
Chapter 4
Statistical Parameter Privacy

Germán Bassi, Ehsan Nekouei, Mikael Skoglund and Karl H. Johansson

Abstract We investigate the problem of sharing the outcomes of a parametric source
with an untrusted party while ensuring the privacy of the parameters.We propose pri-
vacy mechanisms which guarantee parameter privacy under both Bayesian statistical
as well as information-theoretic privacy measures. The properties of the proposed
mechanisms are investigated and the utility-privacy trade-off is analyzed.

4.1 Introduction

As the costs of digitizing, storing, and analyzing real-world data constantly decrease,
more and more parts of our lives are increasingly being done through digital means.
Once this information leaves our control, it can be duplicated and inspected at will.
The data might be collected without our explicit knowledge and consent, e.g., our
online behavior which is used to personalize the ads with see, or we might actively
seek to share the information, e.g., by publishing our movie preferences on social
media. In the latter case, there is usually a benefit or utility to be gained by sharing
data. However, revealing sensitive information might be undesired for many people
even if there is some gain involved. Moreover, if the benefit obtained is directly
related to the fidelity of the shared information, a natural trade-off between utility
and privacy arises.

Over the past two decades, there has been a surge of research on the problem
of utility versus privacy and the design of privacy mechanisms to safely share data.
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Two of the most well-known approaches for providing privacy in databases are
k-anonymity [20] and differential privacy [11]. These strategies are normally imple-
mentedwhen data fromdifferent users are employed to estimate statistical population
parameters; it is desired that the estimated values are close to the true parameters
while the amount of information revealed about any particular user is low. This goal
is achieved by suppressing values in the database, by clustering similar values, or
by distorting the values with noise. As an example, a group of users participating
in a medical survey might have their names removed from the database, their ages
assigned to specific age-groups, and their weights modified by the addition of a
zero-mean random variable. The effect in the inference performance of such privacy
mechanisms has been addressed more recently; for instance, minimax risk bounds
and minimax optimal estimation procedures for several canonical families of prob-
lems are studied in [3, 10] (see also the references therein).

A complementary problem to the one just described appears when the shared data
should closely mirror the real one but must prevent an observer from learning some
specific patterns or sensitive statistics of the raw data. This is commonly the case for
users who share a stream of data with a third party in order to obtain a service; the
more faithful the data is, the better the service provided but the easier the analysis
of hidden information. As an example, a user may submit a scanned document to an
online service with the goal of performing optical character recognition, however, the
usermight notwant the online service to infer any personality traits in the handwriting
or the author’s identity with respect to previously submitted documents. In this work,
we focus on this second type of problems.

To the best of our knowledge, this is a less explored direction of research in privacy.
The reason might be strictly technological since it was not until recently that large
amounts of data from a single user could be collected; on the other hand, tiny bits of
information from vast numbers of users have been compiled in databases for many
years now. The design of this type of privacy filter is also inherently more complex
since each entry in the sequence cannot be processed independently and the statistics
of thewhole sequencemust be taken into account. Recently, the authors in [12] define
a privacy-preserving strategy that minimizes the Fisher information about the private
parameters in the released data. The Cramér–Rao lower bound [9, Theorem 11.10.1]
establishes that this strategy maximizes a lower bound on the mean square error of
any unbiased estimator of the parameters. The interested reader is referred to [5]
for a broader study on the performance degradation of any parameter estimator due
to a privacy filter. In particular, the authors investigate the relationship between the
length n of the data sequence and the inference performance of the parameters. The
main result from this work, a privacy filter that hinders the estimation of sensitive
parameters, is reproduced in the present manuscript.

Several different works have studied the general relationship between utility and
privacy. The authors of [6] introduce a general framework of utility versus privacy
where the former is defined as a bounded distortion and the latter as a log-loss
cost, which yields a trade-off similar to the rate-distortion function. If both utility
and privacy are measured using entropy or mutual information, a different utility-
privacy region is provided in [7]; however, only the two extreme cases of perfect
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privacy and perfect utility are properly characterized therein. The concept ofmaximal
correlation as a measure of privacy is introduced in [1] and it is shown in [2] that
this measure is equivalent to maximizing the MMSE of the private data given the
shared data. The authors of [13] also define a problem similar to rate-distortion,
where privacy is determined by mutual information, and they characterize optimal
asymptotic leakages for i.i.d. and general privacy mechanisms. Finally, the use of a
secret key to hinder the success of an eavesdropper is addressed in [23]; the authors
argue for the use of distortion-based privacy metrics instead of stronger information-
theoretic ones to reduce the size of the secret key.

Information privacy and the design of privacy filters have also been studied in
dynamic settings. The authors of [22] study the design of privacy-preserving filters
in a cloud-based control problem using the notion of directed information as the
privacy metric. Le Ny and Pappas in [15] propose privacy-preserving filtering algo-
rithms for ensuring the privacy of states or measurements of dynamical systems,
based on differential privacy. The authors of [21] study the state estimation problem
in a distribution power network subject to differential privacy constraints for the
consumers. Wang et al. in [24] propose privacy-preserving mechanisms for ensuring
the privacy of the initial states and the preferred target way-points in a distributed
multi-agent control system. Privacy-preserving average consensus algorithms, for
preserving the privacy of initial states, are addressed in [17, 18].

4.1.1 Organization

After the comprehensive introduction into the problem of parameter privacy, the rest
of this chapter is devoted to the analysis of two different privacy-preserving filters.
To facilitate the reading, we have organized the work as follows.

In Sect. 4.2, we present the systemmodel for the problem of parameter privacy and
some important definitions. In particular, we link the performance of the parameter
estimation to the mutual information between the parameter and the released data.
The section endswith the overviewof the two different privacy filters described in this
work. The first of these filters is introduced in Sect. 4.3. An achievable scheme that
distorts the shared data is outlined; the proposed privacymechanism seeks to confuse
the adversary by introducing an auxiliary parameter that behaves as the true one. It is
shown that the filter limits the amount of information released to the eavesdropper. A
Gaussian example is used to illustrate the trade-off between distortion and privacy.
In Sect. 4.4, the structure of the second privacy filter is studied. In this scheme,
the privacy filter design problem is posed as a convex optimization problem which
achieves the Pareto boundary of the distortion-privacy region. An upper bound on the
leakage of private information under this scheme is obtained. The distortion-privacy
trade-off for this filter is studied with a numerical example.
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4.1.2 Notation

In the rest of this chapter, lowercase letters such as x and y are mainly used to
represent constants or realizations of random variables, capital letters such as X and
Y stand for the random variables in itself, and calligraphic letters such as X and Y
are reserved for sets. In the case of Greek letters, we use �, θ, and � to denote a
random variable, its realization, and its support set, respectively.

We use Xn to denote the sequence of independent and identically distributed
(i.i.d.) random variables {Xk}nk=1. Given three random variables X , Y , and Z , if its
joint probability distribution can be decomposed as p(xyz) = p(x)p(y|x)p(z|y),
then they form a Markov chain, denoted by X → Y → Z .

Entropy is denoted by H(·) and mutual information, I (·; ·). Throughout the work
and unless stated otherwise, log refers to logarithm in base 2.

4.2 System Model and Overview of Results

In this section, we first introduce the general model studied in this work and some
useful definitions. We then present an overview of results for two particular privacy-
preserving filters.

4.2.1 System Model

Consider the three-user problem depicted in Fig. 4.1, where Alice wants to share
with Bob the outcomes of a random parametric source she observes. The value of
the parameter, which in this work constitutes private information that Alice does
not want to disclose, might even be unknown to her. For example, the observation
might be a handwritten note (a sequence of characters) by Alice while the parameter
represents her personality traits.

In the absence of any constraint on the rate of information between the users,
Alice may choose to directly send the observed sequence of values. However, the
communication is overheard by Eve, who is interested in characterizing the statistical
properties of the random parametric source, i.e., estimate the parameter. In order to
protect her privacy, Alice needs to share a distorted version of the source, but one

Fig. 4.1 General system
model
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that it is still useful for Bob. In our previous example with the handwritten note, the
font style may change as long as Bob is able to correctly read the text.

More precisely, we assume that Alice observes n samples of the random variable
X ∈ X where the samples are i.i.d.with respect to the distribution Pθ0 . Theprobability
measure Pθ0 is a member of a parameterized family of distributions P� = {Pθ : θ ∈
Θ} on a measurable space, where θ0 is a point in the interior of Θ . Moreover,
pθ0(x) is the probability density function (PDF) of Pθ0 with respect to a fixed σ-
finite measure μ(dx); it is assumed that pθ0(x) is non-zero almost everywhere on
X and the corresponding probability measure, Pθ0 , is absolutely continuous with
respect to Lebesgue measure.

The value of the parameter is chosen randomly by nature according to the known
prior distribution p(θ) with respect to Lebesgue measure; thus, the parameter is
regarded as a random variable, which we denote�.1 As previously mentioned, Alice
produces a distorted sequence Y n which is based on the observed sequence Xn and
shares it with Bob. The channel betweenAlice and Bob has no rate limitation, and the
purpose of distorting the sequence is to prevent Eve from increasing her knowledge
about the unknown parameter � beyond what is specified by the prior distribution.

We further assume that Bob has no advantage over Eve. The communication
is received by both users with the same level of quality and they are all aware
of the strategy employed by Alice to distort the observed sequence. If a certain
stochastic transformation is used to increase the privacy, the particular realization of
the mapping is unknown to both Bob and Eve.

4.2.2 Useful Definitions and Preliminary Result

We present here some definitions needed to characterize the loss in the fidelity of
the sequence Y n with respect to Xn and the increase in privacy. We start with some
general notions.

Definition 4.1 Let X denote an absolutely continuous random variable with proba-
bility density function pX (x). Then, the differential entropy of X is defined as

h(X) = −
∫
X

pX (x) log pX (x) dx . (4.1)

Definition 4.2 Consider the random variable X distributed according to the proba-
bility density function pθ(x), where θ is a parameter taking values in R

d . Then, the
Fisher information matrix about θ contained in X |�=θ is defined as a d × d matrix
with the (i, j)th entry given by

1Note that � stands for the parameter taken as a random variable, whereas Θ corresponds to the
parameter space.
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[
IX (θ)

]
i, j = E

[(
∂

∂θi
log pθ(x)

)(
∂

∂θ j
log pθ(x)

) ∣∣∣∣ � = θ

]
1 ≤ i, j ≤ d. (4.2)

Definition 4.3 The distortion between the sequences xn and yn is defined as

d(xn, yn) � 1

n

∑n

i=1
d(xi , yi ) , (4.3)

where the distortion function d is a mapping X × Y → R
+.

Definition 4.4 The privacy (distortion) between the parameter θ and an estimate
θ̃, i.e., �(θ, θ̃), is given by the mapping � : Θ × Θ → R

+, where we assume that
inf θ̃ �(θ, θ̃) = 0 for all θ.

Definition 4.5 A distortion-privacy pair (D, ε) is achievable in this problem if there
exists N > 0 and a privacy-preserving mapping (stochastic kernel) fn : X n → Yn

such that

E[d(Xn,Y n)] ≤ D, (4.4)

inf θ̂n E[�(�, θ̂n(Y
n))] ≥ ε , (4.5)

for n > N , where Y n = fn(Xn) and the infimum is taken over all measurable func-
tions θ̂n : Yn → Θ that are possible estimators of the parameter �.

An important information-theoretic function is the rate-distortion (RD) function.
We introduce it here for completeness.

Definition 4.6 ([9, Sect. 10.2]) The (information) rate-distortion function for a ran-
dom variable � with distortion measure �(·, ·) is defined as

R�,�(D) � min
p(θ̃|θ):E[�(�,�̃)]≤D

I (�; �̃). (4.6)

We assume that there exists D ≥ 0 such that R�,�(D) is finite.

We note that the RD function has the following properties:

• The infimum over D ≥ 0 such that R�,�(D) is finite is denoted Dmin; the corre-
sponding rate is Rmax � limD→D+

min
R�,�(D).

• The RD function R�,�(D) is a non-increasing convex function of D on the inter-
val (Dmin,∞). It is monotonically decreasing on the interval (Dmin, Dmax) and
constant with R�,�(D) = Rmin on [Dmax,∞).

• The inverse function R−1
�,�(r) is well defined on (Rmin, Rmax) and monotonically

decreasing. This function is known as the distortion-rate (DR) function.

Before proceeding with the overview of results in the next subsection, we present
an important lemma that relates Eve’s performance in estimating the random param-
eter � with the sequence transmitted by Alice. From Eve’s point of view, the setting
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of Fig. 4.1 is a statistical inference problem of a random quantity � that cannot be
directly observed; only an indirect measurement Y n is obtained. However, the pair
(�,Y n) has a given joint probability distribution, and thus Eve may calculate an
estimate θ̂n(Y n) of the parameter � [14].

Lemma 4.1 ([5, Lemma 2]) For any estimator θ̂n and any distortion function �(·, ·),
the expected privacy (the Bayes risk of the estimator) is bounded from below by:

E[�(�, θ̂n)] ≥ R−1
�,�(I (�; Y n)) , (4.7)

where R−1
�,�(·) is the DR function of the random variable �.

Proof The proof follows from the data-processing inequality [9, Sect. 2.8], the
Markov chain

� → Y n → θ̂n(Y
n), (4.8)

and the definition of the RD function in (4.6). Please refer to [5] for more details.�

The preceding lemma is quite powerful in that it allows us to bound the perfor-
mance of any estimator θ̂n of � based on Y n without knowing how that estimator
is calculated. Analytical solutions for the DR function in (4.7), on the other hand,
are only known for a handful of random variables and distortion measures. In many
situations, we may need to employ the looser Shannon lower bound or compute the
RD function numerically using the Blahut–Arimoto algorithm [9, Chap. 10].

Gaussian Example

Assume thatAlice observes n i.i.d. samples of the process X |�=θ ∼ N (θ,σ2
X ), where

the mean is fixed throughout the process but it has an unknown value. Additionally,
assume that � ∼ N (0,σ2

�), and consider the square error distortion function for the
estimation at Eve, i.e., �(θ, θ̂) � (θ − θ̂)2.

In this setting, the expected distortion is themean square error, and theDR function
is [9, Theorem 10.3.2]

R−1
�,�(r) = σ2

�2
−2r . (4.9)

If Alice sends the sequence Xn without any distortion, i.e., Y = X , then

I (�; Xn) = 1

2
log

(
σ2
X + nσ2

�

σ2
X

)
= 1

2
log

nσ2
�

σ2
X

+ o(1) , (4.10)

which according to Lemma 4.1 yields

MSEθ̂n
≥ σ2

Xσ2
�

σ2
X + nσ2

�

� σ2
X

n
, (4.11)
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where the approximation is valid for large n such that σ2
X 	 nσ2

�. We see that the
lower bound approaches 0 as n → ∞; hence, there might exist an estimator that
attains a vanishing mean square error.

We note that in this particular example the general lower bound in Lemma 4.1 is
tight. The right-hand side of (4.11) is known to be the minimum mean square error
for the considered estimation problem; thus, it can be attained by a specific estimator:
the MMSE estimator [14, Sect. 11.4].

We conclude this part with an important remark. Lemma 4.1 states that the
expected distortion of the unknown estimator θ̂n is bounded from below by
a monotonically decreasing function (the DR function) of the mutual infor-
mation between � and Y n . Consequently, the mutual information I (�; Y n)

should be minimized in order to hinder Eve’s estimation performance.

4.2.3 Overview of Results

Two different privacy-preserving filters are presented in this work. The following
is an overview of their characteristics and performance; both filters are analyzed in
more detail in Sects. 4.3 and 4.4.

4.2.3.1 First Scheme

For smooth parametric familiesP� with a continuous parameter� ∈ Θ ⊂ R
d , it is a

well-known fact that I (�; Xn) ∝ d
2 log n (see e.g., [8, 19]). Therefore, without prop-

erly distorting Xn , the amount of information about � gathered by the eavesdropper
increases with n. According to Lemma 4.1, Eve might thus be able to estimate the
parameter with arbitrarily high precision.

In Sect. 4.3, we analyze a privacy-preserving filter like the one depicted in Fig. 4.2,
where the auxiliary random parameter � is added to prevent an accurate estimation
of �. Eve is only able to estimate a function of the true and auxiliary parame-
ters, i.e., only � = ψ(�,�) may be estimated, where the function ψ(·) depends
on the statistics of the source and the filter. Namely, the randomness in the aux-
iliary parameter acts as noise of a virtual noisy channel for the inference problem:
I (�; Y n) = I (�;�) + O(1). Consequently, we prevent Eve from collecting unlim-
ited amount of information about � as n increases.
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Fig. 4.2 Stochastic filter.
Both the mapping X → Y
and the choice of the
mapping are random

Fig. 4.3 Deterministic filter
for � = θi and �̃ = θ j . The
mapping �

(·, θi , θ j
)
is

deterministic but the choice
of �̃ is stochastic

4.2.3.2 Second Scheme

Under the second scheme, we assume that X = R
d and that the parameter set Θ

has a finite cardinality. In the proposed filter and at each time k, Alice generates the
random variable Yk according to the mapping

Yk = �
(
Xk, θ, θ̃

)
, (4.12)

where θ̃ belongs to Θ and �
(
·, θ, θ̃

)
is a map fromR

d toRd . The map �
(
·, θ, θ̃

)
is

designed such that the commonPDFof {Y1, . . . ,Yn} is equal to pθ̃(x).We assume that
θ is known by Alice and θ̃ is selected, by the privacy filter, to simultaneously ensure
the privacy of θ and accuracy of the revealed information to Bob. The construction

of the map �
(
·, θ, θ̃

)
and the generation of θ̃ are discussed in Sect. 4.4. Figure4.3

shows a pictorial representation of the privacy filter under the second scheme.

4.3 First Scheme

In this section, we focus on parameter setsΘ ⊂ R
d . The unfavorable result obtained

in the Gaussian example in the preceding section, in particular (4.10) and (4.11), is
not an isolated case but rather the norm for most (well-behaved) parametric sources.
Given that the parameter � ∈ R

d , i.e., it has an infinite precision, it is expected that
the mutual information (4.10) grows unboundedly; hence, an observer is able to
estimate the parameter � with arbitrarily low error as n increases.
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The asymptotic behavior in (4.10) is a special case of a much larger set of results.
Specifically, if the density pθ(x) satisfies suitable smoothness conditions, it is shown
by Clarke and Barron [8] that

I (�; Xn) = d

2
log

n

2πe
+ h(�) + 1

2
E

[
log |IX (�)|] + o(1) , (4.13)

where d is the dimension of the parameter space, h(�) is the differential entropy of
the parameter, and IX (θ) is the Fisher informationmatrix about θ contained in X |�=θ.
In the aforementioned Gaussian example, we obtain (4.10) from (4.13) by noting
that d = 1, h(�) = 1

2 log 2πeσ
2
�, and IX (θ) = 1/σ2

X ∀θ ∈ R. For all the parametric
sources where (4.13) holds, e.g., all the exponential families, Eve may attain good
inference performance if Alice reveals her observation Xn without distortion.

4.3.1 A Simple Privacy-Preserving Strategy

Let us define the privacy filter as a conditional distribution of Y given X belonging to
a parametric family of distributions P� = {Pφ : φ ∈ Φ}, where Φ ⊂ R

d ′
, and where

the auxiliary random parameter � is distributed according to the prior distribution
p(φ). Therefore, {P�, p(φ)} determines the privacy filter.

In a well-designed privacy filter, the auxiliary parameter � combines with � in a
way that the sequence Y n is consistent with the observation of a parametric family of
distributionsP� = {Pψ : ψ ∈ Ψ }, where ψ = ψ(θ,φ) and Ψ ⊂ R

d ′
. In other words,

� is a sufficient statistic for Y [9, 16]. Eve may thus be able to estimate ψ with
arbitrarily low error as n increases but she has a non-vanishing uncertainty about θ
given by the randomness in φ.

Theorem 4.1 If the privacy filter {P�, p(φ)} satisfies some suitable smoothness
conditions (defined in the proof), it achieves according to Def. 4.5 all distortion-
privacy pairs (D, ε) such that E[d(Xn,Y n)] ≤ D and ε ≤ R−1

�,�(I (�; Y n)), where

I (�; Y n) = h(�) − h(�) + 1

2
E

[
log

|IY (�)|
|IY (�)|

]
+ o(1) . (4.14)

Therefore, the privacy level ε remains asymptotically bounded away from zero.

Remark 4.1 Since � is independent of �, we have that h(�) = h(�|�), and
thus (4.14) is equivalently

I (�; Y n) = I (�;�) + O(1). (4.15)

In other words, the privacy filter creates a noisy channel for the parameter.

Before presenting the proof of the theorem, we revisit the Gaussian example.
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Fig. 4.4 Trade-off between
the distortion level D and the
corresponding maximum
privacy level
ε = inf θ̂n MSEθ̂n

. The
relation between the curves
for I (�; Yn) and MSEθ̂n

is
given by the DR
function (4.9). These curves
are calculated assuming
σ2

� = 1 and σ2
Z = 10−3

Gaussian Example (cont.)

Let us continue with the Gaussian example where we now consider the square error
distortion function for the reconstruction at Bob, i.e., d(x, y) � (x − y)2.

The privacy filter {P�, p(φ)} is chosen to mimic the parametric source that Alice
tries to protect. In particular, for a fixed σ2

Z < D, the auxiliary parameter � is
drawn uniformly at random from the interval [D − σ2

Z , D − σ2
Z ] and the filter’s

output is constructed in an i.i.d. manner: for each time i ∈ [1 : n], Yi = Xi + Zi ,
where Zi |�=φ ∼ N (φ,σ2

Z ) and is independent of Xi . This choice of filter satisfies
E[d(Xn,Y n)] ≤ D and the smoothness conditions needed for Theorem 4.1.

With this privacy-preserving strategy, the eavesdropper observes n i.i.d. samples
of the process Y |�=ψ ∼ N (ψ,σ2

X + σ2
Z ), where the mean� = � + � is distributed

according to

p(ψ) = 1

2
√
D

[
F

(
ψ + √

D

σ�

)
− F

(
ψ − √

D

σ�

)]
(4.16)

and F(·) is the cumulative distribution function of the standard normal distribution.
We may easily obtain the Fisher information

IY (ψ) = IY (φ) = (σ2
X + σ2

Z )−1, (4.17)

which holds for all values of φ and ψ. Therefore, using (4.14) we have that

I (�; Y n) = h(�) − log 2
√
D + o(1) , (4.18)

where h(�) does not have a closed-form expression and has to be calculated numer-
ically using (4.16).

Themutual information (4.18) and the corresponding lower bound fromLemma4.1
are plotted in Fig. 4.4 for different values of D; we note that the DR function is found
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in (4.9). The curves show the effect of the privacy-preserving strategy and the trade-
off between the distortion level D and the loss in Eve’s inference performance.

4.3.2 Proof of Theorem 4.1

In order to protect her privacy, Alice needs to distort the observed sequence xn with
some randomness that behaves like the parameter θ from the point of view of Eve.

Given the privacy filter {P�, p(φ)}, Alice selects a distribution Pφ, whose prob-
ability density function with respect to a fixed σ-finite measure μ(dy) is pφ(y|x),
according to the prior p(φ). Then, given the original sequence xn and the specific
distribution Pφ, she transmits the distorted symbols Yi ∼ pφ(y|xi ) for i ∈ [1 : n].
Therefore, the joint density of the sequences is:

pθ,φ(x
n, yn) =

∏n

i=1
pφ(yi |xi )pθ(xi ) . (4.19)

Due to the i.i.d. nature of the source and the privacy filter, and conditioned on the
true value of the parameters, the sequence observed by Eve is distributed according
to

pθ,φ(y) =
∫
X

pφ(y|x)pθ(x)μ(dx) , (4.20)

where both θ and φ are unknown to her. As previously mentioned, privacy is possible
if, in the marginal density (4.20), the auxiliary parameter φ combines with θ such
thatψ = ψ(θ,φ) is a sufficient statistic for the parametric family of distributionsP� .

In this case, we may expand the quantity of interest as follows

I (�; Y n) = I (�,�; Y n) − I (�; Y n|�)

= I (�; Y n) − I (�; Y n|�) , (4.21)

where the last equality is due to � being a sufficient statistic for (θ,φ), i.e., the
Markov chain (�,�) → � → Y n holds. Assuming all the probability distributions
involved in (4.21) satisfy suitable smoothness conditions, we may characterize the
asymptotic behavior of both terms similarly to (4.13). In broad terms, these conditions
are:

• the densities pθ(x) and pφ(y|x) are twice continuously differentiable almost every-
where, and the first and second derivatives of log pθ(x) and log pφ(y|x) are square-
integrable;

• the priors are continuous and positive almost everywhere;
• the appropriate Fisher information matrices are positive definite; and,
• the posterior distribution of the parameters concentrates around the true value as
n increases.
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We refer the reader to [5] for more details on these conditions. If these conditions
are satisfied, the first term on the right-hand side of (4.21) may be written as

I (�; Y n) = d ′

2
log

n

2πe
+ h(�) + 1

2
E

[
log |IY (�)|] + o(1) . (4.22)

On the other hand, the second term is an expectation on �:

I (�; Y n|�) =
∫

Θ

I (�; Y n|θ)p(θ)dθ , (4.23)

where I (�; Y n|θ) implies that the parameter is now fixed and known. Then,
I (�; Y n|θ) is equal to

I (�; Y n|θ) = d ′

2
log

n

2πe
+ h(�) + 1

2
E

[
log |IY (�)|] + o(1) . (4.24)

Joining these results, we obtain the expression (4.14), which concludes the proof of
Theorem 4.1. �

4.4 Second Scheme

For the rest of the chapter,we assume that each randomvariable Xk = [X1
k , . . . , X

d
k ]�

takes values in Rd . Furthermore, Xl
k denotes the lth entry of the random variable Xk

while X1:l−1
k denotes the collection of the first l − 1 entries of Xk . In this section, we

also assume that the parameter setΘ consists ofm elements, i.e.,Θ = {θ1, . . . , θm}.
The conditional cumulative distribution function (CDF) of Xl given X1:l−1 =

x1:l−1 and � = θi is defined as

Fl,θi
(
z
∣∣x1:l−1

) =
∫ z

−∞
pθi

(
x

∣∣x1:l−1
)
dx , (4.25)

where pθi

(
x

∣∣x1:l−1
)
is the conditional PDF of Xl given (X1:l−1 = x1:l−1,� = θi )

which is computed by Bayes’ rule and the marginalization of pθ(x). We use the
convention that pθi

(
x

∣∣x1:0 ) = pθi (x). Note that Fl,θi (· |· ) is a map from R
l to [0, 1]

and is non-decreasing in the first argument when the second argument is fixed. We
use F−1

l,θi

(· ∣∣x1:l−1
)
to denote the inverse of the function Fl,θi

(· ∣∣x1:l−1
)
for 1 ≤ l ≤ d.

The second privacy filter comprises the map �
(
·, θ, θ̃

)
and a stochastic kernel

for generating θ̃. We first describe the structure of�
(
·, θ, θ̃

)
. Given� = θi , �̃ = θ j

and the observation at time k, i.e., Xk = [X1
k , . . . , X

d
k ]�, Alice sequentially generates

the entries of Yk = [Y 1
k , . . . ,Y d

k ]� as follows. For 1 ≤ l ≤ d, the lth entry of Yk , i.e.,
Y l
k , is generated according to
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Fig. 4.5 The structure of �
(
·, θ, θ̃

)
for � = θi and �̃ = θ j

Y l
k = φl

(
X1:l
k , θi , θ j

)
, (4.26)

whereφl
(
X1:l
k , θi , θ j

) = F−1
l,θ j

(
Ul

k

∣∣Y 1:l−1
k

)
andUl

k = Fl,θi
(
Xl
k

∣∣X1:l−1
k

)
. Thenon-linear

map �
(·, θi , θ j

)
can be written as �

(·, θi , θ j
) = [φ1

(·, θi , θ j
)
, . . . ,φd

(·, θi , θ j
)]�.

Figure4.5 shows the structure of �
(·, θi , θ j

)
for � = θi and �̃ = θ j .

The following lemma studies the statistical properties of the output of this privacy-
preserving filter.

Lemma 4.2 Consider the construction above and assume that � = θi and �̃ = θ j

for 1 ≤ i, j ≤ m. Then, the sequence of random variables {Yk}k are jointly indepen-
dent and distributed according to pθ j (x).

Proof See [4]. �
We next discuss the optimal generation of �̃. The parameter �̃ is selected from

the set Θ using a stochastic kernel. More precisely, given � = θi , the value of �̃ is
generated according to the following stochastic kernel

�̃ = θ j w.p. Pji = Pr
(
�̃ = θ j

∣∣∣ � = θi

)
, (4.27)

where
∑

j Pji = 1 for all i and w.p. stands for with probability. The randomization
probabilities are designed such that the accuracy of the output of the privacy filter is
maximized while a certain privacy level for the parameter � is achieved.

To discuss the design of the randomization probabilities, we first define the privacy
metric as follows. The privacy level of the parameter � is captured by the mutual
information between the � and �̃ which is defined as
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I (�; �̃) =
∑
i, j

Pr
(
� = θi , �̃ = θ j

)
log

Pr
(
� = θi , �̃ = θ j

)

Pr(� = θi )Pr
(
�̃ = θ j

) (4.28)

Note that when the privacy metric equal to zero, �̃ contains no information about �
and the maximum privacy level is achieved.

The optimal randomization probabilities are obtained, by minimizing the average
distortion between Xn and Y n subject to a privacy level of �, using the following
optimization problem

minimize{Pji} j,i

E[d(
Xn,Y n

)]
Pji ≥ 0,∀i, j∑

j

Pji = 1, ∀i

I (�; �̃) ≤ I0 (4.29)

The next theorem states that the optimization problem above is a convex optimization
problem.Hence, the optimal randomization probabilities can be computed efficiently.

Theorem 4.2 The optimal privacy filter design problem in (4.29) is a convex opti-
mization problem.

Proof See [4]. �

To study the privacy level of � under the proposed scheme, consider an estimator of
� based on Y n , denoted by �̂(Y n). Using Fano’s inequality [9], the error probability
of any estimator of � based on Y n , can be bounded from below as

Pr
(
� �= �̂

(
Y n

)) ≥ H(� |Y n ) − 1

log |Θ| , (4.30)

where H(� |Y n ) denotes the conditional entropy of� given Y n . Using the definition
of mutual information, we have that

H
(
�

∣∣Y n
) = H(�) − I (�; Y n). (4.31)

Notice that the following Markov chain holds

� → �̃ → Y n → �̂
(
Y n

)
. (4.32)

Thus, according to the data-processing inequality, we have that

I (�; �̂
(
Y n

)
) ≤ I (�; Y n) ≤ I (�; �̃). (4.33)
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Fig. 4.6 Normalized distortion, under the second scheme, as a function of the privacy level

Hence, the upper bound on themutual information between� and �̃ in (4.29) ensures
the privacy of �. That is, according to Fano’s inequality, the privacy constraint
imposes a lower bound on the performance of Bob in recovering � using the output
of the privacy filter.

Gaussian Example

In this section, the distortion-privacy trade-off is numerically studied for a Gaussian
information source under the second scheme. In our numerical result, Xn is modeled
as a sequence of i.i.d. Gaussian random variables with zero mean and variance � ∈
Θ = {1, 2, 3}. It is assumed that � is uniformly distributed over Θ .

Figure4.6 shows the optimal level of the normalized distortion between the input
and the output of the privacy filter as a function of the privacy level I0. According to
this figure, theminimum distortion level is achieved when I0 is equal to H(�). In this
example, the optimal randomization probabilities are computed using the fmincon
solver in MATLAB®. Note that, when � = �̃, the input and output of the privacy
filter are the same. Thus, the distortion is zero in this case and the leakage of the
private information is at its maximum level.

Moreover, the distortion level increases as the leakage level of private information
becomes small, since the mutual information between � and �̃ decreases. The max-
imum distortion is attained when � and �̃ are statistically independent. In this case,
perfect privacy is achieved since the leakage level of private information is equal to
zero.
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4.5 Final Remarks

In this chapter, we studied the problem of statistical parameter privacy wherein the
outputs of a parametric source are shared with an untrusted party. The objective is
to design privacy filters which ensure the accuracy of the shared information while
guaranteeing the privacy of the parameters.

Two different schemes were proposed for the statistical parameter privacy prob-
lem, where the mutual information was used as the privacy measure. In the first
scheme, it was assumed that the parameter belonged to a continuous alphabet and
the mutual information was exploited as a proxy for a Bayesian statistical metric of
privacy. On the other hand, the parameter was assumed to belong to a finite set of
possibilities under the second scheme, and the mutual information was used directly
as the privacymeasure via Fano’s inequality. The optimal distortion-privacy trade-off
was analyzed for this scheme.
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