τ→∞

Ty i →y j (k + τ) = lim
τ→∞

Ty j →y i (k + τ) = 0;

2) if (A,Q) is stabilizable and (Ci,A) and (Cj ,A) are
detectable, it holds that

lim
τ→∞

Tz i →z j (k + τ) = lim
τ→∞

Tz j →z i (k + τ) = 0.

Proof: From (17) and (19), we observe that if A is stable,

lim
τ→∞

P̄k+τ = lim
τ→∞

P̂k+τ = P̌

holds for all finite and fixed values of k, μ, and l, where P̌ is the
unique stabilizing solution to the Lyapunov equation P = h(P ).
From (18) and (20), this further implies

lim
τ→∞

Φi
k+τ = lim

τ→∞
Ψi

k+τ = CiP̌ (Ci)	 + Ri.

The first conclusion follows from the fact that Ty j →y i (k + τ) =
1
2 log

det Ψ i
k + τ

det Φ i
k + τ

[see (9)].

To prove the second conclusion, we start with an analysis of
Γk defined in (27). We decompose Γk as

Γk =
[

Cov(zi
k+τ )

Cov(zi
k+τ , [zi

k−μ+1:k , zj
k−l+1:k ]	)	

Cov(zi
k+τ , [zi

k−μ+1:k , zj
k−l+1:k ]	)

Cov([zi
k−μ+1:k , zj

k−l+1:k ]	)

]
.

From (33) and (36), we have

lim
τ→∞

Cov(zi
k+τ , [zi

k−μ+1:k , zj
k−l+1:k ]	) = 0

provided (A,Q) is stabilizable and (Ci,A) is detectable. This
implies

lim
τ→∞

Γk =
[

limτ→∞ Cov(zi
k+τ ) 0

0 ×

]
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where× denotes a matrix that does not affect our analysis. From
(26) and the definition of Γk , we have

lim
τ→∞

Πi
k+τ = lim

τ→∞
Υi

k+τ .

Based on equation (23), we further have

lim
τ→∞

Tz j →z i (k + τ) = 0.

The derivations for limτ→∞ Tz i →z j (k + τ) = 0 can be obtained
following the same line of argument given the stabilizability of
(A,Q) and the detectability of (Cj ,A). �

The above results indicate that the causality relationship be-
tween two measurement/innovation processes can be blurred as
the value of τ approaches infinity. This observation is critical, as
in order to apply the transfer entropy measures in attack detec-
tion, the causal and noncausal relationships are required to be
distinguishable in terms of the transfer entropy values, so that
changes in these values can be observed. Therefore, a general
guideline is that the value of τ should be kept relatively small.

Convergence of the transfer entropy measure with respect to
μ and l may be obtained following similar ideas; in this paper,
however, we do not investigate these properties, as they do not
affect the application of transfer entropy to attack detection. In
[36], the authors point out that the values of μ and l also play a
critical role in numerically identifying the causal relationships
between process variables, and need to be carefully tuned ac-
cording to certain rules. These rules can be used in this paper as
well.

Finally, we note that the transfer entropy analysis in this pa-
per is built on the overall state-space model of the considered
system; that is, some of the states may represent the states of a
dynamic feedback controller. In this regard, the proposed anal-
ysis applies equally to the case when the system has output
feedback. The numerical calculation of the transfer entropy is
data driven, and thus is not affected by feedback structures.

IV. TRANSFER ENTROPY FOR ANOMALY DETECTION

In this section, we analyze the effectiveness of the causality
countermeasures against different attack policies. Specifically,
we consider four attack scenarios: DoS, replay, innovation-
based deception, and data injection attacks. The first three sce-
narios of attacks can be represented in a unified way of the form
ηj

k = yj
k + Dkθk , where the term Dkθk depends on the particu-

lar attack policy considered; we note that the term Dkθk depends
on the particular attack policy considered; in particular, in [16],
the authors showed that different attacks could lead to differ-
ent underlying system structures (cf., [16, Remark 2, Fig. 1]).
In the literature, many attack detection approaches and perfor-
mance analysis results are developed by analyzing the features
of the attacks (namely, the properties of the Dkθk term) con-
sidered, while in our work the information of the Dkθk term is
not utilized in calculating the transfer entropy countermeasures.
This point is important for attack detection, since the malicious
agents would not inform the system what type of attack poli-
cies will be used and consequently the Dkθk term is in general
unknown.

When attacks on sensor measurements are concerned, we de-
note the sensor being attacked as sensor j, and ηj

k to denote
the received contaminated measurement, and use ζj

k to denote

the received contaminated innovation. For notational brevity,
we define an indicator variable γj

k for sensor j such that γj
k = 1

means sensor j is attacked at time instant k and γj
k = 0 other-

wise. When the attacks act on the process equation, we use γk to
denote the indicator variable. The transfer entropy countermea-
sures in attack detection, however, does not require knowledge
of γj

k or γk . The basic assumption in applying the transfer en-
tropy countermeasures for attack detection is that the process
is operating in a normal state before it is attacked, so that the
values of the transfer entropy between the monitored variables
during the no-attack stage can be computed, and changes in the
causality measures can be observed when the attacks come into
effect.

A. Principle and Limitations

Since transfer entropy measures the directed causation re-
lationship from one random process to the other, the under-
lying principle of using transfer entropy countermeasures for
anomaly detection is whether the existence of anomalies change
the causality relationship between the random processes. Given
two random processes yi and yj , one way to detect the existence
of anomalies on yj (based on the transfer entropy measures de-
fined for yi and yj ) is that Ty i →y j > 0 holds for the nominal
anomaly-free case; while the appearance of anomalies change
this causation relationship so that the anomalies can be detected.
A design technique to ensure this type of cause-effect pairs is
presented in Section V-B.

Transfer entropy measures cannot be applied when the
anomalies do not alter the cause-effect relationships in the tar-
geted variables (e.g., zero-dynamics attacks [19]); nor can they
be used for anomaly detection for yj when Ty j →y i = 0 holds
for the unattacked case, unless the anomalies introduce an ad-
ditional causation relationship such that Ty j →y i > 0. The other
issue in applying transfer entropy measure is the effect of noise,
which is discussed in Section VI-H. These are the basic limi-
tations in utilizing transfer entropy for anomaly detection. The
rest of this section is devoted to the application of transfer en-
tropy countermeasures to the four types of attacks considered in
this paper.

B. DoS Attacks

DoS attacks deny the successful transmission of data be-
tween nodes (e.g., sensors, actuators, and controllers) in con-
trol systems. In networked sampled-data control systems, zero-
order-hold modules are used to generate continuous-time signals
between the update times of the discrete-time signals. When a
measurement yj

k of sensor j at time instant k is not received
by a remote controller or estimator, the previous received mea-
surement of sensor j is often used instead. In this way, the
contaminated measurement process ηj

k can be defined as

ηj
k =

{
yj

k , if γj
k = 0

ηj
k−1 , otherwise

. (42)

From the above equation, we observe the switching structure.
This change in system dynamics will directly lead to a change
of transfer entropy between the sensor measurement processes
when the sensor communication is under DoS attack.
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C. Replay Attacks

Replay attacks prevent the system nodes from knowing the
true data and normally have two phases. In the first phase, the
adversary records the process data for a certain period of time
and replays the recorded data repeatedly during the second phase
so that destruction on the system can be performed in a stealthy
way. For the causality countermeasure, the successful detection
of this type of stealthy attack is intuitive, as it is difficult for
the replayed data to maintain the same causal relationship with
data obtained from other resources (e.g., another sensor). To be
specific, the repeatedly replayed data can be viewed as a periodic
deterministic signal independent of the true data. Assuming the
measurements of sensor j are corrupted by a replay attack, we
thus have

Ty i →η j (k + τ) = Tη j →y i (k + τ) = 0. (43)

However, given the fact that some causal relationship ex-
ists between sensor i and sensor j, Ty i →y j (k + τ) �= 0 or
Ty j →y i (k + τ) �= 0 hold, indicating that the replay attacks can
be detected by the transfer entropy countermeasure.

D. Innovation-Based Deception Attacks

When the measurements are preprocessed on the sensor side
such that innovation sequences are sent to the remote estima-
tor/controller, the adversary might try to downgrade the perfor-
mance of the system by performing attacks on the innovation
process. In this section, we consider two possible policies and
investigate the effect of these attacks on the transfer entropy
measure.

The first policy replaces the original innovation sequences
{zj

k} with a sequence of realizations of a Gaussian white noise
process {ζj

k} with covariance Ξj
k := Cj P̂ j,j

k (Cj )	 + Rj . Al-
though ζj

k is i.i.d. zero-mean Gaussian and has the same covari-
ance as zj

k , the transfer entropy can capture that the innovation
processes corresponding to different sensors are correlated [see
(33)–(36)]. Therefore, the replacement of zj

k with ζj
k can be

detected based on the transfer entropy countermeasure. By def-
inition, we have

Tz i →ζ j (k + τ) =
∫

f
(
ζj
k+τ , ζj

k−μ+1:k , zi
k−l+1:k

)

× log
f(ζj

k+τ |ζ
j
k−μ+1:k , zi

k−l+1:k )

f(ζj
k+τ |ζ

j
k−μ+1:k )

× dζj
k+τ dζj

k−μ+1:kdzi
k−l+1:k .

=
∫

f(ζj
k+τ , ζj

k−μ+1:k )

× log
f(ζj

k+τ |ζ
j
k−μ+1:k )

f(ζj
k+τ |ζ

j
k−μ+1:k )

dζj
k+τ dζj

k−μ+1:k

= 0.

A more generic attack policy that treats the above policy as a
special case is to perform an affine operation on the innovation
process such that

ζj
k = T j

k zj
k + bj

k . (44)

To maintain the stealthiness of the attack, bj
k is chosen to be

an i.i.d. zero-mean Gaussian process, and its covariance Σj
k is

chosen together with the linear map T j
k such that

Σj
k := Ξj

k − T j
k Ξj

k (T j
k )	. (45)

Now, we analyze the effect of this attack policy on the transfer
entropy. Denote the starting time of the attack as ς , so that we
have

ζj
k =

{
zj
k , if k < ς

T j
k zj

k + bj
k , if k ≥ ς

.

To simplify our analysis, we use the notation

Γ̄k :=
[

Γ̄1,1
k Γ̄1,2

k

(Γ̄1,2
k )	 Γ̄2,2

k

]
(46)

to denote the covariance matrix of the joint distribu-
tion of ζj

k+τ , ζj
k−μ+1:k and zi

k−l+1:k , where Γ̄1,1
k :=

Cov([ζj
k+τ , ζj

k−μ+1:k ]	) and Γ̄2,2
k := Cov([zi

k−l+1:k ]	), and

Γ̄1,2
k := E([ζj

k+τ , ζj
k−μ+1:k ][zi

k−l+1:k ]	). It is easy to verify that

the Γ̄1,1
k and Γ̄2,2

k matrices are block-diagonal matrices, and in
particular, we have

Γ̄1,1
k = Cov([zj

k+τ , zj
k−μ+1:k ]	).

However, we also observe

E[ζj
k (zi

t )
	] = E[T j

k zj
k (zi

t )
	 + bj

k (zi
t )

	]

= T j
k E[zj

k (zi
t )

	] (47)

which means that Γ̄1,2
k �= E([zj

k+τ , zj
k−μ+1:k ]	[zi

k−l+1:k ]) in
general. From Lemma 1, the conclusion here is that the attack
will lead to a change in the causality measure, but the amount
of change is determined by the choice of T j

k and Σj
k . In partic-

ular, the case that T j
k = −I is the most critical, which has been

proved in the sense that it is the worst case choice such that the
corresponding state estimation error is maximized [30]; in fact,
this attack is difficult to be detected, as is summarized in the
following result.

Theorem 3: Consider the system (1)–(2) and the innovation-
based deception attack (44) with T j

k = −I and bj
k = 0. Assume

the attack starts from time instant ς . For k > ς + μ, it holds that

Tz i →ζ j (k + τ) = Tz i →z j (k + τ).

Proof: Since T j
k = −I , (47) becomes

E[ζj
k (zi

t )
	] = −E

[
zj
k (zi

t )
	
]
. (48)

Write

Γ̃k :=

[
Γ̃1,1

k Γ̃1,2
k

(Γ̃1,2
k )	 Γ̃2,2

k

]
(49)

to denote the covariance matrix of the joint distribu-
tion of zj

k+τ , zj
k−μ+1:k and zi

k−l+1:k , where Γ̃1,1
k :=

Cov([zj
k+τ , zj

k−μ+1:k ]	) and Γ̃2,2
k := Cov([zi

k−l+1:k ]	), and

Γ̃1,2
k := E([zj

k+τ , zj
k−μ+1:k ][zi

k−l+1:k ]	). The relationship in
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(48) indicates that for k ≥ ς + μ − 1, we have

Γ̄k :=

[
Γ̃1,1

k −Γ̃1,2
k

−(Γ̃1,2
k )	 Γ̃2,2

k

]
. (50)

Correspondingly, we define Λ̃k = (Γ̄k )−1 and

Λ̃k :=

[
Λ̃1,1

k Λ̃1,2
k

(Λ̃1,2
k )	 Λ̃2,2

k

]
(51)

such that Λ̃1,1
k has a same size as Γ̃1,1

k . To aid our analysis, we
need an alternative decomposition of Γ̄k :

Γ̄k :=

[
Γ̂1,1

k Γ̂1,2
k

(Γ̂1,2
k )	 Γ̂2,2

k

]
(52)

whereΓ̂1,1
k :=Cov(ζj

k+τ ), Γ̂2,2
k := Cov([ζj

k−μ+1:k , zi
k−l+1:k ]	),

and Γ̂1,2
k := E([ζj

k+τ ][ζj
k−μ+1:k , zi

k−l+1:k ]	). We represent the

corresponding decomposition of Λ̃k as

Λ̃k :=

[
Λ̂1,1

k Λ̂1,2
k

(Λ̂1,2
k )	 Λ̂2,2

k

]
(53)

such that Λ̂1,1
k has a same size as Γ̂1,1

k . From Lemma 1, we have

Cov
(
ζj
k+τ |ζ

j
k−μ+1:k , zi

k−l+1:k

)

= Γ̂1,1
k − Γ̂1,2

k (Γ̂2,2
k )−1(Γ̂1,2

k )	. (54)

By definition, Λ̂1,1
k is a subblock of Λ̃1,1

k . On the other hand,
from the matrix inversion lemma, we have

Λ̂1,1
k =

[
Γ̂1,1

k − Γ̂1,2
k

(
Γ̂2,2

k

)−1 (
Γ̂1,2

k

)	
]−1

. (55)

From (50) and (51), we have

Λ̃1,1
k =

[
Γ̃1,1

k − Γ̃1,2
k (Γ̃2,2

k )−1(Γ̃1,2
k )	

]−1
. (56)

Combining (49), (55), and (56) as well as the fact that Λ̂1,1
k is a

subblock of Λ̃1,1
k , we conclude that for k ≥ ς + μ − 1, it holds

that

Cov
(
ζj
k+τ |ζ

j
k−μ+1:k , zi

k−l+1:k

)

= Cov
(
zj
k+τ |z

j
k−μ+1:k , zi

k−l+1:k

)
. (57)

Moreover, by the definition of ζj
k in (44), we have

Cov
(
ζj
k+τ |ζ

j
k−μ+1:k

)
= Cov

(
zj
k+τ |z

j
k−μ+1:k

)
(58)

which implies

Tz i →ζ j (k + τ) = Tz i →z j (k + τ) (59)

for k ≥ ς + μ − 1. �
The above result indicates that no discrepancy in the transfer

entropy measure can be observed after a short time period from
the starting time of the attack. Fortunately, we still have a finite-
time window to detect the attack. The rationale is that when the
sequence of {ζj

k} utilized to calculate the transfer entropy mea-
sure Tz i →ζ j contains some of the uncontaminated innovation

segments zj
t for t < ς , (48) together with a similar argument as

that in the above proof imply that changes in the transfer entropy
measure can be observed at the initial stage of the attack. The
window length should be no larger than τ + μ. The data-driven
evaluation of the transfer entropy measure, however, might help
enlarge this window length, due to the utilization of historical
innovation data.

E. Data Injection Attacks

Finally, we investigate the effect of input data injection at-
tacks. From the system (4), except for some special cases (e.g.,
the zero-dynamic attacks discussed in [19]), we note that the
additional unknown inputs will lead to changes of the virtual
equivalent process noise input statistics, which consequently
leads to changes of the transfer entropy values.

V. DISCUSSIONS ON IMPLEMENTATIONS

In this section, discussions on the practical application of the
considered transfer entropy countermeasure are presented.

A. Detector Design

For engineering applications, it is necessary to build detec-
tors such that the existence of anomalies can be automatically
detected. This can be achieved based on the transfer entropy
countermeasure as well. To do this, given two signals {αk} and
{βk}, it suffices to obtain the nominal average transfer entropy
reading T norm

α→β empirically based on normal process operation
data and consider the decision rule

γα→β (k) =

{
1, |Tα→β (k) − T norm

α→β | ≥ δ · T norm
α→β

0, otherwise
(60)

where δ is a user-specified tuning knob to adjust the risk of
missed and false alarms. Since the transfer entropy measure is
not a random process, the concept of missed alarm rates and false
alarm rates in signal detection and estimation theory [46] cannot
be directly applied. On the other hand, as the transfer entropy
is evaluated in a data-driven fashion, when a large number of
data points are utilized to calculate the transfer entropy at each
time instant, the choice of a relatively small value of δ would
be sufficient to detect the existence of attacks. A consequence,
however, is that a relatively large detection delay would be
incurred due to the large number of historical data used. In
Section VI, to provide an informative picture of the behavior of
transfer entropy with respect to the attacks, the transfer entropy
readings rather than the outputs of the detector for a fixed value
of δ are provided.

B. Design of Artificial Causal Sensor Pairs

The underlying principle of using the transfer entropy coun-
termeasure for anomaly detection is to detect the changes of
transfer entropy caused by the anomaly. To be specific, let {βk}
denote the process subject to potential attacks, and let {αk}
denote another process. One simple way to detect whether βk

is attacked is to choose {αk} such that Tα→β �= 0; when βk

is contaminated by an attack, it is very likely that this causal
relationship would be altered (see Section VI for examples) and
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thus can be detected by evaluating Tα→β . For large-scale con-
trol systems, however, it is not always easy to find a sensor
pair {yi

k , yj
k} such that Ty i →y j �= 0 holds, due to the complex

cause-effect relationships for large systems, and the existence
of disturbances and noise. One question is whether systematic
techniques can be adopted to these scenarios. We now show one
possible technique. Let

x̌k+1 = Ǎx̌k + B̌uk + w̌k (61)

y̌k = Čx̌k + v̌k (62)

where uk denotes the external input, and x̌k may contain con-
troller states utilized to achieve closed-loop performance spec-
ifications based on output feedback. Let b denote one row of
B̌, and define x̄k+1 := buk . In addition, let x̂k+1 = x̌k . Letting
v̂k = v̌k−1 and introducing an additional scalar measurement
noise process v̄k , we construct the following augmented sys-
tem:⎡

⎣ x̂k+1
x̄k+1
x̌k+1

⎤
⎦

︸ ︷︷ ︸
xk + 1

=

⎡
⎣0 0 I

0 0 0
0 0 Ǎ

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ x̂k

x̄k

x̌k

⎤
⎦

︸ ︷︷ ︸
xk

+

⎡
⎣ 0

b
B̌

⎤
⎦ uk +

⎡
⎣ 0

0
I

⎤
⎦ w̌k

︸ ︷︷ ︸
wk

(63)

[
ŷk

ȳk

]

︸ ︷︷ ︸
yk

=
[

Č 0 0
0 1 0

]

︸ ︷︷ ︸
C

⎡
⎣ x̂k

x̄k

x̌k

⎤
⎦

︸ ︷︷ ︸
xk

+
[

v̂k

v̄k

]

︸ ︷︷ ︸
vk

. (64)

In (63), uk can either be the original external input signal or
an artificial random excitation signal; we note that ȳk is an
artificial measurement of buk (since uk is available) with v̄k

being an artificial measurement noise process, and ŷk = y̌k−1
corresponds to the delayed measurement of x̌k . The delay in
(63) (i.e., x̂k+1 = x̌k ) is intentionally included to enhance the
causality from ȳk to ŷk (or equivalently, from buk to y̌k ). If
the system is controllable and observable,1 there exists an el-
ement ŷj

k in ŷk such that ȳk → ŷj
k holds. In this way, a pair

of sensor measurements with guaranteed causality can be ob-
tained, which is also of particular help in applying the transfer
entropy countermeasure to the case when only one sensor is
available. Since ȳk does not need to be measured by an actual
sensor, the measurements are naturally secured, which further
enhances the reliability and applicability of the transfer entropy
countermeasures. From (63)–(64), we observe that the analysis
in Section IV applies provided the noise terms wk and vk sat-
isfy the assumptions of the corresponding terms in (1)–(2). The
discussions here will be illustrated in Section VI through the
Tennessee-Eastman process [47], [48]. In addition, we note that
the idea in this artificial causal relationship construction tech-
nique is similar to that of the physical watermarking approach
utilized in [49] for detecting replay attacks.

Finally, we note that the idea of the above procedure also
provides a method to identify a virtual process ȳk for a chosen
sensor yj

k (which is an element of y̌k ), so that ȳk → yj
k holds

and the transfer entropy countermeasure can be utilized to detect
the existence of attacks for the chosen sensor yj . To see this, it

1Note that this condition is trivial as a controllable and observable realization
of the system in (63)–(64) can be always obtained.

suffices to note that if the state-space model of the subsystem
that represents the dynamics from a specific input ui

k (which is a
component of uk ) to the chosen sensor output yj

k is controllable
and observable; then, the transfer function from the input ui

k

to the sensor output yj
k is nonzero, which indicates a causal

relationship from ui
k and the specified sensor output yj

k and
helps construct a signal ȳk = ui

k with the required causality
property.

C. Transfer Entropy Between Two Sensor Groups

Transfer entropy quantifies the information flow from one ran-
dom process to another. Two random processes considered in the
definition are neither required to be scalar-valued nor to have the
same dimension. In this sense, the transfer entropy countermea-
sure can not only be used for anomaly detection between two
scalar-valued sensors, but also be applied to two sensor groups.
The data-driven transfer entropy evaluation algorithm proposed
in [36] focuses on scalar-valued sensors, which is why we limit
the discussions to scalar-valued sensors in Section VI. This fur-
ther puts forward the requirement of developing computational
efficient transfer entropy algorithms for vector-valued random
processes. We plan to explore this problem in a separate work.
Finally, note that the theoretical developments in this paper ap-
ply to both scalar and vector cases, as no assumption is made
on the dimension of the sensors in the derivations.

VI. NUMERICAL EXAMPLE

In this section, we evaluate the effectiveness of the trans-
fer entropy measures through a numerical example and make
comparisons to alternative approaches.

A. System Setup

We consider a state-space model in the form of (61)–(62) ex-
tracted from the simplified Tennessee-Eastman challenge prob-
lem [47], [48], which is composed of eight states, four inputs,
and ten sensors. The matrices Ǎ, B̌, and Č are obtained based
on their continuous-time counterparts in [48, Table 3] with sam-
pling period 0.2 h and are omitted here due to space limitation.
For illustration purpose, we assume uk to be a zero-mean white
Gaussian process with covariance Q̂ = diag{1.46, . . . , 1.46};
based on the nominal values of the input variables in [48, Table
1], this choice can be regarded as a small perturbation added to
the original nominal control inputs. We assume the covariance
of w̌k to be Q̌ = diag{0.05, . . . , 0.05}, and the covariance of vk

in (64) to be diag{0.002, . . . , 0.002}; these values are first set
to be small here to aid the later sensitivity analysis. To illustrate
the proposed results, we choose b in (63) as the first row of B̌;
the two sensors used for transfer entropy evaluation are the arti-
ficial sensor measuring buk together with the fifth sensor in ŷk ,
which shall be named as sensor i and sensor j, respectively, for
national consistence with the discussions in Sections II–III. The
goal is to verify whether the causality countermeasure can be
used to detect the cyber-attacks on sensor j. The values of trans-
fer entropy countermeasures are numerically evaluated based
on historical data according to the algorithm introduced in [36]
with τ = 1, μ = 2, and l = 2. At each time instant, the length
of historical data points utilized to calculate the transfer entropy
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Fig. 2. Anomaly detection for DoS attack.

is L = 500. For all the scenarios, we assume the attacks are
inserted into the system at k = 2500. We assume sensor j to be
the sensor being attacked, although this information is neither
needed nor used to calculate the transfer entropy values.

For comparison purpose, two χ2 detectors are considered,
which are implemented as in [9]. The first detector (which we
name as “χ2

A detector”) is based on the information from both
sensor i and sensor j. Write yk := [(yi

k )	 (yj
k )	]	. The χ2

A
detector first calculates the innovation process {zk,A} based
on {yk} and the standard Kalman filter equations, and then
evaluates

1
L

k∑
t=k−L+1

z	k,APAzk,A

H0

≶
H1

δA (65)

where PA denotes the steady-state covariance of zk,A , δA de-
notes a prespecified threshold, and H1 denotes a triggered alarm.
Note that when the local innovation values zi (or zj ) calculated
only based on the information sensor i (or sensor j) are trans-
mitted [see (21)], the corresponding yi

k and yj
k values are first

reconstructed based on the Kalman filter recursions to imple-
ment the χ2

A detector.
The second detector “χ2

B detector” is based on the informa-
tion from sensor j and is implemented in a similar way as (65):

1
L

k∑
t=k−L+1

z	k,BPB zk,B

H0

≶
H1

δB . (66)

From the above discussion, we note that these χ2 detectors
are model-based rather than data-driven as the system model is
required in the Kalman filter calculations, and that an alarm will
not be triggered unless the magnitude of the innovation sequence
becomes sufficiently large. To provide a fair comparison of the
countermeasures, we provide the values of the terms on the left-
hand side of the inequalities in (65) and (66) (which we shall
term as the readings of the χ2 detectors), rather than those of
the binary-valued decision variables.

B. Nominal Transfer Entropy Levels

As indicated by the transfer entropy readings in Figs. 2–6 for
k ≤ 2500, Ty i →y j > Ty j →y i holds, which is consistent with the

Fig. 3. Replay attack (record period = 250).

Fig. 4. Innovation-based false data attack, scenario I.

Fig. 5. Innovation-based false data attack, scenario II.

fact that yi and yj have an input–output relationship. Since the
transfer entropy measures are numerically evaluated in a data-
driven fashion, the value of Ty j →y i does not exactly equal 0, and
the level of Ty j →y i serves as an approximate indication of what
transfer entropy values to expect when a causation relationship
does not exist from one random variable to the other. This level
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Fig. 6. Input data injection attacks.

is thus a baseline for analyzing the sensitivity of the transfer
entropy countermeasure with respect to the anomalies.

C. DoS Attack

To illustrate the impact of DoS attacks on the transfer entropy
measures, the zero-order hold protocol is implemented for the
system considered by randomly generating γj

k with a DoS rate
of 60%. The obtained measurement data and transfer entropy
sequences are provided in Fig. 2, where a change in transfer
entropy can be observed after the attacks are inserted on sensor
j. For this case, the reading of χ2

A detector does not have an
obvious response to the change of data caused by the DoS attack;
decrease of the χ2

B reading is observed, although this change
cannot raise an alarm for attacks due to that only a sufficient
increase in the readings can cause a detection alarm according
to (66).

D. Replay Attack

Now we focus on the effect of replay attacks. Consider the
scenario that the adversary first records the data of sensor j for
250 samples and, then, replay these recorded data to perform an
attack on the same sensor. The responses of the transfer entropy
measure and the χ2 detectors are provided in Fig. 3. From this
figure, we observe that an abrupt change can be observed in the
transfer entropy countermeasure. Increased readings of the two
χ2 detectors in respond to the replay attacks are observed as
well, and in particular, the reading increase of the χ2

A detector
is more obvious than that of the χ2

B detector, potentially due to
the utilization of the healthy data from sensor i.

E. Innovation-Based Deception Attack

Two scenarios are considered here to illustrate the effect of
innovation-based deception attacks; according to Section IV-D,
an i.i.d. random process bj

k ∼ N (0,Σj
k ) is generated to construct

the fake innovation sequence {ζj
k}, where Σj

k is calculated ac-
cording to (45) and the specific choice of T j

k . In the first scenario,
starting from k = 2500, a fake white noise sequence {ζj

k} with
the same covariance as that of the original innovation sequence
{zj

k} is used to replace the original innovation sequence, which
corresponds to the case T j

k = 0. The results are provided in

Fig. 4, where an obvious change in the transfer entropy measure
again can be observed for k ≥ 2500; reading changes in the
χ2

A detector are also observed, although no obvious change is
observed in the readings of the χ2

B detector.
The second scenario focuses on attacks of the form ξj

k =
T j

k zj
k + bj

k , with T j
k = −1; the responses of transfer entropy and

χ2 detectors are shown in Fig. 5. For this case, an undershoot
in the transfer entropy response happens at the attack; after
that, the response returns to approximately the same level as
that before the occurrence of the attacks, which is consistent
with our theoretical analysis. An obvious reading change in the
χ2

A detector is also observed, although no obvious change is
observed in the readings of the χ2

B detector.

F. Data Injection Attack

In this section, we numerically evaluate the effect of data
injection attacks. To do this, an input attack signal ak ∈ R4

is chosen as a zero-mean Gaussian process with variance
diag{1.5, . . . , 1.5} for k ≥ 2500, and is mixed into the input
uk in (63). The responses of the transfer entropy and the χ2 de-
tectors are provided in Fig. 6, where step changes in the transfer
entropy curve and the readings of the χ2

A detector are observed
at k = 2500.

G. Comparison With χ2 Detectors

From the above discussions, we observe that the proposed
transfer entropy countermeasures are capable of sensing the
existence of attacks for all the considered scenarios. We also
observe that the χ2

A detector can respond to the attacks for most
scenarios (with exception for the DoS attack in Fig. 2). We
further compare further the χ2

A detector and the transfer entropy
countermeasures in this section.

First, we note that for certain cases, the χ2
A detector can

behave better than the transfer entropy countermeasure; an ex-
ample can be found in Fig. 5, where a transient undershoot
response is observed for the transfer entropy countermeasure
while the χ2

A detector reacts with a consistent step change in
its readings, which can help the detection. Second, since the χ2

detectors are built on innovation sequences, which need to be
calculated based on the model of the system, inevitable model
mismatches also affect the performance of the χ2 detectors. To
evaluate this aspect, we consider the simple case that the Q̌ ma-
trix (namely, the covariance of w̌k ) is not accurately estimated.
Suppose its estimated value is 2.5 times of its real value. The cor-
responding detector readings are plotted in Figs. 2–6 denoted as
χ2

A,F . Note that the readings are much smaller than the nominal
values; this can cause critical issues for attack detection, since
the χ2 detector may not be able to capture the attacks when
the readings are small [see the definition in (65)]. Hence, χ2

detectors can be severely affected by model uncertainties. The
transfer entropy countermeasures are directly calculated based
on the sensor measurements, and thus are less affected by model
mismatch.

H. Sensitivity Against System and Measurement Noises

In this section, we analyze the effect of system and mea-
surement noises on the transfer entropy measures. To do this,
we focus on the replay attack and consider three noise param-
eter variations. First, we consider the effect of system noise by
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Fig. 7. Sensitivity analysis with respect to noises.

Fig. 8. ROC curves for DoS attack.

increasing the covariance of w̌k by ten times. The corresponding
responses are shown in red in Fig. 7(a), where changes in the
transfer entropy response can no longer be observed due to the
enlarged system noise. One remedy to overcome this issue is
to increase the signal-to-noise ratio; to show this, the transfer
entropy curve obtained by enlarging Q̂ [namely, the covariance
of uk in (63)] ten times of its nominal value is provided in the
same figure, where the ability of attack detection is resumed.
We further evaluate the effect of measurement noise; to do this,
we compare the transfer entropy response curves obtained by
separately increasing the measurement noise covariances Rj to
100 and Ri to 0.5, respectively [see Fig. 7(b)]. We observe that
the transfer entropy is not sensitive to the increase of Rj , which
corresponds to the measurement noise covariance of the “cause”
variable, while it is sensitive to the increase of Ri , namely, the
measurement noise covariance of the “effect” variable. Again,
we note that the capability of attack detection can be recovered
by increasing the signal-to-noise ratio, as indicated by the red
curve in Fig. 7(b).

I. Receiver Operating Characteristic (ROC) Analysis

In this section, the ROC curves of the considered detectors are
numerically evaluated by taking different values of δ (namely,
thresholds of the detectors) in (60), (65), and (66) and repeating
the simulations 20 times (for each δ) for the attack scenarios con-
sidered in Figs. 2–4 and 6. The results are shown in panel (a)

Fig. 9. ROC curves for replay attack.

Fig. 10. ROC curves for innovation-based attack (scenario I).

Fig. 11. ROC curves for input data injection attack.

of Figs. 8–11. We observe that in terms of ROC, the transfer
entropy based detector behaves obviously better than the χ2

detectors for the considered DoS attack scenario, while for the
rest three scenarios, the ROC curves of transfer entropy based
detector, the χ2

A detector, and the χ2
A,F detector are close to

each other with the performance of χ2 detectors being slightly
better than the transfer entropy based detector. To take a closer
look, we also plot the relationship between missed alarm rate
and the threshold parameter δ in panel (b) of Figs. 8–11; from
these plots, choosing δ ∈ [0.2, 0.4] for the transfer entropy based
detector seems to be a helpful rule-of-thumb for all these sce-
narios. For the χ2 detector, however, the favorable choice of δ
varies with the available system model; to see this, note that
in Fig. 9, given the exact system model (namely, χ2

A detector),
taking δ ∈ [1.1, 1.3] would yield an ROC point close to origin,
while given a model with enlarged Q̌ matrix (χ2

A,F detector), a
favorable choice for δ would be around 0.5. This is consistent
with our discussions on robustness in Section VI-G.
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Fig. 12. Replay attacks on both sensors.

We also note that the proposed detector in (60) does not apply
to all attack scenarios. For instance, a successful detection of
the innovation-based false data attacks (scenario II) in Fig. 5
would be based on the undershoot pattern in transfer entropy
readings caused by the attack (and thus the ROC curve for this
scenario is not considered); another example is the scenario
of replay attacks on both sensor channels (see Section VI-J).
Therefore, it seems necessary to achieve attack detection for
different scenarios using detector banks, in which each detector
focuses on particular attack scenarios, while the transfer entropy
seems to be capable of serving as an efficient source for detector
bank design.

J. Attacks on Both Sensors

In this section, we briefly discuss how the transfer entropy
countermeasures respond to attacks that affect both sensor chan-
nels. To do this, we consider a scenario that both sensors yi and
yj are subject to replay attacks with recording period 250; the
results are shown in Fig. 12, where we observe that a special
pattern is created by the attack, namely, a constant value in trans-
fer entropy. The reason is due to the data-driven evaluation of
transfer entropy, as the periodically replayed data would lead to
the same conditional distribution estimate at each time instant
after a period of the attacks. The readings of the χ2 detectors
show some special patterns too.

In addition, one related question is how would the perfor-
mance of the transfer entropy based detector change when at-
tacks on other sensors happen. Since the principle of anomaly
detection using transfer entropy lies in the change of causal re-
lationship when anomaly occurs, given a fixed pair of sensors
for which transfer entropy is evaluated, the performance of the
transfer entropy based detector for the fixed sensor pair only
changes when the other sensor signals that have cause-effect
relationship with the fixed pair of sensors are attacked.

VII. CONCLUSION

In this paper, transfer entropy countermeasures for attack
detection have been introduced and analyzed, and the effec-
tiveness of these measures toward different attack scenarios
has been evaluated utilizing theoretical analysis and numerical
experiments. So far, the attempt of utilizing causality counter-
measures in attack detection is encouraging. To simplify the

analysis, we focused our attention on attack detection based on
the information from two sensors with scalar-valued measure-
ments. To be comprehensive, it would be better to monitor the
causality relationships based on all (or at least a large number
of) available measurement signals. The results developed can
theoretically be applied to deal with this case; in fact, systems
of larger scale are more appealing, since in a large system the
sensor measurements are more likely to exhibit causality rela-
tionships. To numerically calculate the transfer entropy values
for this case, however, the development of computationally ef-
ficient algorithms to evaluate the transfer entropy measures for
sensor pairs and sensor groups (i.e., when the transfer entropy
from one sensor group to another is considered) is necessary, as
the computational burden may be heavily increased when the
transfer entropy values for a set of sensor and actuator pairs are
calculated for a large-scale system; one possible approach is to
formulate the transfer entropy evaluation problem into an adap-
tive estimation problem, so that the techniques on distributed
optimization and adaptive learning can be utilized. These prob-
lems point out directions of our future work.

APPENDIX A
DATA-DRIVEN EVALUATION OF TRANSFER ENTROPY

In this appendix, we discuss the numerical calculation of the
transfer entropy countermeasure. The algorithm used to com-
pute the transfer entropy measures in our work is not new and
was originally proposed in [36].

We focus on the evaluation of the transfer entropy de-
fined for measurement processes at time instant k + τ , that
is, Ty i →y j (k + τ). The most recent historical data sequence of
length N , namely, yi

k−N +1+τ :k+τ and yj
k−N +1+τ :k+τ are used

to calculate Ty i →y j (k + τ). The algorithm is composed of two
steps:

Step 1: Evaluation of the conditional distributions.
Based on Bayes’ rule, the conditional distributions
f(yi

k+τ |yi
k−μ+1:k , yj

k−l+1:k ) and f(yi
k+τ |yi

k−μ+1:k ) are ex-
pressed in terms of joint distributions, which are obtained using
a kernel estimation method [50]. In particular, for q-dimensional
multivariate data, the Fukunaga method [50] is utilized to es-
timate the joint probability density function (pdf). Letting x
denote a q-dimensional random process and X1 ,X2 , . . . , XL

be a set of realizations of x, the kernel estimation of the joint
pdf is

f̂(x) =
(detS)−1/2

L(
√

2π�)q

L∑
i=1

exp
[
−�−2

2
(x − Xi)	S−1(x − Xi)

]

where � is chosen as 1.06L−1/(4+q) , and S is the covariance
matrix of the sampled data X1:L . The computation complexity
of the kernel estimation method is O(L2q2).

Step 2: Calculation of the transfer entropy. From the definition
in (5), we have

Ty j →y i (k + τ) = E

[
log

f(yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k )

f(yi
k+τ |yi

k−μ+1:k )

]
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and, therefore, the transfer entropy can be numerically evalua-
ted as

Ty j →y i (k + τ) .=
1

N − τ − max{μ − 1, l, 2}

×
N −τ∑

i=N −τ−max{μ−1,l,2}
log

f(yi
k+τ |yi

k−μ+1:k , yj
k−l+1:k )

f(yi
k+τ |yi

k−μ+1:k )

where the conditional distributions are estimated based on the
kernel estimation method in Step 1. For this step, approximately
N summations are required.

To calculate the transfer entropy, four parameters need to be
determined: N , τ , μ, and l. When the measurement processes are
at steady state, choosing a larger N will improve the consistency
of the transfer entropy readings in the sense that the transfer en-
tropy calculated at different time instants will stay at almost the
same level. Also, a larger N will help improve the chance of
capturing certain attacks (see the discussions in Section IV-D
and Fig. 5). On the other hand, increase of N potentially in-
creases the detection delay, which is often critical in attack
detection. In [36], the determination of τ , μ, and l is discussed
in detail, as the choice of these parameters are critical in the
context of causality analysis. In our work, the transfer entropy
is used as a measure of “change of causality” to detect the exis-
tence of attacks, so the guidelines in [36] should apply also in
our case. We refer the readers to [36, Sec. II.D.4] for detailed
discussions.
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