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Abstract Watermarking is a technique that embeds digital information, “water-
mark”, in a carrier signal to identify ownership of the signal or verify the authen-
ticity or integrity of the carrier signal. It has been widely employed in the fields of
image and signal processing. In this chapter, we survey some recent physical wa-
termark design approaches for Cyber-Physical Systems (CPS). We focus on how
to design physical watermarking to actively detect cyber attacks, especially replay
attacks, thereby securing the CPS. First, the system as well as the attack model
are introduced. A basic physical watermarking scheme, which leverages a random
noise as a watermark to detect the attack, is discussed. The optimal watermark sig-
nal is designed to achieve a trade-off between control performance and intrusion
detection. Based on this scheme, several extensions are also presented, such as wa-
termarks generated by a Hidden-Markov Model and on-line data-based watermark
generation. These schemes all use an additive watermarking signal. A multiplicative
watermark scheme is also presented. The chapter is concluded with a discussion on
some open problems on watermark design.

H. Liu
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore,
and School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology,
Sweden
e-mail: hanxiao001@ntu.edu.sg

Y. Mo
Department of Automation and BNRist, Tsinghua University, China
e-mail: ylmo@tsinghua.edu.cn

K. H. Johansson
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Swe-
den
e-mail: kallej@kth.se

1



2 Hanxiao Liu, Yilin Mo and Karl Henrik Johansson

1 Introduction

Cyber-Physical Systems (CPS) integrate computational elements and physical pro-
cesses closely. They are playing a more and more critical role in a large variety
of infrastructures, such as transportation, power grid, defense and environment.
Most of them are of great importance to the operation of society. Any successful
cyber-physical attack may bring huge damages to critical infrastructure, human lives
and properties, and even threaten the national security. Maroochy water breach in
2000 [1], Stuxnet malware in 2010 [2], Ukraine power outage in 2015 [3], Venezuela
blackouts in 2019 [4] and other security incidents, motivate us to pay more attention
to CPS security.

Recent years have witnessed more and more research regarding how to design
watermarking signals to secure CPS. Watermarking is a technique that embeds digi-
tal information, a watermark, in a carrier signal to identify ownership of the signal or
verify the authenticity or integrity of the carrier signal. It has been widely employed
in the fields of image and signal processing. One important application of this tech-
nique is to trace illegally copied movies where a watermark is used to determine the
owner of the original movie [5, 6].

In [7, 8], a physical watermarking scheme is proposed for control systems. In this
scheme, if the system is operating normally, then the effect of the carefully designed
watermark signal is present in the sensor measurements. However, if the system is
under attack, its effect cannot be detected. Actually, it could be considered as an
active defense scheme.

Mo and Sinopoli [7] investigate the problem of the detection of replay attacks and
first propose the technique of introducing an authentication signal which is called
physical watermark signal later. This approach enables the detection of replay at-
tacks where an adversary can read and modify all sensor data as well as inject a
malicious input into the system. Different from false data injection attacks, this type
of attack does not need knowledge of the system model to generate stealthy outputs
and only replays the recorded sensor measurements to the operator, which leads
to that the replayed data and the real data share exactly the same statistics and for
which replay attacks cannot be detected efficiently. By injecting a random control
signal, the watermark signal, into the control system, it is possible to secure the
system.

The authors of [8, 9] further extend the results of [7] by providing a more general
physical authentication scheme to detect the replay attacks. However, the watermark
signal may deteriorate the control performance, and therefore it is important to find
the optimal trade-off between the control performance and the detection efficiency,
which can be cast as an optimization problem. Furthermore, Mo et al. [8] also char-
acterize the relationship among the control performance loss, detection rate and the
strength of the Gaussian authentication input.

The term physical watermarking is first proposed in [5] to authenticate the cor-
rect operation of CPS. As a generalization of [7, 8, 9], the technique of designing the
optimal watermark signal is to maximize the expected Kullback-Leibler divergence
between the distributions of the compromised and the healthy residue signals, while
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guaranteeing a certain maximal control performance loss. The optimization prob-
lem is separated into two steps where the optimal direction of the signal for each
frequency is first computed and then all possible frequencies are considered to find
the optimal watermark signal.

The watermarking approach proposed in [10] is based on an additive watermark
signal generated by a dynamical system. Conditions on the parameters of the water-
mark signal are obtained which ensures that the residue signal of the system under
attack is unstable and the attack can be detected. An optimization problem is pro-
posed to give a loss-effective watermark signal with a certain amount of detection
rate by adjusting the design parameters. A similar problem is studied for multi-agent
systems in [11].

The problem of physical watermark design under packet drops at the control
input is analyzed in [12]. It is interesting that Bernoulli packet drops can obtain bet-
ter detection performance compared with a purely Gaussian watermarking signal.
Consequently, a Bernoulli-Gaussian watermark, which incorporates both an addi-
tive Gaussian input and a Bernoulli drop process, is jointly designed to achieve the
trade-off between detection performance and control performance. The effect of the
proposed watermark on closed-loop performance and detection performance is an-
alyzed.

Satchidanandan and Kumar [13] provide a comprehensive procedure for dy-
namic watermarking. It suggests a private excitation signals on the control input
which can be traced in the system to enable the detection of attacks. Such an ac-
tive defense technique is used to secure CPS that include single-input-signal output
(SISO) systems with Gaussian noise, SISO auto-regressive systems with exogenous
Gaussian noise, the SISO autoregressive-moving average systems with exogenous
terms, SISO systems with partial observations, multi-input-multi-output systems
with Gaussian noise and extension to non-Gaussian systems. In [14], they propose
necessary and sufficient conditions that the statistics of the watermark needs to sat-
isfy in order to achieve security-guaranteeing.

It is worth noticing that in all research discussed above, precise knowledge of the
system parameters is required in order to design the watermark signal and the detec-
tor. However, acquiring these parameters may be troublesome and costly in practice.
Motivated by this, [15] proposes an algorithm that can simultaneously generate the
watermarking signal and infer the system parameters to enable the detection of at-
tacks with unknown system parameters. It is proved that the proposed algorithm
converges to the optimal one almost surely.

In [16, 17], Rubio-Hernán et al. define cyber adversaries and cyber-physical ad-
versaries and point out that the detection schemes proposed by Mo and Sinopoli [7]
and Mo et al. [5] fails to detect an attack from the latter. Besides, a multi-watermark-
based detection scheme is proposed to overcome the limitation. Furthermore, in
[18], a periodic and intermittent event-triggered control watermark detector is pre-
sented. The new detector strategy integrates local controllers with remote controller.
It is proved that the new detector scheme can detect three adversary models defined
in their work.
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Although it is proved that the introduction of watermark signals enables the de-
tection of certain replay attacks, it degrades the control performance since the con-
trol input is not optimal. Considering the loss of control performance, Fang et al.
[19] formulate a novel attack model for the replay attack. On the basis of this model,
a periodic watermarking strategy is investigated. An approximated detection perfor-
mance is obtained by using the proposed periodic strategy.

Different from the additive watermarking schemes, a multiplicative sensor wa-
termarking is proposed in [20]. In this scheme, each sensor output is watermarked.
The corresponding watermark remover is employed to reconstruct the real sensor
measurement from the received watermarked data. This scheme does not degrade
the control performance in the absence of attacks and it could be designed inde-
pendently of the design of the controller and anomaly detector. Furthermore, it also
enables the isolation and identification of the replay attack. A similar scheme is ap-
plied to detect cyber sensor routing attacks [21] and false data injection attacks [22].
The physical sensor re-routing attack and the cyber measurement re-routing attack
are considered in [21] and corresponding detectability and isolability of these two
attacks are analyzed. In [22], Teixeira and Ferrari show how to design the water-
marking filters to enable the detection of stealthy false-data injection attacks and a
novel technique is proposed to solve the limitation of single-output systems.

The rest of chapter is organized as follows. Section 2 formulates the problem
by introducing the system model as well as attacks model. A basic physical water-
mark scheme is introduced in Section 3. The optimal watermark signal is designed
to achieve a trade-off between control performance and intrusion detection. In Sec-
tion 4, several extensions are also presented, such as watermarks generated by a
Hidden-Markov Model, on-line data-based watermark generation and a multiplica-
tive watermark scheme. Conclusions and a discussion on some open problems on
watermark design are provided in Section 5.

Notations: For an m×n matrix A, A > 0 (A≥ 0) indicates that A is positive definite
(positive semidefinite), A+ denotes the pseudo-inverse of A, and ‖A‖ is the spectral
norm of A, which is its largest singular value. For two matrices A and B, A⊗B is
their Kronecker product. The notation sym(X) , X+XT

2 represents the symmetric
part of a matrix X . The real part of Z is denoted by ℜ(Z).

2 Problem Setup

In this section, we setup the problem by introducing a system model as well as an
attack model.
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2.1 System Description

Let us consider a linear time-invariant (LTI) system described by the following equa-
tions:

xk+1 = Axk +Buk +wk, (1)
yk =Cxk + vk, (2)

where xk ∈ Rn and yk ∈ Rm are the state vector and the sensor’s measurement, re-
spectively, wk ∈ Rn and vk ∈ Rn are process and measurement noise, respectively.
It is assumed that the initial state x0,wk and vk are independent Gaussian random
variables, and x0 ∼N (x̄0,Σ), wk ∼N (0,Q), vk ∼N (0,R). It is also assumed that
(A,B) is stablizable and (A,C) is detectable.

Here, we assume that the objective of the system operator is to derive an optimal
solution to minimize the following linear-quadratic-Gaussian (LQG) cost:

J , lim
T→∞

E
1
T

[
T−1

∑
k=0

(
xT

k Wxk +uT
k Vuk

)]
, (3)

where W,V are positive definite matrices and uk is measurable with respect to pre-
vious observations. Due to the separation principle, the optimal solution of (3) com-
bines Kalman filter and LQG controller. The optimal state estimate x̂k is given by
Kalman filter as follows:

x̂0|−1 = x̄0,P0|−1 = Σ ,

x̂k+1|k = Ax̂k|k +Buk,Pk+1|k = APk|kAT +Q,

Kk = Pk|k−1CT (CPk|k−1CT +R)−1,

x̂k|k = x̂k|k−1 +Kk(yk−Cx̂k|k−1),Pk|k = Pk|k−1−KkCPk|k−1.

It is well known that the gain Kk converges to a fixed gain since the system is
detectable. Hence, define

P , lim
k→∞

Pk|k−1,K , PCT (CPCT +R)−1.

Since control systems usually run for a long time, we can assume that the system
is already in steady state. The covariance of the initial state is assumed Σ = P.
Hence, the Kalman filter can be rewritten as follows:

x̂0|−1 = x̄0, x̂k+1|k = Ax̂k|k +Buk,

x̂k|k = x̂k|k−1 +K(yk−Cx̂k|k−1).

Based on the optimal state estimate x̂k, the optimal control input u∗k is provided
by the LQG controller:
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u∗k =−(BT SB+V )−1BT SAx̂k|k,

where S satisfies the following Riccati equation

S = AT SA+W −AT SB(BT SB+V )−1BT SA.

Define L ,−(BT SB+V )−1BT SA, then

u∗k = Lx̂k|k. (4)

The objective function given by the optimal estimator and controller in our case is

J = tr(SQ)+ tr
[
(AT SA+W −S)(P−KCP)

]
. (5)

The χ2 detector [23] is widely used to detect anomalies in control systems. It takes
the following form at time k:

gk =
k

∑
i=k−T +1

(yi−Cx̂i|i−1)
T P−1(yi−Cx̂i|i−1)

H0
≶
H1

η , (6)

where T is the window size of detection, P = (CPCT +R) and η is the threshold
which is related with the false alarm rate. When the system is under normal opera-
tion, the left of the above equation is χ2 distributed with mT degrees of freedom.
Furthermore, H0 denotes the system is under normal operation while H1 denotes a
triggered alarm.

Here, define the probability of false alarm αk and the probability of detection rate
βk as:

αk , P(gk > η |H0), βk , P(gk > η |H1).

2.2 Attack Model

In this section, we introduce a replay attack model and analyze the feasibility of this
kind of attacks on the control system.

The adversary is assumed to have the following capabilities and resources:

1. The attacker has access to all the real time sensor measurements. In other words,
it knows true y0, . . . ,yk at time k.

2. The attacker can modify the true sensory data yk to arbitrary signals y′k by adding
malicious data ya

k to the sensor measurement.
3. The attacker can inject attack ua

k to the control input.

Under the above attack, the system dynamics changes to the following form:

xk+1 = Axk +Buk +Baua
k +wk, y′k =Cxk +Daya

k + vk. (7)
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where ua
k and da

k are the harmful input and output.
Given these capabilities, the adversary can launch multiple types of attacks, such

as zero dynamics attack[24], covert attack[25], false data injection attack[26, 27]
and replay attack[5, 7, 8]. In this chapter, we mainly focus on replay attacks. Without
loss of generality, we assume that attack starts at time 0. During the replay attack,
the following attack strategies are employed:

1. The attacker records a sequence of sensor measurements yks from time k1 to
k1 +Tp, where Tp is large enough to guarantee that the attacker can replay the
sequence for an extended period of time during the attack.

2. The attacker manipulates the sensor measurements yk starting from time 0 to
the recorded signals, i.e.,

Daya
k = y′k−Cxk− vk = yk−∆k−Cxk− vk,∀ 0≤ k ≤ Tp,

where ∆k =−k1.
3. The attacker inject the malicious input Baua

k .

Here, considering the above system, detector and the attack strategies, the sta-
bility of A , (A+BL)(I−KC) implies that the detection rate βk converges to the
false alarm rate αk. If A is unstable, the detection rate βk goes to one. For a more
detailed discussion on the detectability of replay attack, please refer to [7].

Since the classical passive detection scheme, where the detector passively ob-
serves the sensory data, is incapable of detection a replay attack in some CPS, an
active detection scheme is needed to solve the problem. In the following section, we
will develop a physical watermark scheme by which the detector can better detect
such attacks.

3 Physical Watermark Scheme

The main idea of physical watermark is to inject a random noise, which is called the
watermark signal, into the system (1) to excite the system and check whether the
system responds to the watermark signal in accordance to the dynamical model of
the system.

In order to detect replay attack, the controller is redesigned as

uk = u∗k +∆uk, (8)

where u∗k is the optimal LQG control signal and ∆uk is drawn from an IID Gaussian
distribution with zero mean and covariance Q, and the watermark signal sequence
are chosen to be also independent of u∗k .
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3.1 LQG Performance Loss

∆uk is added as an authentication signal. It is chosen to be zero mean because we
do not wish to introduce any bias to xk. It is clear that when there is no attack, the
controller is not optimal in the LQG sense anymore, which means that in order to
detect the attack, we need to sacrifice control performance. The following theorem
characterizes the loss of LQG performance when we inject ∆uk into the system.

Theorem 1 ([7]). The LQG performance after adding ∆uk is given by

J′ = J+ tr[(V +BT SB)Q]︸ ︷︷ ︸
∆J

. (9)

3.2 Detection Performance

Consider the χ2 detector after adding the watermarking signal. The following theo-
rem shows the effectiveness of the detector under the modified control scheme.

Theorem 2 ([7]). In the absence of an attack,

E[(yk−Cxk|k−1)
T P−1(yk−Cxk|k−1)] = m. (10)

Under attack

lim
k→∞

E[(y′k−Cxk|k−1)
T P−1(yk−Cxk|k−1)] = m+2tr(CT P−1CU ),

where U is the solution of the following Lyapunov equation

U −BQBT = A U A T .

Corollary 1 ([7]). In the absence of an attack,

E[(yk−Cxk|k−1)
T P−1(yk−Cxk|k−1)] = mT . (11)

Under attack

lim
k→∞

E[(y′k−Cxk|k−1)
T P−1(yk−Cxk|k−1)] = mT +2tr(CT P−1CU )T .

3.3 The Trade-off between Control and Detection Performance

The authentication signal ∆uk can be optimized such to maximize the detection
performance while minimizing the effect on controller performance. As the authen-
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tication signal has to be zero mean, the design hinges on the covariance matrix Q.
Let the optimal value of Q, based on the design requirements, be denoted by Q∗.

The optimization problem can be setup in two ways. Initially, the LQG perfor-
mance loss (∆J ) can be constrained to be less than some design parameters Θ , and
the increase (∆gk) in the expected value of the quadratic residues in case of an attack
maximized. In this case, the optimal Q∗ is the solution to the following optimization
problem

arg max
Q

tr(CT P−1CU )

subject to U −BQBT = A U A T

Q ≥ 0

tr[(V +BT SB)Q]≤Θ . (12)

Remark 1. It can be observed from Theorem 1 and Theorem 2 that the increase (∆J)
in LQG cost and increase (∆gk) in the expectation of the quadratic residues are linear
functions of the noise covariance matrix matrix Q. Thus, the optimization problem
is a semidefinite programming problem, and hence can be solved efficiently.

Theorem 3 ([8]). There exists an optimal Q∗ for (12) of the following form:

Q∗ = αωω
T ,

where α > 0 is a scalar and ω is a vector such that ωT ω = 1.

Another way of optimizing is to constrain the increase (∆gk) in the expected
values of the quadratic residues to be above a fixed value Γ , thereby guaranteeing
a certain rate of detection, and the performance loss (∆J ) can be minimized. The
optimal Q is now the solution to the optimization problem

arg max
Q

tr[(V +BT SB)Q]

subject to U −BQBT = A U A T

Q ≥ 0

tr(CT P−1CU )≥ Γ . (13)

Remark 2. The solutions of the two optimization problems given in (12) and (13)
will be scalar multiples of each other, thus solving either optimization problem guar-
antees same performance.
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4 Extensions of Physical Watermark Scheme

4.1 A Non-IID Watermarking Design Approach

In this subsection, we further investigate the problem of designing the watermarking
signal to achieve the optimal trade-off between control performance and detection
performance. The following technique generalizes the results in [7, 8] and considers
non-independent and identically distributed Gaussian process.

For the sake of simplicity, we define ζk , ∆uk, where ∆uk is defined in (8).
Correspondingly, (8) is rewritten as:

uk = u∗k +ζk. (14)

Here, the auto-covariance function is defined as:

Γ (d), Cov(ζ0,ζk) = Eζ0ζ
T
d ,

and the watermarking signal is generated by a Hidden-Markov Model (HMM)

ξk+1 = Ahξk +ϕk, ζk =Chξk, (15)

where ϕk ∈ Rnh , k ∈ Z is a sequence of IID zero-mean Gaussian random variables
with covariance Ψ , and ξk ∈Rnh is the hidden state. To make ζk be a stationary pro-
cess, the covariance of ξ0 is assumed to be the solution of the following Lyapunov
equation

Cov(ξ0) = Ah Cov(ξ0)AT
h +Ψ ,

where Ah is strictly stable. It is assumed that the watermark signal is chosen from
a HMM with ρ(Ah) < ρ , where ρ < 1 is a design parameter. A value of ρ close to
1 gives the system operator more freedom to design the watermark signal, while a
value of ρ close to 0 improves the freshness of the watermark signal by reducing the
correlation of ϕk at different time steps. To simplify notations, define the feasible set
G (ρ) as

G (ρ) = {Γ : Γ is generated by an HMM (15) with ρ(Ah)< ρ}.

4.1.1 LQG Performance

Similarly, the injection of the watermarking signal ζk degrades the LQG perfor-
mance. The LQG cost is J = limE 1

2T+1

[
∑

T
k=−T (x

T
k Wxk +uT

k Vuk)
]
. The following

theorem characterizes the performance loss incurred by the additional watermark.
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Theorem 4 ([5]). The LQG performance of the system described by (1) (2) and (14)
is characterized as:

J = J∗+∆J,

where J∗ is the optimal LQG cost without the watermark signal and

∆J = tr

{
VΓ (0)+2V sym

[
L

∞

∑
d=0

(A+BL)dBΓ (1+d)

]}
+ tr

[
(W +LTV L)Θ1

]
,

(16)

where

Θ1 , 2
∞

∑
d=0

sym
[
(A+BL)dL1(Γ (d))

]
−L1(Γ (0)),

and L1 : Cp×p→ Cn×n is a linear operator defined as

L1(X) =
∞

∑
i=0

(A+BL)iBXBT ((A+BL)i)T = (A+BL)L1(X)(A+BL)T +BXBT .

4.1.2 Detection Performance

In the absence of the attack, since the real time authentication signal ζk and the
residue zk are available to the detector of the system, the residue zk follows a Gaus-
sian distribution with mean zero and covariance P =CPCT +R [23].

In the presence of the attack, the residue zk converges to a Gaussian with mean
µk−1 and covariance (P +Σ) [5], where

µk ,−C
k

∑
i=0

A k−iBζi and Σ = 2
∞

∑
d=0

C sym[A dL2(Γ (d))]CT −L2(Γ (0))]CT ,

(17)

where L2 : Cp×p→Cn×n is a linear operator on the space of p× p, which is defined
as

L2(X),
∞

∑
i=0

A iBXBT (A i)T = A iL2(X)(A i)T +BXBT .

To detect the replay attack, we need a detector to differentiate the distribution of
yk under the following two hypotheses:

N0 : zk ∼N0(0,P); N1 : zk ∼N1(µk−1,P +Σ).

By the Neyman-Pearson lemma [28], the optimal detector is given by the Neyman-
Pearson detector as discussed in the following theorem.
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Theorem 5 ([5]). The optimal Neyman-Pearson detector rejects N0 in favor of N1
if

gNP(zk,ζk−1,ζk−2, · · ·) = zT
k P−1zk− (zk−µk−1)

T (P +Σ)−1(zk−µk−1)≥ η .
(18)

Otherwise, hypothesis H0 is accepted.

Since the detection rate and expected time to detection involve integrating a
Gaussian distribution, which usually does not have an analytical solution, the
Kullback-Leibler (KL) divergence is used to characterize the detection performance.
The following theorem quantifies the detection performance from the perspective of
the expected KL divergence between N0 and N1:

Theorem 6 ([5]). The expected KL divergence of distribution N1 and N0 is

E DKL (N1‖N0) = tr
(
ΣP−1)− 1

2
log det

(
I +ΣP−1) . (19)

Furthermore, the expected KL divergence satisfies the inequality

1
2

tr
(
ΣP−1)≤ E DKL (N1‖N0)≤ tr

(
ΣP−1)− 1

2
log
[
1+ tr

(
ΣP−1)] . (20)

where the upper bound is tight if C is of rank 1.

4.1.3 The Optimal Watermarking Signal

In order to achieve the optimal tradeoff between the control performance and detec-
tion performance, the optimization problem is formulated as follows:

arg max
Γ (d)∈G (ρ)

E DKL (N1‖N0) ,

subject to ∆J ≤ δ . (21)

where δ > 0 is a design parameter depending on how much control performance
loss is tolerable.

It is worth noticing that directly maximizing the detection performance is compu-
tationally difficult. Notice that the expected KL divergence is relaxed to tr

(
ΣP−1

)
,

using the upper and lower bound derived in Theorem 6. One can transform the above
optimization problem to following problem:

arg max
Γ (d)∈G (ρ)

tr
(
ΣP−1) ,

subject to ∆J ≤ δ . (22)

Although Σ and J are linear functions of Γ , convex optimization techniques can-
not be directly applied to solve (22), since Γ is in an infinite dimensional space.
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Therefore, (22) is transformed into the frequency domain. Before continuing on, the
following definition is needed.

Definition 1 ([5]). ν is a positive Hermitian measure of size p× p on the interval
(−0.5,0.5] if for a Borel set SB ⊆ (−0.5,0.5], ν(SB) is a positive semidefinite Her-
mitian matrix with size p× p.

The following theorem establishes the existence of a frequency domain represen-
tation for Γ (d).

Theorem 7 (Bochner’s Theorem [29, 30]). Γ (d) is the autocovariance function
of a stationary Gaussian process ζk if and only if there exists a unique positive
Hermitian measure ν of size p× p, such that

Γ (d) =
∫ 1

2

− 1
2

exp(2π jdω)dν(ω). (23)

By the fact that Γ (d) is real, the Hermitian measure ν satisfies the following
property, which can be applied to the Fourier transform of the real valued signals.

Proposition 1 ([5]). Γ (d) is real if and only if for all Borel-measureable sets SB ⊆
(−0.5,0.5],

ν(SB) = ν(−SB). (24)

By (24), (23) can be simplified as

Γ (d) = 2ℜ

(∫ 1
2

0
exp(2π jdω)dν(ω)

)
.

Theorem 8 ([5]). The optimal solution (not necessarily unique) of (22) is

Γ∗(d) = 2ρ
|d|

ℜ(exp(2π jdω∗)H∗) , (25)

where ω∗ and H∗ are the solution of the ensuing optimization problem.

arg max
ω,H

tr[F2(ω,H)CT P−1C],

subject to F1(ω,H)≤ δ ,0≤ ω ≤ 0.5,
H Hermitian and Positive Semidefinite, (26)

where the function F1 and F2 are defined as

F1(ω,H), tr[VΘ2]+ tr[(W +LTV L)Θ3], (27)

F2(ω,H), 2ℜ{2sym[(I− sρA )−1L2(H)]−L2(H)}, (28)

where
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Θ2 , 2ℜ{2sym(sρL[I− sρ(A+BL)]−1BH)+H},
Θ3 , 2ℜ{2sym[(I− sρ(A+BL))−1L1(H)]−L1(H)},

s , exp(2π jω).

Furthermore, one optimal H∗ of optimization problem (26) is of the form H∗ = hhH ,
where h ∈ Cp. The corresponding HMM is given by

ξk+1 = ρ

[
cos2πω∗ −sin2πω∗
sin2πω∗ cos2πω∗

]
ξk +ψk, ζk =

[√
2hr
√

2hi
]

ξk, (29)

where hr,hi ∈ Rp are the real and imaginary part of h respectively and Ψ =
Cov(ψk) = (1−ρ2)I.

4.2 An On-line Design Approach

It is worth noticing that in order to design the optimal watermark signal, precise
knowledge of the system parameters is needed. However, acquiring the parameters
may be troublesome and costly. Furthermore, there may be unforeseen changes in
the model of the system, such as topological changes in power systems. As a result,
the identified system model may change during the system operation. Therefore, it
is beneficial for the system to “learn” the parameters and design the detector and wa-
termark signal in real-time, which is our focus in this section. Based on the physical
watermark scheme, we develop an approach to infer the system parameters based
only on the system input data φk and output data yk and design the marked parame-
ters in Fig. 1: the covariance Uk of the watermark signal φk and the optimal detector
based on the estimated parameters.

Uk φk Plant Sensor yk

wk vk

Detector

Online Learning

xk

Fig. 1 The system diagram.

To simplify notations, in this subsection we consider a stable open-loop system.
The LTI system described by (1) (2) is rewritten as follows:

xk = Axk−1 +Bφk +wk, (30)
yk =Cxk + vk, (31)
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where φk ∈ Rp is the watermark signal and its covariance is denoted as U.

4.2.1 Physical Watermark for Systems with Known Parameters

The analyses on the control performance, detection performance and optimal prob-
lem are similar to that in the above section. Due to the space constraints, we only
provide the outline. Please refer to [15] for more details.

In the absence of the attack, yk can be represented as:

yk = ϕk +ϑk, (32)

where

ϕk ,
k

∑
τ=0

Hτ φk−τ and ϑk ,
k

∑
t=0

CAtwk−t + vk +CAk+1x−1,

where Hτ = CAτ B. It is easy to know that ϕk is a zero mean Gaussian whose co-
variance converges to U , where U , ∑

∞
τ=0 HτUHT

τ . Similarly, ϑk is a zero mean
Gaussian noise whose covariance is W =CPCT +R.

Under the replay attack, the replayed y′k can be written as

y′k = yk−∆k = ϕk−∆k +ϑk−∆k.

Since ∆k is unknown to the system operator, we shall treat ϕk−∆k as a zero mean
Gaussian random variable with covariance U . As a result, y′k is a zero mean Gaus-
sian random variable with covariance U +W .

Here, we provide the following two hypotheses on the distribution of yk:

H0: yk ∼N0(ϕk,W ), H1: yk ∼N1(0,U +W ).

The Neyman-Pearson detector [28] is employed to differentiate two distributions
and the KL divergence is used to characterize the detection performance. Hence, we
aim to maximize tr(U W −1) to maximize the detection performance.

Correspondingly, the following LQG metric is used to quantify the performance
loss:

J = lim
T→+∞

E

(
1
T

T−1

∑
k=0

[
yk
φk

]T

X
[

yk
φk

])
= tr(XyyW )+ tr(XS), (33)

where

S =

[
U H0U

UHT
0 U

]
and X =

[
Xyy Xyφ

Xφy Xφφ

]
> 0

is the weight matrix for the LQG control, which is chosen by the system operator.
Therefore, in order the achieve the optimal trade-off between the control and

detection performance, the optimization problem is formulated as follows:
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U∗ =arg max
U≥0

tr(U W −1)

subject to tr(XS)≤ δ , (34)

where δ is a design parameter.
An important property of the optimization problem (34) is that the optimal solu-

tion is usually a rank-1 matrix, which is formalized by the following theorem:

Theorem 9 ([15]). The optimization problem (34) is equivalent to

U∗ =arg max
U≥0

tr(UP)

subject to tr(UX )≤ δ , (35)

where

P =
∞

∑
τ=0

HT
τ W −1Hτ and X =

(
∞

∑
τ=0

HT
τ XyyHτ

)
+HT

0 Xyφ +XφyH0 +Xφφ .

The optimal solution to (35) is U∗ = zzT , where z is the eigenvector corresponding
to the maximum eigenvalue of the matrix X −1P and zT X z = δ . Furthermore, the
solution is unique if X −1P has only one maximum eigenvalue.

Then we will develop an online “learning” procedure to infer the system param-
eters, based on which, we show how to design watermark signals and the optimal
detector and prove that the physical watermark and the detector asymptotically con-
verge to the optimal ones.

Throughout this subsection, we make the following assumptions:

Assumption 1 [15]

1. A is diagonalizable.
2. The maximum eigenvalue of X −1P is unique.
3. The system is not under attack during the learning phase.
4. The number of distinct eigenvalues of A, which is denoted as ñ, is known.
5. The LQG weight matrix X and the largest tolerable LQG loss δ are known.

4.2.2 An Online Algorithm

In this subsection, we will present the complete algorithm in a pseudo-code form.
After that, the online “learning” scheme will be introduced in detail.

Algorithm 1 describes our proposed online watermarking algorithm. The nota-
tions are described later. A pseudo-code form for Algorithm 1 is as follows:

Then we will introduce this algorithm in detail.
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Algorithm 1 Online Watermarking Design
Initialization: P−1← I, X−1← Xφφ ,k← 0
Iteration:
1: while true do
2: Uk,∗← arg maxU≥0, tr(UXk−1)≤δ tr(UPk−1)

3: Uk←Uk,∗+(k+1)−υ δ I
4: Generate random variable ζk ∼N (0, I)
5: Apply watermark signal φk←U1/2

k ζk
6: Collect sensory data yk
7: Hk,τ ← 1

k−τ+1 ∑
k
t=τ yt φ

T
t−τU−1

t−τ

8: Compute the coefficient of pk(x) by solving (40)
9: if pk(x) is Schur stable then

10: Update Pk,Xk from (41)-(46)
11: end if
12: Update ĝk from (47)
13: k← k+1
14: end while

Generation of the Watermark Signal φk

Let us design Uk, which can be considered as an approximation for the optimal
covariance of the watermark signal U , as

Uk =Uk,∗+
δ

(k+1)υ
I, (36)

where 0 < υ < 1, δ is the maximum tolerable LQG loss, and Uk,∗ is the solution of
the following optimization problem

Uk,∗ =arg max
U≥0

tr(UPk−1),

subject to tr(UXk−1)≤ δ , (37)

and Pk−1 and Xk−1 are the estimate of P and X matrices, respectively, based
on y0, . . . ,yk−1,φ0, . . . ,φk−1, both of which are initialized as P−1 = I, X−1 = Xφφ .
The inference procedure of Pk and Xk for k ≥ 0 will be provided in the further
subsections.

At each time k, the watermark signal is chosen to be φk =U1/2
k ζk, where ζks are

IID Gaussian random vectors with covariance I.

Inference on Hτ

Define the following quantity Hk,τ , where 0≤ τ ≤ 3ñ−2, as
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Hk,τ ,
1

k− τ +1

k

∑
t=τ

ytφ
T
t−τU−1

t−τ

= Hk−1,τ +
1

k− τ +1
(
ykφ

T
k−τU−1

k−τ
−Hk−1,τ

)
, (38)

where Hk,τ can be interpreted as an estimate of Hτ .
It is worth noticing that the calculation of the matrices U , W , P and X requires

Hτ for all τ ≥ 0. Next we shall show that in fact only finitely many Hτ s are needed
to compute those matrices, which requires one intermediate result:

Lemma 1. Assuming the matrix A is diagonalizable with λ1, . . . ,λñ being its distinct
eigenvalues, then there exist unique Ω1, · · · ,Ωñ, such that Hτ = ∑

ñ
i=1 λ τ

i Ωi.

Since A satisfies its own minimal polynomial p(x)=∏
ñ
i=1(x−λi)= xñ+αñ−1xñ−1+

. . .+α0, we know that for any i≥ 0:

Hi+ñ +αñ−1Hi+ñ−1 + · · ·+α0Hi =CAi p(A)B = 0. (39)

Leveraging (39), we could use H0,H1, · · · ,H3ñ−2 to estimate both λis and Ωis and
thus Hτ for any τ . To this end, let us define: αk,0

...
αk,ñ−1

,−Ξ
−1
k

 tr(H T
k,0Hk,ñ)

...
tr(H T

k,ñ−1Hk,ñ)

 , (40)

where

Ξk ,

 tr(H T
k,0Hk,0) · · · tr(H T

k,0Hk,ñ−1)
...

. . .
...

tr(H T
k,ñ−1Hk,0) · · · tr(H T

k,ñ−1Hk,ñ−1)

 and Hk,i ,


Hk,i

Hk,i+1
...

Hk,i+2ñ−2

 .
Let us denote the roots of the polynomial pk(x) = xñ +αk,ñ−1xñ−1 + · · ·+αk,0 to

be λk,1, · · · ,λk,ñ. Define a Vandermonde like matrix Vk to be

Vk ,


1 1 · · · 1

λk,1 λk,2 · · · λk,ñ
...

...
. . .

...
λ

3ñ−2
k,1 λ

3ñ−2
k,2 · · · λ

3ñ−2
k,n

 ,
and we shall estimate Ωi asΩk,1

...
Ωk,ñ

= (Vk⊗ Im)
+

 Hk,0
· · ·

Hk,3ñ−2

 . (41)
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Inference on ϕk, ϑk and W

Define

ϕ̂k ,
ñ

∑
i=1

ϕ̂k,i, (42)

with ϕ̂k,i = λk,iϕ̂k−1,i +Ωk,iφk, and ϕ̂−1,i = 0. As a result, we can estimate ϑk as

ϑ̂k , yk− ϕ̂k. (43)

The covariance of ϑk can be estimated as

Wk ,
1

k+1

k

∑
t=0

ϑ̂t ϑ̂
T
t . (44)

Inference on P , X , U and gk

Finally we can derive an estimation of the P and X matrices, which are required
to compute the optimal covariance U of the watermark signal, given by

Pk =
∞

∑
τ=0

(
ñ

∑
i=1

λ
τ
k,iΩk,i

)T

W −1
k

(
ñ

∑
i=1

λ
τ
k,iΩk,i

)

=
ñ

∑
i=1

ñ

∑
j=1

1
1−λk,iλk, j

Ω
T
k,iW

−1
k Ωk, j, (45)

and

Xk =
∞

∑
τ=0

(
ñ

∑
i=1

λ
τ
k,iΩk,i

)T

Xyy

(
ñ

∑
i=1

λ
τ
k,iΩk,i

)
+

ñ

∑
i=1

Ω
T
k,iXyφ +Xφy

ñ

∑
i=1

Ωk,i +Xφφ

=
ñ

∑
i=1

ñ

∑
j=1

1
1−λk,iλk, j

Ω
T
k,iXyyΩk, j +

ñ

∑
i=1

Ω
T
k,iXyφ +Xφy

ñ

∑
i=1

Ωk,i +Xφφ . (46)

The Neyman-Pearson detection statistics gk can be approximated by

ĝk =(yk− ϕ̂k)
T W −1

k (yk− ϕ̂k)− yT
k (Wk +Uk)

−1 yk, (47)

where
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Uk =
∞

∑
τ=0

(
ñ

∑
i=1

λ
τ
k,iΩk,i

)
Uk,∗

(
ñ

∑
i=1

λ
τ
k,iΩk,i

)T

=
ñ

∑
i=1

ñ

∑
j=1

1
1−λk,iλk, j

Ωk,iUk,∗Ω
T
k, j. (48)

4.2.3 Algorithm Properties

The following theorem establishes the convergence of Uk,∗ and gk, the proof can be
found in [15].

Theorem 10. Assuming that A is strictly stable and Assumption 2 holds. If 0 < υ <
1, then for any ε > 0, the following limits hold almost surely:

lim
k→∞

Uk,∗−U∗
k−γ+ε

= 0, lim
k→∞

ĝk−gk

k−γ+ε
= 0, (49)

where γ = (1−υ)/2 > 0. In particular, Uk,∗ and ĝk almost surely converge to U∗
and gk respectively.

4.2.4 Simulation Result

In this section, the performance of the proposed algorithm is evaluated. We will
apply the proposed online “learning” approach to a numerical example. First we
choose m = 3,n = 5, p = 2 and A, B,C are all randomly generated, with A being
stable. It is assumed that X in (33), the covariance matrices Q and R are all identity
matrices with proper dimensions. We assume that δ in (35) is equal to 10% of opti-
mal LQG cost J0. Fig. 2 shows relative error ‖Uk,∗−U∗‖F/‖U∗‖F of the estimated
Uk,∗ v.s. time k for different υs.

From Fig 2, one can see that the estimator error converges to 0 as time k goes to
infinity and the convergence approximately follows a power law. From Theorem 10,
we know that Uk,∗−U∗ ∼ O(k−γ+ε), where γ = (1−υ)/2. However, from Fig 2, it
seems that the convergence speed of the error for different υ is comparable. Notice
that Theorem 10 only provides an upper bound for the convergence rate. As a result,
it would be interesting to quantify the exact impact of υ on the convergence rate,
which we shall leave as a future research direction.

Now we consider the detection performance of our online watermark signal de-
sign, after an initial inference period, where no attack is present. It is assumed that
the attacker records the sensor readings from time 104 +1 to 104 +100 and replays
them to the system from time 104 +101 to 104 +200. Fig 3 shows the trajectory of
the Neyman-Pearson statistic gk and our estimate ĝk of gk for one simulation. Notice
that ĝk can track gk with high accuracy. Furthermore, both ĝk and gk are significantly
larger when the system is under replay attack (after time 104 +101). Hence one can
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Fig. 2 Relative error of Uk,∗ for different υ . The black solid line denotes the relative error of Uk,∗
when υ = 0. The gray solid line is the relative error of Uk,∗ when υ = 1/3.

conclude that even without parameter knowledge, we can successfully estimate gk
and detect the presence of the replay attack.
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Fig. 3 The detection statistics v.s. time. The black solid line with circle markers is the true
Neyman-Pearson statistics gk, assuming full system knowledge. The gray dashed line with cross
markers denotes our estimated ĝk.
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4.3 A Multiplicative Watermarking Design

Different from the additive physical watermark scheme, where the watermarking
signal is injected to the control input in the above work, Riccardo M.G. Ferrari and
André M.H. Teixeira proposed a multiplicative sensor watermarking scheme. It has
been applied to detect several types of attacks including replay attacks [20], routing
attacks [21] and false data injection attacks [22].

In this subsection, we mainly introduce the multiplicative watermarking scheme
proposed in [20], in which each sensors output is separately watermarked. Corre-
spondingly, the equalizing filters are equipped to reconstruct the real output signal
from the watermarked data. About the proofs of theorems in this subsection, please
refer to [20].

Consider the following system model is as follows:

P :

{
xp(k+1) = Apxp(k)+Bpu(k)+η(k)

yp(k) =Cpxp(k)+ξ (k)

C :

{
xcr(k+1) = Acxc(k)+Bcỹp(k)

u(k) =Ccxc(k)+Dcỹp(k)

R :

{
xr(k+1) = Arxr(k)+Bru(k)+Kr ỹp(k)

yr(k) =Crxr(k)+Dru(k)+Er ỹp(k)
,

(50)

where all notations’ meaning and relative assumptions could be found in [20] and
we omit them due to the space constraints. Here, Define xc,r(k) = [xc(k)T xr(k)T ]T ,
the controller and detector dynamics can be represented as

Fcr :


xcr(k+1) = Acrxcr(k)+Bcr ỹp(k)

yr(k) =Ccrxcr(k)+Dcr ỹp(k)

u(k) =Cuxcr(k)+Duỹp(k)
. (51)

4.3.1 Multiplicative Watermarking and Equalizing Scheme

The main idea of a multiplicative sensor watermarking scheme is to pre-process the
measurements through a filter parameterized by θ before transmitting them, denoted
as sensor watermarking, and then to pre-process the received watermarked data
through an equalizer filter parameterized by the very same θ before feeding them
to the controller and anomaly detector, denoted as equalization [22]. Here, θ(k) is
designed as a piecewise constant variable θ(k), θ j ∈Θ , for k j ≤ k < k j+1, where
Kθ , {k1, · · · ,k j, · · ·} denotes the set of switching times and Θ , {θ1, · · · ,θM} is
the set of possible parameters [20].

For the watermarking step, the corresponding filters are denoted as W (θ) and
the watermarked measurements are denoted as ypw(k). For the equalization step, the
equalizing filters are denoted as Q(θ):
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W :

{
xw(k+1) = Aw(θ)xw(k)+Bw(θ)yp(k)

ypw(k) =Cw(θ)xw(k)+Dw(θ)yp(k)
,

Q :

{
xq(k+1) = Aq(θ)xq(k)+Bq(θ)ỹpw(k)

ypq(k) =Cq(θ)xq(k)+Dq(θ)ỹpw(k)
,

(52)

where ypw(k) and ỹpw(k) are employed to differentiate the watermarked data and the
data received by the controller and anomaly detector.

Then we will introduce how to design the parameters in this scheme. For the
sake of simplicity and without loss of generality, we suppose that there is only one
sensor. The watermark generator is represented as follows:

ypw(k) =
N

∑
n=1

wA,(n)ypw(k−n)+
N

∑
n=0

wB,(n)yp(k−n), (53)

where wA = [wA,(1), · · · ,wA,(N)]
T ∈ RN and wB = [wB,(0), · · · ,wB,(N)]

T ∈ RN+1 are
the filter parameters.

Consider that the objective of equalizing filters are to reconstruct the sensor mea-
surement y(k), an intuitive approach is to derive the inverse of the respective filter,
i.e.,

ypq(k) =
1

wB,(0)

(
−

N

∑
n=0

wB,(n)ypq(k−n)+ ỹpw(k)−
N

∑
n=1

wA,(n)ỹpw(k−n)

)
(54)

By using controllable canonical form, the corresponding parameters in (52) are
designed as follows:

Aw(θ) =

[
0N−1,1 IN−1

wT
A

]
, Bw =

[
0N−1,1

1

]
,

Cw(θ) = [· · ·wB,(n)+wB,(0)wA,(n) · · · ], for n = 1, · · · ,N, Dw(θ) = wB,(0),

Aq(θ) =

[
0N−1,1 IN−1

−1
wB,(0)

wT
B

]
, Bq =

[
0N−1,1

1
wB,(0)

]
,

Cq(θ) = [· · ·−wA,(n)−
wB,(n)

wB,(0)
· · · ], for n = 1, · · · ,N, Dq(θ) =

1
wB,(0)

.

The following theorem characterizes the performance of the system with the mul-
tiplicative scheme under no replay attacks.

Theorem 11 ([20]). Consider the closed-loop system with watermarked sensors de-
scribed by (50) and (52). Assume that theta(k) is updated at times k ∈Kθ . The
performance of the closed-loop system equipped with sensor watermarking filters
and equalizing filters is same as the performance of the nominal closed-loop sys-
tem (52) if and only if the states of Q(θ) and W (θ)are such that xq(k) = xw(k) for
all k ∈Kθ with no replay attacks.
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We now present the main result of this section regarding the detectability of re-
play attacks under the proposed watermarking scheme.

Theorem 12 ([20]). Consider a replay attack that has recorded data from time kr =
k0−T to k f = k0−Tf , and let θ(k) = θ ′ for kr ≤ k≤ k f . Suppose the recorded data
is replayed from time k0 and let θ(k) = θ for k ≥ k0. During the replay attack, yr
converges asymptotically to y′r for y′p if and only if θ = θ ′.

From Theorem 12, one can obtain that when θ 6= θ ′, the undetectability of the
replay attack is not guaranteed a priori, since it depends on the exogenous input y′p.

4.3.2 Detection and Isolation of Replay Attacks

In this subsection, through the multiplicative watermarking scheme, an anomaly
detector and a corresponding threshold will be derived. For more details about the
isolation and identification of relay attacks, please refer to [20].

It is assumed that there is no replay attacks for 0 ≤ k < k0, where k0 is the start
attack time. Furthermore, the variables xp,xpw and u remain bounded before being
attacked. Here, (Ap,Cp) is assumed as a detectable pair [20].

The detector is designed in the following form [31]:{
x̂p(k+1) = Apx̂p(k)+Bpu(k)+K(ypq(k)− ŷp(k)

ŷp(k) =Cpx̂p(k),
(55)

where x̂p and ŷp are estimates of xp and yp and the gain matrix K is chosen to satisfy
that Ar = Ap−KCp is Schur. Set xr = x̂p and the estimation error ε , xp− x̂p, under
the scenario with attacks, the detection residual dynamics are as follows:{

ε(k+1) = Arε(k)−Kξ (k)+η(k)

yr(k) =Cpε(k)+ξ (k),
(56)

and the detection threshold ith component is computed as

ȳr(k), α
i

[
k−1

∑
h=0

(δ i)k−1−i(η̄(h)+‖K‖ξ̄ (h))+(δ i)kx̄r(0)

]
+ ξ̄ (k),

where α i and δ i are two constants such that ‖Cp,(i)(Ar)
k‖ ≤ α i(δ i)k ≤ ‖Cp,(i)‖ ·

‖(Ar)
k‖ with Cp,(i) being the ith row of matrix Cp. Furthermore, η̄ , x̄r(0) and ξ̄ are

upper bounds on the norms of, respectively, η ,xr(0) and ξ [20].

Theorem 13. [20] If there exists a time index kd > k0 and a component i ∈ 1, ...,ny
such that during a cyber replay attack the following inequality holds



Active Detection against Replay Attack: A Survey on Watermark Design For CPS 25∣∣∣∣∣Cp,(i)

[
kd−1

∑
h=k0

(Ar)
kd−1−h(Bp∆u(h)−K∆yp(h))

]
+∆yp(k)

∣∣∣∣∣
>2α

i
kd−1−h

∑
h=0

(δ i)kd−1−h(η̄(h)+‖K‖ξ̄ (h))+(δ i)kd−k0(α ix̄r(k0)+ ȳr,(i)(k0))+2ξ̄ (kd),

where ȳr,(i)(k0) , maxxp∈S xp |yr,(i)(k0)| and ∆u , u′− u is the difference between
delayed and actual input, then the attack will be detected at the time instant kd .

5 Conclusion and Future Work

In this chapter, we introduced a basic physical watermarking scheme where a ran-
dom noise is injected into the system to excite the system and check whether the
system responds to the watermark signal in accordance to the dynamical model of
the system. The optimal watermark is derived via solving an optimization problem
which aims to achieve the optimal trade-off between control performance and de-
tection performance. Then three interesting extensions about the watermark design
were presented in detail.

For future works, it is worth noticing how to apply the watermark scheme to
more complicated systems. Designing more efficient algorithms regarding the wa-
termarking signal against more intelligent attackers is also interesting. Also, it is of
great interest to test the proposed algorithms in CPS to verify their performance in
a real scenario.
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