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Summary

To protect industrial control systems from cyberattacks, multiple layers of secu-
rity measures need to be allocated to prevent critical security vulnerabilities.
However, both finding the critical vulnerabilities and then allocating security
measures in a cost-efficient way become challenging when the number of vul-
nerabilities and measures is large. This paper proposes a framework that can
be used once this is the case. In our framework, the attacker exploits security
vulnerabilities to gain control over some of the sensors and actuators. The crit-
ical vulnerabilities are those that are not complex to exploit and can lead to a
large impact on the physical world through the compromised sensors and actu-
ators. To find these vulnerabilities efficiently, we propose an algorithm that uses
the nondecreasing properties of the impact and complexity functions and prop-
erties of the security measure allocation problem to speed up the search. Once
the critical vulnerabilities are located, the security measure allocation problem
reduces to an integer linear program. Since integer linear programs are NP-hard
in general, we reformulate this problem as a problem of minimizing a lin-
ear set function subject to a submodular constraint. A polynomial time greedy
algorithm can then be applied to obtain a solution with guaranteed approxima-
tion bound. The applicability of our framework is demonstrated on a control
system used for regulation of temperature within a building.

KEYWORDS

cybersecurity, industrial control systems, risk, security measures, submodularity

1 INTRODUCTION

Reliable operation of industrial control systems (ICSs) is of crucial importance for our society. ICSs are used to operate
power plants, manufacturing systems, water distribution networks, and oil production facilities, for instance. Despite their
importance, cybersecurity of ICSs was rarely discussed in the past.1 This is partly because ICSs used proprietary equipment
and were not connected to other systems. Hence, it was the isolation that protected these systems from cyberattacks. In
contrast, modern ICSs have become interconnected and have started resembling ordinary IT systems. Although these

Abbreviations: EEV, electronic expansion valve; ICS, industrial control system; IT, information technology; PLC, programmable logic controller.
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changes have made ICSs more efficient and less costly to operate, they have also exposed them to cyberattacks. How
dangerous this can be is illustrated by a few fatal incidents reported in recent years: the cyberattack against sewage control
system lead to an environmental hazard,2 Stuxnet malware managed to damage the equipment in a nuclear facility,3 and
the cyberattack against Ukranian power grid operators left thousands of consumers without electrical energy.4

To prevent cyberattacks, the recommended practice is to implement a defense-in-depth strategy, which consists of multi-
ple layers of security measures.5-7 Examples of these measures include installation and maintenance of antivirus software,
segmentation and segregation of the control network, encryption of communication links, and deployment of better phys-
ical protection. However, deployment of these measures in an ICS is challenging and costly. For example, in contrast to
ordinary IT systems that have a typical life span of two to five years, ICSs are designed to last for decades. Thus, sup-
port for some of the equipment found within ICSs may not exist anymore.5 Additionally, due to real-time requirements
of ICSs, stopping them in order to deploy or update security measures needs to be planned well in advance.5 Moreover,
control equipment is in many cases computationally constrained, which introduces additional difficulties. For instance,
adding encryption tasks on a controller may cause delays in the system and result in instability.8

Overall, due to the difficulties in implementing security measures, potentially large number of vulnerabilities, and
limited budget, we expect not to be able to deploy all of the security measures. Therefore, a risk assessment9 should
be conducted prior to their deployment. In this assessment, one should prioritize among vulnerabilities, that is, one
should decide which vulnerabilities are critical. The security measures can then be allocated to prevent only these critical
vulnerabilities, instead of preventing them all. Unfortunately, due to the curse of dimensionality, both finding critical
vulnerabilities and selecting the least expensive security measures to prevent them become challenging when the number
of vulnerabilities and measures is large. The problem addressed in this paper is therefore how to allocate security measures
in a cost-efficient way in this case.

Literature review. Cybersecurity of ICSs has become a well-established research topic. Experimental10-12 and theo-
retical works13-15 showed that existing methods in control cannot handle carefully designed cyberattacks, which opened
up for many new research challenges. For example, novel approaches for attack-resilient estimators,16-18 detectors,15,19-21

controllers,22-24 and consensus protocols25,26 have been studied throughout the literature. The physical model of the sys-
tem also proved to be useful for modeling and analyzing different types of attacks, such as zero dynamics,15,27 covert,28

replay,20 denial of service,29 rerouting,30 and optimal linear attacks.31 Another problem that has attracted a lot of attention
is security measure allocation, which we consider in this paper. We also remark that other types of allocation problems
have been considered within the control community. For example, allocating actuators to maximize different controllabil-
ity metrics,32 allocating leader agents in multiagent systems,33 or allocating sensors to detect and isolate faults.34 What is
common for all these works on allocation is that they use the so-called submodularity property of a set function to obtain
a suboptimal solution with performance guarantees.

A significant amount of work on allocating security measures has been developed for ICSs monitoring power grids. The
grid is often modeled as a static linear system, and a particular combination of an estimator and an anomaly detector is
often used. The assumption was in most of the cases that the sensors are vulnerable and that can be protected by deploying
some security measure. The security measure allocation problem was formulated as selecting some of the existing sensors
to secure, and/or placing additional secured sensors, to make undetectable attacks introduced in the work of Liu et al13

harder to achieve. To solve the problem once the number of vulnerabilities and measures is large, which corresponds to a
large number of sensors, a number of approaches have been proposed.35-42 For example, Bobba et al proved that it suffices
to protect the set of so-called basic sensors to prevent undetectable attacks and used LU decomposition to find these
sensors.35 Kim and Poor approximated the attacker's effort with a solution of a linear program and used greedy algorithms
to select sensors to maximize this effort.36 Greedy algorithms that allocate measures based on the so-called security index
were proposed in the work of Dán and Sandberg.37 In the sequel of this work,38 more detailed models of communication
network and security measures were introduced.

In contrast, the problem of allocating security measures based on dynamical models of control systems has attracted
less attention. Cárdenas et al introduced several methods to estimate the attack impact and then mentioned that these
methods can be used to select sensors/actuators to protect.43 In the work of Teixeira et al,44 a flexible risk model based
on which security measures can be allocated was proposed. In the work of Milošević et al,45 a Kalman filtering problem
in the presence of bias injection attacks was considered, and a method for selecting sensors to secure was proposed to
mitigate the impact of these attacks.

Open challenges. We now identify directions in which the existing literature can be extended. Firstly, the framework
for allocating security measures based on dynamical models of control systems is lacking. The methods developed for
power grid monitoring systems heavily rely on the static model of the grid and the attack model introduced in the work of
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Liu et al.13 Thus, these methods are not straightforward to extend to dynamical models of ICSs and attacks developed for
these models. Additionally, the works43-45 that consider dynamical models do not explain how to allocate security measures
when the number of measures and vulnerabilities is large. Secondly, the modeling frameworks proposed in previous works
can be improved. For instance, the connection between the cyber and physical part of an ICS is missing in most of the
publications. Thus, it is unclear in what way the attacker gains control over the sensors/actuators and how the defender
protects the sensors/actuators. This issue is partially addressed in the work of Vukovíc et al,38 but the authors were mostly
concerned with the models of vulnerabilities and measures in the communication infrastructure. Moreover, most of the
previous publications do not allocate security measures based on a risk model, which is the recommended practice.5-7 The
measures are usually allocated relying on the attack impact but not that much attention is given to the attack complexity.
Therefore, unnecessary amount of security budget can be spent by preventing unlikely attacks. A flexible risk model
was proposed in the work of Teixeira et al,44 but how to use this model once the number of vulnerabilities and security
measures is large was not explained. Finally, optimality of the algorithms that are proposed for solving security measure
allocation problem is rarely discussed. This problem is in general NP-hard, so the solution obtained in polynomial time
can be arbitrarily far from the optimal one, except if some special structure of the problem is identified.

Contributions. As the first contribution, we propose a flexible modeling framework for allocating security measures
in ICSs. Our framework is suitable for dynamical models of ICSs, models the cyber-physical interaction in more details,
and uses a risk model to allocate security measures. Most importantly, it can be used once the number of security vulner-
abilities and measures is large. In our framework, the attacker can gain control over sensors and actuators by exploiting
a combination of vulnerabilities and, in that way, endanger the physical world. The defender wants to deploy security
measures to prevent these vulnerabilities but, due to limited budget, cannot prevent all the vulnerabilities at once. Thus,
he/she uses a risk model to prioritize among vulnerabilities. In the risk model we adopt, each subset of exploited vulnera-
bilities is a possible attack scenario, and its risk is determined based on the impact and complexity set functions, which are
assumed to be nondecreasing with the number of vulnerabilities. Except imposing that the impact and complexity func-
tions are nondecreasing, the proposed framework is not restricted to any particular instance of these functions, which
makes it flexible. The scenarios with low complexity and potentially large impact are defined as critical scenarios. The
security measure allocation problem is then how to prevent all the critical scenarios with minimal cost. The main two
challenges concerning this problem are explained next.

The first challenge is to construct an instance of the security measure allocation problem since to do this, all the critical
scenarios need to be found. Given that the number of possible scenarios is equal to the number of subsets of the vul-
nerability set, it is not feasible to simply search all the subsets to find those that are critical. To reduce the search space,
we show how to use the nondecreasing property of the complexity function and prove that it suffices to find the smaller
set of critical scenarios (the sufficient representation of minimal cardinality) instead of the whole set of critical scenarios.
Additionally, given that the impact set function can be expensive to evaluate, we use the nondecreasing property of this
function to reduce the number of its evaluations. Finally, all the combinations of security vulnerabilities are modeled with
the search tree introduced in the work of Rymon46 for the purpose of systematic and efficient search. To explore the tree,
a breadth-first search algorithm that uses the aforementioned properties is proposed (Algorithm 1), and it is proven that
this algorithm returns the sufficient representation of minimal cardinality (Theorem 1), which we outline as the second
major contribution of this paper.

The second challenge is how to solve the security measure allocation problem once the critical attack scenarios are
found. In our framework, the security measure allocation problem reduces to an integer linear program, which is NP-hard
to solve in general. However, we show that the security measure allocation problem can be reformulated as a minimization
of a linear function subject to a submodular constraint (Theorem 2). It is then known that a polynomial time greedy
heuristic can be used to provide a suboptimal solution with known performance bound.47 We also prove that the set of
critical scenarios returned by Algorithm 1 provides the best performance guarantees for the greedy algorithm (Theorem 3).
We outline Theorem 2 and Theorem 3 as the third major contribution. Finally, the applicability of the framework is
demonstrated on an ICS that is used for regulating temperature within a building.48

We remark that a preliminary version of this paper appeared in the work of Milošević et al.49 The results of the afore-
mentioned work49 are extended in the following aspects: (i) the modeling framework is more general; (ii) a section on
finding the critical attack scenarios is added; (iii) the security measure allocation problem is formulated in different way;
(iv) the performance of the greedy algorithm was not analyzed in the work of Milošević et al49; (v) a more detailed
simulation section is included.

Paper organization. In the remainder of this section, we introduce notation used throughout the paper. The modeling
framework and the problem formulation are introduced in Section 2. An algorithm that systematically searches for critical
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scenarios is proposed in Section 3. The submodular nature of security measure allocation problem is proven in Section 4.
In Section 5, we illustrate on a simulation study applicability of our approach. We conclude this paper in Section 6.

Notation. Let  = {v1, … , vn} be a finite set. The set of all subsets of  is referred to as the power set and it is denoted
with 2 . We denote with || the cardinality of the set (the number of elements in ). A set function represents a
mapping F ∶ 2 → ℝ, that is, it maps every subset of the set  to a real number. A set function F is nondecreasing if
for all ̄ ⊆ ̄ ′ ⊆  , we have F(̄) ≤ F(̄ ′). Sets of real, real positive, and complex numbers are denoted with ℝ, ℝ+,
and ℂ, respectively.

2 MODEL SETUP AND PROBLEM FORMULATION

In this section, we introduce the modeling framework and formulate the security measure allocation problem. We first
model security vulnerabilities within an ICS, their connections with sensors and actuators, and their connection with
security measures. To prioritize among vulnerabilities, we introduce a model of risk. Based on the risk model, the security
measure allocation problem is formulated, and two main challenges regarding this problem are outlined.

2.1 Security vulnerabilities and security measures
An ICS can be divided into the field layer and supervisory layer,5 as illustrated in Figure 1. The field layer consists of
field stations that interact with the physical process. The components of this layer are well known in the control commu-
nity and include sensors, actuators, and control devices. The supervisory layer consists of one or more control centers,
which are responsible for monitoring and supervisory control of the physical process. An operator from a control center
can remotely gain control over actuators in cases of emergency, set reference signals for controllers, or change control
algorithms implemented on control devices. The control center is also responsible for collecting and storing process
information, centralized alarming, and communicating with other IT systems (eg, manufacturing execution systems and
enterprise resource planning systems).

Various security vulnerabilities can be identified within an ICS. We model these vulnerabilities with the set

 = {v1, … , vnv}.

A security vulnerability v ∈  can model a communication link without protection, lack of antivirus software on some
of the computers in the control center, lack of physical protection of control equipment, etc. Throughout this paper, we
will be interested in attacks that exploit multiple vulnerabilities. Therefore, we make the following definition.

Definition 1. A subset ̄ ⊆  of vulnerabilities actively used in a possible attack is called a scenario.

Field Station

Physical
Process

Radio Waves     Telephone Lines     Internet

Business Network

Field
Layer

Supervisory 
Layer

Field Station

Control Center Control Center

FIGURE 1 Common architecture of an industrial control system. The physical process is controlled through the field layer, which consists
of control devices, sensors, and actuators. The supervisory layer is used for monitoring and control of the field layer, consists of ordinary IT
equipment, and is often connected to other networks
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Remark 1. The model of vulnerabilities in this paper assumes that vulnerabilities are known. In other words, undis-
covered (zero-day) vulnerabilities are not captured with the model. However, since every security strategy needs to be
updated over time, newly discovered vulnerabilities can be taken into consideration once a new strategy is deployed.

By exploiting some of the vulnerabilities, an attacker can gain control over the sensors and actuators and use these
components to conduct the attack against the physical process. Let the sets of sensors and actuators be denoted by

 = {s1, … , sn𝑦
}  = {a1, … , anu},

respectively. With each vulnerability v ∈  , we associate the subsets of compromised sensors ̄v ⊆  and actuators
̄v ⊆ . These sets model the components the attacker gains control over once it exploits vulnerability v. In the scenario
̄ ⊆  , where the attacker exploits multiple security vulnerabilities, the sensors and actuators under its control are

̄(̄) =
⋃
v∈̄

̄v ̄(̄) =
⋃
v∈̄

̄v.

The attacker can then freely change the measurements of the sensors ̄(̄) and the control actions sent to the actuators
̄(̄).

The security vulnerabilities can be prevented by investing in security measures. We denote the set of security
measures by

 = {m1, … ,mnm}.

Each security measure m ∈  can model a communication link encryption, installation and maintenance of antivirus
software, or deployment of better physical protection. It can also capture the scenarios where multiple measures are
deployed at the same time. With each security measure m ∈ , we associate a number cm ∈ ℝ+ that models the cost of
deploying m and a set of vulnerabilities ̄m prevented by m. In the case when we deploy the subset of security measures
̄ ⊆ , the set of prevented vulnerabilities ̄(̄) and the total cost c(̄) are defined by

̄(̄) =
⋃

m∈̄

̄m c(̄) =
∑

m∈̄

cm. (1)

The assumption is that the security measures provide perfect prevention of the vulnerabilities ̄(̄).

Assumption 1. Let ̄(̄) ⊆  be the subset of vulnerabilities prevented by deploying corresponding security
measures ̄. The vulnerabilities from the set ̄(̄) cannot be taken advantage of by an attacker.

Based on Assumption 1, we say that scenario ̄ is prevented if it requires at least one of the prevented vulnerabilities from
the set ̄(̄) to be conducted, that is, ̄ ∩ ̄(̄) ≠ ∅. Similarly, we say that a set of attack scenarios ̃ = {̄1, … , ̄l} ⊆ 2
is prevented, if, for every ̄ ∈ ̃ , it holds ̄ ∩ ̄(̄) ≠ ∅. To clarify this further, we introduce an example.

Example 1. Say that we have a scenario ̄ = {v1, v2, v3}. In case that we prevent vulnerability v1, this scenario
is prevented. However, note that the scenario ̄ ′ = {v2, v3} is still possible. That is, the attacker can still use
the remaining two vulnerabilities to conduct an attack. Assume now that we have a set of attack scenarios ̃ =
{{v1, v2, v3}, {v1, v2}, {v3}} that we want to prevent. In this case, it is not sufficient to prevent only v1 because the sce-
nario {v3} is not prevented. The possible sets of vulnerabilities that have to be prevented to prevent ̃ are {v1, v3},
{v2, v3}, or {v1, v2, v3}.

We also assume that each security vulnerability can be prevented by deploying a suitable security measure from the set
. This assumption is needed in order to be able to guarantee the feasibility of security measure allocation problem that
we define later.

Assumption 2. Let v ∈  be an arbitrary selected vulnerability. There exists at least one security measure m ∈ 

that prevents this vulnerability, that is, v ∩ ̄m ≠ ∅.

We now introduce an example to clarify the notation.

Example 2. We consider an ICS consisting of the control center and two programmable logic controllers (PLCs), as
shown in Figure 2. From the Figure, we see that the sets of sensors and actuators are given by  = {s1, s2, s3, s4} and
 = {a1, a2}, respectively. The following security vulnerabilities are identified within the system. PLC 1 is lacking
physical protection (vulnerability v1), connection between PLC 1, and the control center is unprotected (vulnerabil-
ity v2) as well as the connection between PLC 2 and the control center (vulnerability v3). The set of vulnerabilities
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PLC 1 PLC 2Control Center

FIGURE 2 Example of an industrial control system consisting of the control center, two programmable logic controllers (PLC 1 and
PLC 2), two actuators (a1, a2), and four sensors (s1, s2, s3, s4)

is then  = {v1, v2, v3}. In case that the attacker exploits vulnerability v1, it gains control over ̄v1 = {s1, s2} and
̄v1 = {a1}. If the vulnerability v2 is exploited, then ̄v2 = {s1, s2} and ̄v2 = {a1}. If v3 is taken advantage of, then
̄v3 = {s3, s4} and ̄v3 = {a2}. An example of attack scenario could be ̄ = {v1, v3}. In that case, the components the
attacker controls are ̄(̄) = {s1, s2, s3, s4} and ̄(̄) = {a1, a2}.

The security measure that prevents vulnerability v1 could be locking the PLC in the cabinet (measure m1). The
vulnerability v2 could be prevented by implementing encryption and authentication schemes on the corresponding
communication link (measure m2). Same holds for v3 (measure m3). There is also an option to protect both of the
links for more favorable price (measure m4). The set of security measures is then  = {m1,m2,m3,m4} and sets of
vulnerabilities prevented by each of the measures are ̄m1 = {v1}, ̄m2 = {v2}, ̄m3 = {v3}, and ̄m4 = {v2, v3}. If m1
and m2 are deployed, then ̄ = {m1,m2} and ̄(̄) = {v1, v2}.

2.2 Model of risk
To protect an ICS from cyberattacks, we want to select a subset of security measures to deploy. As discussed earlier, in
most cases, the total budget would not be large enough to deploy all the security measures. Thus, we should focus our
budget in preventing the most critical attack scenarios.

In this section, we introduce a model of risk based on which we prioritize among attack scenarios. We use
the risk model introduced in the work of Kaplan and Garrick,50 where it was proposed to model risk as a triplet
(scenario, impact, complexity). This model can be applied in our context by defining the triplets as(

̄ , I
(
̄(̄), ̄(̄)

)
, 𝜋(̄)

)
,

where scenarios are represented by the subset of vulnerabilities ̄ ⊆  that the attacker exploits to conduct a certain attack,
I(̄(̄), ̄(̄)) represents the impact that occurs in that scenario and 𝜋(̄) represents the complexity of the scenario.

Remark 2. In general, what we mean by complexity of the attack scenario is often referred to as attack likelihood
throughout the literature. We avoid using the term likelihood of attack scenarios to avoid confusing this term with
likelihood in statistics, which is different in nature.

The impact function I (·) should reflect how dangerous it is if the vulnerabilities ̄ are exploited, and it can be estimated
based on a physical model of the system.15,27,51,52 We assume that the attacks conducted with more components are more
severe than those conducted with less.

Assumption 3. Let I ∶ 2 × 2 → ℝ+ be the impact set function. If ̄ ⊆ ̄′ ⊆  and ̄ ⊆ ̄ ′ ⊆  , then I(̄, ̄) ≤
I(̄′, ̄ ′).

The complexity function 𝜋(·) models how hard it is for the attacker to exploit all the vulnerabilities from ̄ simultane-
ously. The function can be estimated based on a security expert knowledge.9,53,54 We assume that the more vulnerabilities
the attacker exploits, the more complex the attack scenario becomes.

Assumption 4. The complexity function 𝜋 ∶ 2 → ℝ+ is a nondecreasing set function, that is, 𝜋(̄) ≤ 𝜋(̄ ′) for any
̄ ⊆ ̄ ′.

We remark that the framework we propose in this paper is quite flexible and can be used for any impact (complexity)
functions that satisfy Assumption 3 (Assumption 4). In the next section, these assumptions are used to construct algorithm
that systematically searches for the most critical attack scenarios. Naturally, the most critical attack scenarios are those
that require relatively low complexity to be conducted and can lead to large impact. We formally define these scenarios
as follows.



MILOŠEVIĆ ET AL. 7

Definition 2. A scenario ̄ ⊆  is said to be critical if I(̄(̄), ̄(̄)) ≥ Imin and 𝜋(̄) ≤ 𝜋max, where Imin ∈ ℝ+ and
𝜋max ∈ ℝ+ are some predefined thresholds.

Remark 3. In general, the choice of Imin and 𝜋max depends on the complexity and impact functions used and the
particular problem instance. Hence, the thresholds should be seen as tuning parameters in the allocation. One way to
choose the thresholds would be to set Imin relatively high and 𝜋max relatively low. In this way, we restrict our attention
to those scenarios that have very large impact and are simple to conduct. In case that these scenarios are inexpensive
to prevent, one can then decrease Imin and increase 𝜋max and re-solve the problem iteratively to prevent less dangerous
scenarios.

We now introduce concrete examples of impact and complexity functions.

2.2.1 Attack impact
To define the impact set function, we use model of zero-dynamics attacks.15,27 These attacks are serious because from
the sensor data, the attacks are indistinguishable from the normal system operation. In that way, the attacker is able
to potentially make some of the system states arbitrarily large while staying undetected by the system operator at the
same time.

To determine if it is possible for the attacker to conduct a zero-dynamic attack, we introduce the physical model of the
system

x(k + 1) = Ax(k) + Bũ(k)
𝑦(k) = Cx(k),

(2)

where x(k) ∈ ℝnx is the state of the system, ũ(k) ∈ ℝnu is the control signal applied to the process, and 𝑦(k) ∈ ℝn𝑦 is
the vector of sensor measurements collected from the process. Due to attacks, the signal ũ(k) is different from the control
signals calculated by the controllers, which we denote with u(k). Similarly, due to attacks against sensors, the operators
receive false measurements 𝑦̃(k) instead of the original ones y(k). The signals 𝑦̃(k) and ũ(k) can then be modeled as

𝑦̃(k) = 𝑦(k) + D𝑦(̄)a𝑦(k) ũ(k) = u(k) + Du(̄)au(k),

where a𝑦(k) ∈ ℝ|̄(̄)| is the attack signal added to the measurements from attacked sensors ̄(̄), and au(k) ∈ ℝ|̄(̄)| is
the attack signal sent to the attacked actuators ̄(̄). It is important to understand that the matrices Du(̄) ∈ ℝnu×|̄(̄)|
and D𝑦(̄) ∈ ℝn𝑦×|̄(̄)| are dependent on the attack scenario ̄ . Let ̄(̄) = {s𝑗1 , … , s𝑗p} be the sensors controlled by
the attacker once vulnerabilities ̄ are exploited. Then, the elements ( j1, 1), … , ( jp, p) of D𝑦(̄) are equal to one and the
remaining elements are equal to zero. The matrix Du(̄) is defined in an analogous way but based on ̄(̄). We also
assume that the matrix BDu(̄) has a full column rank, which is an assumption adopted to exclude the attack signals that
cancel each other and do not lead to any impact. Undetectable attacks can then be defined as follows.

Definition 3. The nonzero attack (au, ay) is undetectable, if there exists an initial state x(0) such that 𝑦̃(k) = 0 for
k ≥ 0.

To check if the attacker can conduct undetectable attack using ̄(̄) and ̄(̄), the Rosenbrock matrix55 of the system

P(z) =

[
A − zI BDu(̄) 0nx×|̄(̄)|

C 0n𝑦×|̄(̄)| D𝑦(̄)

]
can be used.15,27,56 In particular, the undetectable attack can be conducted if and only if there exist z0 ∈ ℂ, x0 ∈ ℂnx ,
au ∈ ℂ|̄(̄)|, a𝑦 ∈ ℂ|̄(̄)|, and [ aT

u aT
𝑦 ] ≠ 0, such that P(z0)[ xT

0 aT
u aT

𝑦 ]T = 0. Two cases of undetectable attacks are
particularly dangerous. If

P(z0)
[

xT
0 aT

u aT
𝑦

]T = 0 for some |z0| > 1 (3)

is satisfied, the attacker can make some of the system states arbitrarily large while remaining undetected. An even more
dangerous scenario occurs when

normalrank P = max
z

rank(P(z)) < nx + |̄(̄)| + |̄(̄)|. (4)
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TABLE 1 Impact set function I (·) based on zero-dynamic attacks

I(̄, ̄) Description

0 An undetectable attack cannot be conducted with components ̄, ̄

1 An undetectable attack can be conducted with components ̄, ̄ but only for some |z0| < 1
2 An undetectable attack can be conducted with components ̄, ̄ for some |z0| ≥ 1
3 An undetectable attack can be conducted with components ̄, ̄ for any z0

In that case, the attacker can conduct undetectable attack for any complex frequency z0. Due to the importance of the
Rosenbrock matrix, both the condition (3) and (4) can be checked efficiently for a given scenario ̄ using well-established
algorithms. We also remark that similar analysis can be conducted for continuous-time systems.

Based on the previously introduced attack strategy, one way to define the attack impact function would be as shown in
Table 1. Note that this impact metric satisfies Assumption 3. Mainly, if the attacker is able to conduct the zero-dynamic
attack using the components ̄ and ̄, then it can always conduct this same attack with the larger set of components
̄ ′ ⊇ ̄ and ̄′ ⊇ ̄. It just needs to send the same signals to sensors ̄ and actuators ̄, while keeping the attack signals
that corresponds to sensors ̄ ′ ∖ ̄ and actuators ̄′ ∖̄ equal to zero.

We remark that other methods developed for estimating attack impact can also be used in our framework. For example,
in the works of Umsonst et al51 and Milošević et al,52 the impact is measured through the infinity norm of so-called critical
states, and it is obtained by solving a set of convex problems. To form these convex problems for every scenario ̄ , we
again use the physical model of the system under attack. This physical model is adjusted for every scenario ̄ by changing
the matrices Du(̄) and D𝑦(̄), same as in the case with zero-dynamics attacks presented here. Other methods compatible
with our framework include those developed for estimating impact of attacks in monitoring systems.57-59 In these works,
the impact of attacks is measured through the ellipsoidal approximation of a reachable region.

2.2.2 Attack complexity
Estimation of complexity (likelihood) of adversarial attack scenarios and nonadversarial fault scenarios is different. In
case of nonadversarial scenarios, the likelihood of a scenario is usually probabilistic in nature, and it is estimated based
on historical evidence or empirical data.9 In contrast, the complexity of a malicious scenario is typically a score repre-
senting the belief of such a scenario occurring relative to other scenarios.9 This score is formed based on security expert
knowledge9,53,54 or using the tools developed for this purpose.60,61 The factors that can be used to estimate the complexity
include site architecture, security measures that are already installed, cost of attack, and technical difficulty.53

Within the control community, attack complexity is sometimes approximated based on the number of compromised
sensors and actuators, which is reasonable assumption in certain cases.44 In this paper, we use a more detailed method
presented in the work of Byres et al53 to illustrate a possible way to form a complexity function. There, the authors used
the so-called attack trees to estimate the attack complexity. The idea was to represent a large attack scenario as a tree
and break it into smaller subtrees. The complexities of subtrees were first estimated and then combined to calculate the
complexity of the whole tree.

This method can be applied in our framework as follows. The first step is to assign complexity 𝜋v > 0 to each of the
vulnerabilities v ∈  . As we mentioned, this is done based on a security expert opinion53 or using some of the tools
for vulnerability ranking.61 One possible assignment for these complexities is shown in Table 2. In the second step, the
complexities 𝜋v are combined to estimate the complexity 𝜋(̄) of a more complex scenario ̄ ⊆  consisting of multiple
vulnerabilities. For example, 𝜋(̄) can be defined as

𝜋(̄) =
∑
v∈̄

𝜋v. (5)

Although simple, this function captures the essence of the problem. Scenarios containing vulnerabilities with higher
values of 𝜋v have a larger total complexity than those with equal number of vulnerabilities but with lower values of 𝜋v.
This complexity function is also nondecreasing because it represents a nonnegative sum. Thus, it satisfies Assumption 4.

TABLE 2 Assigning complexity 𝜋v of exploiting individual vulnerabilities v ∈ 

Complexity Very Low Low Medium Difficult Very Difficult

𝜋v 1 2 3 4 5
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Other functions proposed in the literature9 such as weighted sum 𝜋(̄) =
∑

v∈̄wv𝜋v or max function 𝜋(̄) = maxv∈̄𝜋v
can be used instead of (5).

2.3 Problem formulation
Let the set of all critical scenarios be ̃C. Our goal is then to find the least expensive set of security measures ̄ ⊆  that
prevents all the critical scenarios from ̃C. This problem can be formulated as an integer linear program, as explained next.

The set of deployed security measures ̄ can be represented as an integer-valued decision vector xm ∈ {0, 1}nm . In case
that we chose to deploy security measure mi, then xm(i) is set to 1. Otherwise, xm(i) is equal to 0. The objective function
we want to minimize can then be modeled as cTxm, where c = [cm1 , … , cmnm

]T is a vector containing individual costs of
security measures.

The constraints for the problem are that the deployed set of security measures xm should prevent all of the critical
scenarios. Thus, we introduce the matrix F ∈ ℝnv×nm , which is the incidence matrix modeling which vulnerabilities are
prevented by the deployed security measures xm. The vector of prevented vulnerabilities is denoted with xv and equality
xv = Fxm must hold. In case that xv(i) > 0, we know that vulnerability vi is prevented. We then join a vector 𝑓̄ ∈ ℝnv

with each of the critical scenarios ̄ ∈ ̃C defined as

𝑓̄ (i) =

{
1 , if vi ∈ ̄

0 , otherwise.

The condition 𝑓T
̄

xv ≥ 1 is then equivalent to perfect prevention of the scenario ̄ . We are now ready to introduce the
security measure allocation problem.

Problem 1. Security measure allocation

minimize
xm

cTxm

subject to xv = Fxm

𝑓T
̄

xv ≥ 1 ∀̄ ∈ ̃C.

The two main difficulties with solving this problem are the following. Firstly, constructing Problem 1 represents an
issue. To form constraints of this problem, we need to find the set of critical scenarios ̃C. The number of possible attack
scenarios is equal to the number of subsets of the set  . Thus, simply going through all the subsets of  and deciding
whether they are critical or not are not feasible when the cardinality of the set  is large. Secondly, even if the set ̃C is
found, Problem 1 is NP-hard in general. Therefore, polynomial time algorithms that return the optimal or suboptimal
solution are in general unknown, unless some special structure of the problem is identified.

In the following two sections, we tackle these issues. In Section 3, we present an algorithm that systematically generates
the so-called sufficient representation of minimal cardinality ̂∗

C. The set ̂∗
C is the subset of ̃C, with the property that, if

̂∗
C is prevented, then we know that ̃C is prevented as well. We show that, by using the properties of ̂∗

C together with the
properties of the complexity and the impact functions, we can potentially significantly reduce the execution time of the
search. To resolve the second issue, we use the fact that Problem 1 can be reformulated as the problem of minimizing a
linear function subject to a submodular constraint. In that case, a polynomial time greedy algorithm can be used to find
a suboptimal solution of the problem with guaranteed performance, as shown in Section 4.

3 SYSTEMATICALLY SEARCHING FOR CRITICAL SCENARIOS

In this section, we address the issue of constructing a set of critical scenarios ̃C. As we mentioned, the number of possible
attack scenarios in our model is equal to the number of subsets of  , that is, 2||. Thus, simply going through all the
scenarios and deciding whether they are critical or not is not feasible for large cardinalities of . In this section, we propose
an algorithm that systematically searches for critical scenarios. Before we move to the design of the algorithm, we first
explain the rules that the algorithm uses to reduce the execution time of the search. The first way of reducing the execution
time is by reducing the number of scenarios we explore. For this purpose, we use the property of complexity function 𝜋(·)
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introduced in Assumption 4, and we show that it suffices to find a suitable subset ̂∗
C of the set of critical scenarios, instead

of the whole set ̃C. To further improve the total execution time, the algorithm avoids evaluating possibly computationally
intensive impact function I(·) for every scenario. In particular, the property of I (·) introduced in Assumption 3 can be used
to reuse the information from the previously explored scenarios. We then formulate the algorithm that systematically
constructs ̂∗

C.

3.1 Reducing number of explored scenarios
The first way to reduce the number of scenarios to explore is by using the properties of the complexity function. Since the
complexity function is nondecreasing, we conclude that, if we find a scenario ̄ that has complexity 𝜋(̄) higher than the
threshold 𝜋max, we do not need to investigate any other scenario ̄ ′ that contains this scenario. The reason is that these
scenarios have complexity that is higher than or equal to 𝜋(̄), hence they do not belong to critical scenarios.

Lemma 1. Assume that a scenario ̄ satisfies 𝜋(̄) > 𝜋max. Then, any scenario ̄ ′ that satisfies ̄ ⊆ ̄ ′ is not a critical
scenario.

Proof. From Assumption 4, 𝜋(̄ ′) ≥ 𝜋(̄) > 𝜋max for ̄ ⊆ ̄ ′. Thus, scenario ̄ ′ does not satisfy Definition 2.

The second way to reduce the number of explored scenarios is by observing that we do not need to find the whole set
̃C. Instead, it is sufficient to find a suitable subset of this set. We use an example to explain the idea.

Example 3. Assume that we have a set of vulnerabilities  = {v1, v2, v3} and let the set of critical scenarios be given
by ̃C = {{v1}, {v1, v3}, {v1, v2}, {v2, v3}}. Consider now the subset ̂C = {{v1}, {v2, v3}}. This subset is prevented if
the set of prevented vulnerabilities ̄(̄) is one of the following: {v1, v2}, {v1, v3}, or {v1, v2, v3}. What is important to
realize is that every choice of ̄(̄) that prevents ̂C prevents ̃C as well. Thus, instead of constructing the complete
set of critical scenarios, it suffices to find a subset of smaller cardinality ̂C. The reason is that, every time we prevent
̂C, we know that ̃C is prevented.

Motivated by the previous example, we introduce a notion of sufficient representation of the set of critical scenarios. In
general, a sufficient representation ̂C is a subset of ̃C with the property that, once we prevent all the scenarios in ̂C, all
the critical scenarios ̃C are prevented, as stated in the following definition.

Definition 4. A set ̂C ⊆ 2 is a sufficient representation of a set ̃C if the following two conditions are satisfied:
(i) ̂C ⊆ ̃C; (ii) for every ̄(̄) ⊆  , it holds that ̄(̄) prevents ̃C if and only if ̄(̄) prevents ̂C.

Remark 4. A sufficient representation is not unique in general. Furthermore, from the definition, it follows that if the
set of security measures prevents one sufficient representation of the set ̂C, then it also prevents any other sufficient
representation ̂ ′

C. We use this property in some of the proofs in this section.

Naturally, we are interested in finding a sufficient representation that has minimal cardinality. Besides helping us to
reduce the number of scenarios to explore, in the next section, we show that this sufficient representation of minimal
cardinality is also beneficial for the problem of preventing the critical scenarios using the minimal budget. In the following
lemma, we introduce the condition that the sufficient representation of minimal cardinality needs to satisfy. In particular,
we show that none of the scenarios in this representation should contain any other scenario from the representation. We
also prove that the sufficient representation of minimal cardinality is unique.

Lemma 2. Let a set ̂∗
C be a sufficient representation of the set of critical scenarios ̃C. The set ̂∗

C is the unique sufficient
representations of minimal cardinality if and only if for any two nonempty sets ̄ ∈ ̂C and ̄ ′ ∈ ̂C, ̄ ≠ ̄ ′, it holds
̄ ⊈ ̄ ′.

Proof. (⇒) We prove that necessity holds by using a contradiction argument. Let ̂∗
C be the sufficient representation

of minimal cardinality, and assume that there exists ̄ ∈ ̂∗
C and ̄ ′ ∈ ̂∗

C, ̄ ′ ≠ ̄ , such that ̄ ⊆ ̄ ′. In what follows,
we prove that the set ̂ ′

C = ̂∗
C ∖ ̄ ′ is a sufficient representation of ̃C, with cardinality smaller than ̂∗

C. Let ̄P be the
set of prevented vulnerabilities, and assume that ̂ ′

C is prevented by this set. Given that ̂ ′
C = ̂∗

C ∖ ̄ ′, this implies that
̄P prevents any scenario from ̂∗

C, except perhaps ̄ ′. However, since ̄ ∈ ̂ ′
C, we know that ̄∩̄P ≠ ∅, which implies
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̄ ′ ∩̄P ≠ ∅. Hence, we proved that any set ̄P that prevents ̂ ′
C automatically prevents ̂∗

C. Given that ̂ ′
C ⊂ ̂∗

C, any set
̄P that prevents ̂∗

C prevents ̂ ′
C as well. Thus, ̄P prevents ̂∗

C if and only if ̄P prevents ̂ ′
C. We then conclude that ̂ ′

C
represents a sufficient representation of ̃C. Since |̂ ′

C| = |̂∗
C|−1, it follows that ̂∗

C is not the sufficient representation
of minimal cardinality, which contradicts the initial assumption.
(⇐) Same as in the case of necessity, we use the contradiction argument to prove sufficiency. Let ̂∗

C = {̄1, … , ̄l}
be a sufficient representation of ̃C, which satisfies ̄ ⊈ ̄ ′ for any ̄ ≠ ̄ ′ from ̂∗

C. Assume now that there exists
a sufficient representation ̂ ′

C = {̄ ′
1, … , ̄ ′

m}, ̂ ′
C ≠ ̂∗

C, with |̂ ′
C| ≤ |̂∗

C|. In that case, there has to be at least one
scenario ̄n that satisfies ̄n ∈ ̂∗

C and ̄n ∉ ̂ ′
C. In what follows, we prove that ̄n does not exists. Assume first

that for any ̄ ′
i ∈ ̂ ′

C, we have ̄ ′
i ∖̄n ≠ ∅. If we choose prevented vulnerabilities to be ̄P = {vp1 , … , vpm}, where

vpi ∈ ̄ ′
i ∖ ̄n, we see that ̄P prevents ̂ ′

C. However, this set does not prevent ̂∗
C since it does not prevent ̄n. This

is inconsistent with the fact that both ̂∗
C and ̂ ′

C are sufficient representations of ̃C since any ̄P that prevents one
sufficient representation needs to prevent any other as well. Therefore, there has to be at least one set ̄ ′

k ∈ ̂ ′
C such that

̄ ′
k ⊂ ̄n. Let the set of prevented vulnerabilities be now ̄P = {vp1 , … , vpl}, where vpi ∈ ̄i ∖ ̄n for ̄i ∈ ̂∗

C, ̄i ≠ ̄n

and vpn ∈ ̄n ∖ ̄ ′
k. Note that ̄i ∖ ̄n is always nonempty since ̄i ⊈ ̄n by the assumption. This set prevents ̂∗

C.
However, this set does not prevent ̂ ′

C since it does not prevent ̄ ′
k, which is again in contradiction with the fact that

both ̂∗
C and ̂ ′

C are sufficient representations. Thus, we conclude that the set ̄n does not exist, which contradicts the
existence of ̂ ′

C with |̂ ′
C| ≤ |̂∗

C|.
3.2 Reducing number of executions of impact set function
As we stated, the impact set function is estimated based on a physical model of the system, and it can become expensive
to calculate for models of large dimension. Therefore, it is desirable to reduce the number of executions of this function
as much as possible. One way to do this would be to store the combinations of sensors and actuators for which we have
already evaluated the impact function. These combinations can then be further divided into two lists, which we denote
with + and −. These lists can be updated online but also in a preprocessing step based on some a priori knowledge.

The list + contains combinations of sensors and actuators that lead to the impact greater than or equal to Imin. For
instance, say that the list contains combination (̄′, ̄ ′), and we need to check if the impact for some scenario ̄ is greater
than or equal to Imin. If ̄′ ⊆ ̄(̄) and ̄ ′ ⊆ ̄(̄), then we know from Assumption 3 that I(̄(̄), ̄(̄)) ≥ Imin. In
other words, if the combination (̄(̄), ̄(̄)) for which we need to calculate impact contains any combination from +,
its impact is greater than or equal to Imin. The list − contains those combinations that lead to impact less than Imin. Let
the combination (̄′, ̄ ′) be the element of −. If ̄(̄) ⊆ ̄′ and ̄(̄) ⊆ ̄ ′, then it follows from Assumption 3 that
I(̄(̄), ̄(̄)) < Imin. Thus, if the combination (̄(̄), ̄(̄)) for which we need to calculate impact is the subset of a
combination from −, its impact is less than Imin.

Remark 5. Since the number of combinations of sensors and actuators investigated rapidly grows, we can store in
+ (−) only combinations that contain relatively small (relatively large) number of sensors and actuators.

3.3 Algorithm for constructing the sufficient representation of minimal cardinality
We now introduce a systematic way to find the sufficient representation of minimal cardinality ̂∗

C. We begin with intro-
ducing a set enumeration tree of the power set 2 shown in Figure 3. This tree representation was introduced in the work
of Rymon46 for the purposes of systematically searching through the power set.

{v ,v ,v }

{v ,v } {v ,v }{v ,v }

{v1} {v } {v }

    

Layer 1

Layer 2

Layer 3

Layer 0

FIGURE 3 Tree representation of the power set 2 of the set  = {v1, v2, v3}
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In our case, each node of the tree represents one attack scenario. The tree has || + 1 layers enumerated with p =
0, 1, … , ||, where layer p only contains the subsets of  with the cardinality equal to p. Another important property of
the tree is that the connections are based on the following two principles. Firstly, the node ̄ in layer p can be connected
only to nodes ̄ ∪ v𝑗 , v𝑗 ∉ ̄ in layer p + 1. Secondly, the node ̄ is connected to node ̄ ∪ v𝑗 , only if for all vi ∈ ̄ , we
have j < i. For instance, in the case of the graph shown Figure 3, the node {v2} is connected to {v1, v2} but not to {v2, v3}.

To explore the tree for the set ̂∗
C, we adopt a Breadth-first search algorithm.62 This algorithm explores the tree by layers,

that is, it does not move to the next layer before all the scenarios from the current layer are explored. For each scenario
in the current layer, the algorithm first performs classification of that scenario. Once all the scenarios are classified, the
algorithm generates new scenarios that will be searched in the next layer. If there are no more scenarios to be explored,
the algorithm terminates. In the following, we explain the classification and generation steps.

3.3.1 Classification step
The algorithm keeps the list of scenarios to be explored in the current layer, which is denoted by ̃L. For every scenario ̄

from ̃L, the algorithm first calculates 𝜋(̄). If 𝜋(̄) > 𝜋max, the algorithm moves to the next scenario. Otherwise, it checks
if I(̄(̄), ̄(̄)) ≥ Imin. The algorithm first tries to determine this based on the lists + and − introduced in Section 3.2.
If that is not possible, the impact function is evaluated. It is also indicated that impact was calculated to update + and
− later on.

Based on the impact, the scenario is classified in one of the following two categories. The first category is critical scenar-
ios that we want to find, and these scenarios are stored in the set ̂∗

C. If the scenario is not critical, it is stored in the list that
we denote with ̃O. The reason for this is that although the scenario is not critical by itself, combining this scenario with
additional vulnerabilities may result in critical scenario. Once all the scenarios are classified, the algorithm empties ̃L.

The important observation is that the classification of scenarios within a layer can be performed independently for each
scenario. Thus, if we have N cores available, the classification step can be executed in parallel and, in that way, reduce the
execution time of this step N times. Since the classification step involves evaluating impact and complexity function large
number of times, which is expected to be the most time-consuming action in the algorithm, significant time savings can
be achieved with parallelization.

Once the classification step is finished, the lists + and − are updated with the combinations of sensors and actuators
for which the impact was evaluated. The reason why we do not update the lists within the classification step is in order
to be able to execute this step in parallel. The algorithm then moves to the generation step

3.3.2 Generation step
To reduce the number of scenarios to generate in the next layer, the algorithm relies on Lemmas 1 and 2. Mainly, if a
scenario has a complexity larger than 𝜋max the algorithm does not generate any other new scenarios based on it since
these are not critical (Lemma 1). Additionally, if the algorithm classifies a scenario as critical, it does not generate other
scenarios that contain this one since ̂∗

C does not contain these (Lemma 2). In other words, every time we find a critical
scenario or a scenario with complexity larger than 𝜋max, we eliminate the branch of the tree starting from it. Thus, only
scenarios from ̃O are used to generate new scenarios. In this way, the number of scenarios we search through in the next
layer is potentially significantly reduced.

The generation of scenarios is performed according to the following rules. Firstly, for each scenario ̄ from the list ̃O,
the algorithm considers a scenario vi ∪ ̄ as a candidate to be added to the list ̃L, only if for all v𝑗 ∈ ̄ it holds i < j.
This rule follows from the specific tree structure. However, from the tree structure, it also follows that a scenario in the
layer p + 1 can contain a critical scenario from the previous layer, although the branch starting from that critical scenario
was eliminated. Thus, to obtain a sufficient representation of minimal cardinality, the second rule is to add the candidate
scenario vi ∪ ̄ to the list ̃L only if there does not exist a critical scenario in the list ̂∗

C that is contained in vi ∪ ̄ . Once
the new scenarios are generated for all the scenarios from ̃O, ̃O is set to ∅.

3.3.3 Algorithm — formulation and analysis
Based on the previous discussion, we formulate Algorithm 1 for constructing the sufficient representation of minimal
cardinality. It is important to emphasize that the running time of the algorithm depends on the choice of I(·) and 𝜋(·),
thresholds Imin and 𝜋max, and the size of the set  in a nontrivial way. In the worst case, the algorithm may end up
searching every subset of the set  . Thus, based on the available time, the search can be restricted to only the first p layers.
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In that case, the algorithm searches in the worst case O(np
v ) scenarios. However, this number is expected to be reduced by

searching systematically.
We conclude this section by formally proving that the algorithm returns the sufficient representation of minimal cardi-

nality. In case that the algorithm is restricted to search the first p layers, the algorithm returns the sufficient representation
of minimal cardinality for the set ̃ (p)

C , which contains all the critical scenarios with cardinality less than or equal to p.

Theorem 1. Algorithm 1 returns the sufficient representation of minimal cardinality ̂∗
C.

Proof. We first show that the set ̂∗
C formed by Algorithm 1 contains the sufficient representation of minimal cardi-

nality. We use an induction argument for this purpose. Let p = 1. Since the set ̃L is initialized with all the scenarios
of the first layer, all of the critical scenarios among these are for sure found, and added to the set ̂∗

C, so the claim holds
for the first layer. Suppose now that the algorithm reaches the layer p with a given set ̂∗

C. Assume that the list con-
tains all the scenarios with the cardinality less than or equal to p that are contained in the sufficient representation
of minimal cardinality. In the layer p + 1, all the critical scenarios among generated scenarios are added to ̂∗

C. The
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scenarios from the layer p + 1 that are not generated fall in one of the two categories. The first category are the sce-
narios that contain the scenarios with the complexity larger than 𝜋max. From Lemma 1, we know that these scenarios
cannot be critical, so these scenarios do not belong to the sufficient representation of minimal cardinality. The second
category are those scenarios that contain some of the critical scenarios that are already added to ̂∗

C. These scenarios
do not belong to the sufficient representation of minimal cardinality based on Lemma 2. Thus, the claim holds for the
layer p + 1 as well, so ̂∗

C contains all the scenarios from the sufficient representation of minimal cardinality.
Note that ̂∗

C is a sufficient representation of ̃C. The reason is that every time we prevent all the scenarios within
̂∗

C, we know that the sufficient representation of minimal cardinality is prevented since it is contained in ̂∗
C. This

implies that ̃C is prevented. On the other hand, ̂∗
C is subset of ̃C, so every time we prevent ̃C, we know that ̂∗

C is
prevented.

It remains to be proven that ̂∗
C does not contain any two scenarios ̄ and ̄ ′, such that ̄ ⊆ ̄ ′. Firstly, for the two

scenarios ̄ ≠ ̄ ′ from the same layer, the condition ̄ ⊆ ̄ ′ cannot be satisfied. On the other hand, once we generate
scenarios to be explored in the layer p, we always check if these contain any other scenarios from the lower layers
previously added to ̂∗

C (Line 30). Thus, the overlaps are not possible either for scenarios from different layers, so we
conclude that ̂∗

C represents the sufficient representation of minimal cardinality.

Corollary 1. If we restrict Algorithm 1 to search the first p layers of the tree, the sufficient representation of minimal
cardinality of the set ̃ (p)

C is returned.

Proof. To prove the claim, we introduce the complexity function that is defined as

𝜋′(̄) =

{
𝜋(̄) , if |̄| ≤ p
max

{
𝜋(̄), 𝜋′

max
}
, if |̄| > p,

where 𝜋′
max > 𝜋max. This function satisfies Assumption 4 and represents a possible candidate for the complexity

function. For any ̄ ⊆  and |̄| ≤ p, 𝜋′(̄) = 𝜋(̄). Thus, the sets of critical scenarios with the cardinalities less than
or equal to p are the same for both 𝜋′(·) and 𝜋(·). However, the scenarios with the cardinality greater than p are with
complexity larger than 𝜋max if the function 𝜋′(·) is used. In that case, scenarios with cardinality greater than p cannot
be critical based on Lemma 1, which implies that the set of critical scenarios is equal to ̃

(p)
C . Therefore, if we apply

Algorithm 1 with 𝜋′(·) as a complexity function, then it follows from Theorem 1 that the sufficient representation of
minimal cardinality of ̃ (p)

C is returned.

4 SUBMODULAR NATURE OF SECURITY MEASURE ALLOCATION
PROBLEM

In this section, we address solving the security measure allocation problem. This problem is an integer linear program
and, thus, NP-hard to solve in general. The first important result of this section is to show that this problem can be casted
as a minimization of linear function subject to a submodular constraint. In that case, a polynomial time greedy algorithm
can be used to find a suboptimal solution with a guaranteed performance bounds. The second important result of this
section is to show that the greedy algorithm gives the best performance guarantees on the solution once the sufficient
representation of minimal cardinality ̂∗

C is used to represent the set of critical scenarios ̃C. In case that Algorithm 1 was
stopped due to time constraints after p layers, the same results hold but for ̃ (p)

C . Before we start proving these claims, we
introduce a necessary theoretical background.

4.1 Submodularity
Submodularity is referred to as a diminishing returns property of a set function. If a set function is submodular, adding
an element to a set ̄ results in a larger increase of the function than adding that element to a larger set containing ̄.63

Definition 5. Let  = {m1, … ,mn} be a finite nonempty set. A set function G ∶ 2 → ℝ is said to be submodular
if for all ̄ ⊆ ̄′ ⊆  and m ∉ ̄′, we have G(̄ ∪ m) − G(̄) ≥ G(̄′ ∪ m) − G(̄′).

The submodularity property plays an important role in combinatorial optimization. Mainly, certain classes of combina-
torial optimization problems that have a submodular structure can be approximately solved with performance guarantees
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in polynomial time. One of these problems is the minimization of a linear function subject to a submodular constraint,
which is defined as follows.

Problem 2. Minimization of linear function under a submodular constraint

minimize
̄⊆

b(̄) =
∑

m∈̄

bm

subject to G(̄) ≥ Gmin,

where bm ∈ R+ is a cost assigned to each m ∈ , Gmin > 0 is a bound, and G(·) is submodular, nondecreasing,
and integer-valued set function. It is shown in the work of Wolsey47 that this problem can be approximately solved by
Algorithm 2. The algorithm first forms the greedy set ̄G = ∅. In each iteration, the cost benefit ratio

bm

G
(
̄G ∪ m

)
− G

(
̄G

)
for each m ∈ ∖̄G is calculated. At the end of each iteration, the element m∗ that achieves the lowest value of the
cost benefit ratio is added to ̄G. This process is repeated at most || times, thus, it can be executed fast even for
large sets of security measures. The performance guarantees of the algorithm are provided in Lemma 3.

Lemma 3. (See theorem 1 in the work of Wolsey47)
Let G(·) be a nondecreasing, submodular, and integer-valued set function with G(∅) = 0. Consider Problem 2 and denote
by b(̄O) the optimal value and, by b(̄G), the value found by Algorithm 2. Then,

b(̄G)
b(̄O)

≤ H
(

max
m∈

G(m)
)

H(d) =
d∑

i=1

1
i
. (6)

Remark 6. Note that bound (6) is dependent on the function G(·). In particular, the bound grows logarithmically
in the value of maxm∈G(m), so the performance guarantees remain relatively good even for large values of G(m).
Furthermore, this bound represents the worst case performance guarantees. Algorithm 2 can perform much better in
practice.

4.2 Submodularity and security measure allocation problem
In what follows, we prove that the security measure allocation problem is an instance of Problem 2. In that case, we can
use polynomial time Algorithm 2 for finding an approximate solution with guaranteed performance.

Recall that ̄ represents the set of security measures we want to choose and that ̄(̄) is the subset of vulnerabilities
prevented by the security measures ̄. From Assumption 1, it follows that all the attack scenarios that exploit vulner-
abilities from the set ̄(̄) become prevented. To model this relation, with each scenario ̄i ∈ ̂∗

C, we define a gain
function

gi(̄) = min
{|̄(̄) ∩ ̄i|, 1} .
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If ̄i requires any of the vulnerabilities from ̄(̄) to be conducted, it is prevented, and gi(̄) = 1. Otherwise, we do not
prevent ̄i, so gi(̄) = 0. The global gain function is then

G(̄) =
∑
̄i∈̂∗

C

gi(̄) =
∑
̄i∈̂∗

C

min
{|̄(̄) ∩ ̄i|, 1} .

The security measure allocation problem can now be reformulated as follows.

Problem 3. Security measure allocation

minimize
̄⊆

c(̄) =
∑

m∈̄

cm

subject to G(̄) = |||̂∗
C
||| .

The objective function c(̄) we are trying to minimize represents the total cost of deployed security measures ̄.
The constraint G(̄) = |̂∗

C| comes from the fact that G(·) is equal to |̂∗
C| once all of the scenarios from ̂∗

C are
prevented. This automatically implies that all the critical scenarios ̃C are prevented since ̂∗

C represents the sufficient
representation of ̃C.

We now introduce the first important result of this section, which is that Problem 3 has the same submodular struc-
ture as Problem 2. That implies that we can use Algorithm 2 to find a suboptimal solution with the guarantees given in
Lemma 3.

Theorem 2. Problem 1 is an instance of Problem 2.

Proof. To show that the claim holds, we prove that G(·) satisfies the conditions stated in Lemma 3, that is, it is sub-
modular, nondecreasing, and integer valued. We proved submodularity and nondecreasing property for similar set
function in theorem 1.49 We include the proof here because of completeness.

Submodularity. It suffices to show that gi(·) is submodular since submodularity is preserved under a nonnegative
sum.63 We prove that gi(·) is submodular by using the definition of submodularity and contradiction argument. Let

Δm(̄) = gi(̄ ∪ m) − gi(̄)

be the gain achieved by adding the security measure m ∈  to the set of already deployed security measures ̄. We
show that this gain could be either 0 or 1. The gain is equal to zero in two situations. The first situation is when the
scenario ̄i is already prevented by the deployed security measures ̄. We then have gi(̄) = gi(̄ ∪ m) = 1. Thus,
Δm(̄) = 0. The second situation occurs when ̄ ∪ m does not prevent ̄i. We then have gi(̄) = gi(̄ ∪ m) = 0,
hence Δm(̄) = 0. The value Δm(̄) = 1 is achieved when scenario ̄i is prevented by m but not ̄. In that case,
gi(̄) = 0 and gi(̄ ∪ m) = 1, so Δm(̄) = 1. Based on the previous discussion, it follows:

Δm(̄) =

{
1 , ̄m ∩ ̄i ≠ ∅ and ̄(̄) ∩ ̄i = ∅
0 , otherwise.

(7)

Assume that gi(·) is not submodular. Then, there exist ̄ ⊆ ̄′ and m ∉ ̄′ such that Δm(̄) < Δm(̄′). That is
only possible if Δm(̄) = 0 and Δm(̄′) = 1. From (7), it follows ̄(̄′) ∩ ̄i = ∅ and ̄m ∩ ̄i ≠ ∅. However, since
̄(̄) ⊆ ̄(̄′), we have ̄(̄)∩ ̄i = ∅. It then follows from (7) that Δm(̄) = 1, which contradicts the assumption.
Thus, gi(·) is submodular.

Nondecreasing property. Let ̄ ⊆ ̄′ ⊆ . From (1), we have |̄(̄)∩ ̄i| ≤ |̄(̄′)∩ ̄i| for any ̄i, which implies
that gi(·) is nondecreasing. Thus, G(·) is nondecreasing as well, as a nonnegative sum of nondecreasing set functions.

Integer valued. Since gi(·) can take only values 0 or 1, G(·) is integer valued set function.

Remark 7. In the case when each security measure prevents exactly one vulnerability, Problem 1 becomes a weighted
hitting set problem. If the sufficient representation of minimal cardinality contains all the vulnerabilities from the
first layer, Problem 1 reduces to a weighted set cover problem. Both of the problems are known to be NP complete.64

Remark 8. Note that the submodularity property of Problem 1 follows from the submodularity of function gi(·), which
is disconnected from the choice of the impact and complexity set functions.
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We now introduce the second important result of this section, which is to show the benefit of using the sufficient
representation of minimal cardinality ̂∗

C compared with other sufficient representations. Note that G(·) is dependent on
the set ̂∗

C and recall from Remark 6 that guarantees on performance stated in Lemma 3 are dependent on G(·). We now
prove that ̂∗

C provides the tightest guarantees on performance among the sufficient representations.

Theorem 3. Let ̂∗
C be the sufficient representation of minimal cardinality of the set ̃C, and let ̂C be any other sufficient

representation. Then, ̂∗
C guarantees the best performance in terms of the bound (6), that is,

H
(

max
m∈

G(m)
)
≤ H

(
max
m∈

G′(m)
)
,

where G(̄) =
∑

̄i∈̂∗
C

min{|̄(̄) ∩ ̄i|, 1} and G′(̄) =
∑

̄i∈̂C
min{|̄(̄) ∩ ̄i|, 1}.

Proof. To prove the claim of the theorem, we first prove the sufficient representation of minimal cardinality ̂∗
C is

contained in any other sufficient representation ̂C. Assume that ̂∗
C = {̄1, … , ̄m}, ̂C = {̄ ′

1, … , ̄ ′
l }, and let

̄𝑗 be an arbitrary selected scenario from ̂∗
C. We prove this scenario belongs to ̂C as well. The first option is that,

for any ̄ ′
i ∈ ̂C, we have ̄ ′

i ∖ ̄𝑗 ≠ ∅. If we choose a set of prevented vulnerabilities to be ̄P = {vp1 , … , vpl},
where vpi ∈ ̄ ′

i ∖̄𝑗 , we see that ̄P prevents ̂C. However, ̂∗
C is not prevented by ̄P since ̄𝑗 is not prevented. This

is impossible since ̂C and ̂∗
C are sufficient representations. Therefore, there has to be at least one scenario ̄ ′

t ∈ ̂C
such that ̄ ′

t ⊆ ̄𝑗 . Assume that ̄ ′
t ⊂ ̄𝑗 and define the set of prevented vulnerabilities as ̄P = {vp1 , … , vpm}, where

vpi ∈ ̄i ∖ ̄𝑗 for i ≠ 𝑗 and vp𝑗
∈ ̄𝑗 ∖ ̄ ′

t . This set prevents ̂∗
C but does not prevent ̂C since it does not prevent ̄ ′

t .
This is again in contradiction with the fact that both ̂C and ̂∗

C are sufficient representations. Thus, the only option
that remains is that there exists ̄ ′

t ∈ ̂C, such that ̄𝑗 = ̄ ′
t . Since ̄𝑗 was arbitrarily selected, we conclude that any

scenario contained in ̂∗
C has to be contained in ̂C as well.

Based on the previous discussion, we can represent ̂C as ̂C = ̂∗
C ∪ (̂C ∖ ̂∗

C), where ̂C ∖ ̂∗
C is nonempty since ̂∗

C
is unique. Let m ∈  be an arbitrary security measure. We then have

G′(m) =
∑
̄i∈̂C

min
{|̄m ∩ ̄i|, 1} =

∑
̄i∈̂∗

C

min
{|̄m ∩ ̄i|, 1} +

∑
̄i∈̂C∖̂∗

C

min
{|̄m ∩ ̄i|, 1}

= G(m) +
∑

̄i∈̂C∖̂∗
C

min
{|̄m ∩ ̄i|, 1} ≥ G(m).

Thus, for any m, we have G(m) ≤ G′(m). This implies H(maxm∈G(m)) ≤ H(maxm∈G′(m)), which concludes the
proof.

5 ILLUSTRATIVE EXAMPLE

In this section, we illustrate the applicability of our framework. We consider an ICS that regulates temperature within a
building and assume multiple security vulnerabilities to be present in the system. The goal is to identify the most critical
scenarios that have to be prevented and then to select the security measures to prevent these scenarios at the minimal cost.

5.1 System model
The variable-refrigerant-flow system consists of a compressor, a condenser, N evaporators, and N electronic expansion
valves (EEV), as shown in Figure 4. Each EEV and evaporator pair corresponds to an area of the building, and the objective
of the system is to maintain desirable temperature within the areas. We now briefly introduce the model of the system,
and we refer the interested reader to see the work of Jain et al48 for more detailed treatment.

Each area of the building is modeled with three state-space variables xi = [ Tai Twi Pi ]T , where Tai is the temperature
of the corresponding area, Twi is the temperature of the evaporator's lumped coil wall, and Pi is the refrigerant pressure
after leaving the evaporator. These variables are controlled using the control signal ui = [𝜔𝑓 i avi ]T , where 𝜔fi is the speed
of evaporator's fan that is used to cool down the evaporator coil, and avi is the control signal that is used to change the
fluid resistance of EEV. Other dynamical states of the system are xc = [ PC Pq Twc ]T , where PC represents the refrigerant
pressure after leaving the compressor, Pq is the junction pressure, and Twc is the temperature of compressor's lumped coil
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FIGURE 4 Physical infrastructure of the variable refrigerant flow control system. EEV, electronic expansion valve
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FIGURE 5 Cyber infrastructure of the variable refrigerant flow control system. PLC, programmable logic controller

wall. These variables are controlled using the control inputs uc = [𝜔k 𝜔𝑓c ]T , where 𝜔k represents the compressor speed,
and 𝜔fc represents the speed of the compressor's fan. All of the states in the system are assumed to be measurable. Thus,
the state, the control, and the measurement vectors are given by x = [ xT

1 , … , xT
N xT

c ]T , u = [ uT
1 , … , uT

N uT
c ]T , and

𝑦 = [ xT
1 , … , xT

N xT
c ]T , respectively.

For illustration purposes, we assume the cyber part of the system to be as shown in Figure 5. In this configuration, the
equipment in each of the N areas is controlled using the two PLCs, the master PLC and the slave PLC. The master PLC is
used to control the evaporator. It collects the temperature of the evaporator's lumped coil wall Twi and controls the speed
of the evaporator's fan 𝜔fi. It is also assumed that master PLCs receive and execute commands from the control center.
The tasks of slave PLCs include collecting the measurements Pi and Tai and controlling the actuator avi. It is assumed that
slave PLCs communicate with the control center through their corresponding master PLCs. The compressor is controlled
using a single PLC. This device collects the measurements PC, Pq, and Twc and controls the actuators 𝜔k and 𝜔fc. It also
exchanges the measurements and executes the commands from the control center.

5.2 Security vulnerabilities and security measures
To model the sets of security vulnerabilities  and security measures , we used the list of common security vulnerabil-
ities provided in the work of Stouffer et al.5 In particular, we assumed that the vulnerabilities listed in Table 3 are present
in the system. Table 3 also contains the list of sensors and actuators that the attacker gains control over if the vulnera-
bility v is exploited and the complexity 𝜋v of exploiting v. The security measures are listed in Table 4 together with the
vulnerabilities ̄m prevented by the security measure m and price cm of implementing m. The way of selecting 𝜋v and cm
is explained in further sections. We now briefly explain the vulnerabilities and security measures considered.

Firstly, computers within the control center are connected to other IT networks without adequate protection, and phys-
ical ports on the computers are not secured. These vulnerabilities open the space for the attacker to spread malware within
the system, either through the other networks or by USB sticks. In both of the cases, the attacker gains absolute control
over all the sensors and actuators within the system. The first vulnerability can be prevented by deploying and properly
adjusting firewalls and the second one by locking or removing the ports.

Secondly, it was identified that the communication links between master and slave PLCs, PLCs and the control center,
and sensors/actuators and all the PLCs are unsecured. This opens a space for the attacker to intercept the communication
and conduct man-in-the-middle attacks. The sensors and actuators that the attacker gains control over are dependent on
a communication link attacked. If a link between a sensor/actuator and PLC is attacked, the attacker gains control over
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TABLE 3 List of vulnerabilities  identified within the system, sensors ̄v, and actuators ̄v that the attacker gains
control over if vulnerability v is exploited and complexity 𝜋v of exploiting v

Vulnerability v Sensors ̄v and Actuators Complexity 𝝅v
̄v Controlled by Attacker

The control center computers connected to other networks
All sensors and actuators

1
without protection
Unsecured physical ports in the control center All sensors and actuators 1
Insecure connection between sensor/actuator i and a PLC Sensor/Actuator i 1-5

Insecure connection between slave PLC i and master PLC i
Sensors and actuators attached to 1-5
slave PLC i

Insecure connection between master PLC i and the Sensors and actuators attached to 1-5
control center master PLC i and slave PLC i
Insecure connection between the compressor PLC and the Sensors and actuators attached to 1
control center the compressor PLC

Lack of physical protection of slave PLC i
Sensors and actuators attached to 1-5
slave PLC i

Lack of physical protection of master PLC i
Sensors and actuators attached to 1-5
master PLC i and slave PLC i

Lack of physical protection of the compressor PLC
Sensors and actuators attached to 1
the compressor PLC

Lack of physical protection of sensor/actuator i Sensor/Actuator i 1-5

Abbreviations: PLC, programmable logic controller.

TABLE 4 List of security measures  and vulnerabilities ̄m prevented by the security measure m and cost cm of deploying m

Security Measure m Vulnerabilities m Prevented by m Cost cm

Installing and properly adjusting firewalls between The attacker cannot gain access to the computers 3-5
the control center and other IT networks in the control center from other networks

Locking and removing the physical ports
The attacker cannot inject malware through the 1-2
physical ports within the control center

Protecting an unsecured communication link
The attacker cannot intercept and modify messages 1-4
going through the corresponding link

Physical protection of an individual component The attacker cannot gain physical access to the 1-2
(a sensor, an actuator, or a PLC controller) corresponding component

Physical protection of group of components
The attacker cannot gain unauthorized access to the

(PLC controller and sensors and actuators attached to it)
group of components and cannot exploit unprotected 5-10
communication between PLC and sensors/actuators

Abbreviations: IT, information technology; PLC, programmable logic controller.

that sensor/actuator. If the attacker intercepts the communication between master and slave PLCs, it gains control over
all the sensors and actuators attached to the slave PLC. If the attacker compromises a link between a PLC and the control
center, it gains control over the sensors and actuators attached to that PLC and the corresponding slave PLC attached to
it. The vulnerabilities of this type can be prevented by implementing encryption and authentication schemes.

Finally, lack of physical protection is identified within the system. If the attacker has physical access to a sensor/actuator,
we assume that the attacker can gain control over that sensor/actuator. If the attacker gains unauthorized access to a
slave PLC, it gains control over all the sensors and actuators attached to that PLC. In case of unauthorized access to a
master PLC, the attacker gains control over all the sensors and actuators attached to both the master and the slave PLC.
The unauthorized access can be prevented by introducing additional physical protection. The first alternative is to protect
the group of components at the same time. The assumption is that physical protection prevents the attacker from gaining
unauthorized access to the PLC and all the sensors and the actuators attached to that PLC. In addition, it also prevents
the attacker from exploiting unsecured connections between the corresponding PLC and sensors/actuators because these
components are usually connected with wires and lie in proximity of each other. The second alternative is to protect
components individually.
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5.3 Critical scenarios
Checking if attack scenarios are critical (checking Definition 2) was done as follows. We used the impact function given
in Table 1, and we set the threshold Imin = 2. To check if the attack impact is above or below the threshold, we used the
function tzero implemented in MATLAB, which returns both the normal rank of the system and the list of transmission
zeros.

To check if a scenario is of complexity smaller than 𝜋max, we used the complexity function (5). We first assigned indi-
vidual complexity 𝜋v to each of the vulnerabilities. We assumed that the security vulnerabilities related to the equipment
in areas:

• 1 to N
5

are of very low complexity;
• N

5
+ 1 to 2N

5
are of low complexity;

• 2N
5
+ 1 to 3N

5
are of medium complexity;

• 3N
5
+ 1 to 4N

5
are difficult to exploit; and

• 4N
5
+ 1 to N are very difficult to exploit.

The vulnerabilities related to the control center and the equipment controlling compressor were assumed to be of very
low complexity. In this way, we achieved approximately the equal number of vulnerabilities belonging to each of the five
groups from Table 2. To calculate the complexity of attack scenario consisting of more than one vulnerability, we used the
complexity function (5). The threshold was set to be 𝜋max = 5. Note that this choice of the threshold 𝜋max implies that all
the scenarios with six or more vulnerabilities are with the complexity larger than 𝜋max. Thus, we need to explore only the
first five layers of the power set 2 to find the critical scenarios.

5.4 Searching for critical scenarios
To find the sufficient representation of minimal cardinality, we used a computer cluster consisting of 4 Intel® Core™
i7-4470S computer processors with 16 cores in total. To increase or decrease the number of vulnerabilities, we varied the
number of areas in the range N= 5 to N= 25. By counting, it can be verified that the total number of vulnerabilities is
equal to 14N + 14, whereas the number of security measures is equal to 16N + 15.

For the aforementioned specifications, we measured the execution time of Algorithm 1. The results are shown in Table 5.
The execution time was the highest for the case of 364 vulnerabilities, where it reached 21.54 minutes. For the sake of
comparison, the brute force search through the first five layers of the power set when vulnerability set consisted of 84
measures already took more than 8 minutes, whereas the estimated time of the brute force search for the vulnerability set
consisting of 364 elements is more than 20 days. This demonstrates that systematic search can allow us to explore large
sets of vulnerabilities in reasonable time.

The number of scenarios in the sufficient representation of minimal cardinality is reported in Table 6, together with the
number of scenarios in each of the layers. As it can be seen, the attacker can conduct undetectable attack by exploiting
only a single vulnerability. Naturally, if the attacker exploits vulnerabilities within the control center, it is able to conduct
an undetectable attack because it controls all of the sensors and actuators. It also turned out that attacking any of the
master PLCs leads to undetectable attacks as well. For instance, if the attacker exploits lack of physical protection of master
PLC i, it can increase or decrease the temperatures Tai and Twi by an arbitrary value. This is possible since changes in Tai
and Twi influence neither pressures nor temperatures in other areas. The number of scenarios in the second layer was equal
to four for all the values of N. The reason is that these scenarios involved only the vulnerabilities of equipment related to the

TABLE 5 Execution times of Algorithm 1 with respect
to number of areas

Number of Number of Execution Time
Areas N Vulnerabilities nv Algorithm 1, sec

5 84 4.230
10 154 13.954
15 224 80.285
20 294 366.030
25 364 1292.560
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TABLE 6 The number of critical scenarios within ̂∗
C in total and in each of the layers

Number of Scenarios Scenarios Scenarios Scenarios Scenarios Scenarios
Areas N Total |̂∗

C| Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

5 226 14 4 16 0 192
10 508 24 4 32 64 384
15 854 34 4 48 192 576
20 1264 44 4 64 384 768
25 1738 54 4 80 640 960

compressor, which does not change by increasing or decreasing the number of areas. We also observe that scenarios from
the layer 5 involved, exploiting vulnerabilities of the equipment related to the compressor. For example, since there exists
a coupling between the pressures P1, … ,PN,Pc, and Pq, attacking Pi requires manipulating the compressor equipment
to cover the attack.

5.5 Allocating security measures
Once the sufficient representation of minimal cardinality was found, we moved to solving the security measure allocation
problem. We used both the greedy algorithm introduced in the previous section but also the specialized integer linear
program solver included in the Gurobi package. For each case of N, we performed simulations 500 times for different
values of costs cm of security measures. The values of cm were randomly selected from the intervals given in Table 4.

We first compare the algorithms in terms of the execution time. The plot of the worst-case execution times of the algo-
rithms is shown in Figure 6. The maximal execution time was reached for 415 security measures, and it was approximately
8.4 seconds for the Gurobi solver and 0.09 seconds for Algorithm 2. The explanation for short execution times lies in
the fact that sufficient representation of minimal cardinality contained relatively small number of scenarios, and all the
scenarios were with cardinality not larger than five. However, it can also be observed from Figure 6 that the worst-case
execution time increased much faster for the Gurobi solver than for Algorithm 2. This may indicate that the restriction of
using the Gurobi solver once the number of scenarios to prevent is very large. In that case, we can rely on Algorithm 2 to
solve the problem with known performance guarantees. However, in this particular case, we conclude that the execution
time did not represent an issue for any of the approaches.

Next, we compare the algorithms in terms of the solution obtained. We first remark that the Gurobi solver managed
to find the optimal objective value of the problem b(̄O) in all the five cases, for all the realizations of costs. Again, we
find the reason for this to be relatively small number of scenarios contained in the sufficient representation of minimal
cardinality and sparsity of the scenarios. Thus, although integer linear programs are NP-hard in general, in this case, we
managed to find the optimal solution for the problem in a matter of seconds. To compare the solution b(̄G) returned
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FIGURE 6 Comparison of Algorithm 2 and the Gurobi solver in terms of execution time [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 7 In Figure 7A, we plotted the quotient b(̄G)∕b(̄O) of the solutions b(̄G) obtained by Algorithm 2 and b(̄0) obtained by
the Gurobi solver. The values of the bound introduced in Lemma 3 are also provided. In Figure 7B, we plotted the the largest percentages of
deployed security measures obtained in simulations for both the algorithms [Colour figure can be viewed at wileyonlinelibrary.com]

by Algorithm 2 with the solution b(̄O) returned by the Gurobi solver, we recorded the worst-case values of the quotient
b(̄G)∕b(̄O) in Figure 7A. We also calculated bound from Lemma 3. From Figure 7A, we see that the solution b(̄G)
returned by Algorithm 2 was close to the optimal. In particular, it was at most 1.22 times larger than the one returned by
the Gurobi solver, which demonstrates that the bound stated in Lemma 3 may be quite conservative.

In Figure 7B, we recorded the maximal percentages of security measures deployed (number of deployed security mea-
sures divided by the total number of security measures). The number of deployed security measures varied from 18.31% to
21.05% for the Gurobi solver. For Algorithm 2, the percentage of deployed security measures varied from 20.00% to 25.26%.
We also see that the algorithms performed quite similar in this aspect as well. The security measures that were selected by
the algorithm were mostly those protecting the major components in the system, for instance, implementing protection
within the control center, communication links between master PLCs and the control center, and physical protection of
master PLCs. As expected, security measures that were not implemented were mostly those preventing vulnerabilities of
slave PLCs and individual sensors/actuators with the high values of 𝜋v.

6 CONCLUSION

In this paper, we proposed a modeling framework that can be used for allocating security measures in ICSs. The frame-
work is suitable for dynamical models of ICSs, captures the cyber-physical interaction within the system, and allocates
security measures based on a risk model. Moreover, the framework targets the case when the number of security vulner-
abilities and measures is large. In our framework, the security measure allocation problem was divided into two parts.
The first part consisted of conducting risk assessment. For this purpose, we proposed the algorithm that systematically
searches for critical attack scenarios (Algorithm 1). In addition, we proved that this algorithm returns the sufficient rep-
resentation of minimal cardinality (Theorem 1). The second part is to prevent the critical scenarios by deploying the least
expensive combination of security measures, which can be done by solving an integer linear program. Given that integer
linear programs are NP-hard in general, submodular structure of the problem was outlined (Theorem 2). In that case,
a polynomial time greedy algorithm can be used to obtain a solution with guaranteed approximation bound. Addition-
ally, we showed that the sufficient representation of minimal cardinality returned by Algorithm 1 provides the tightest
guarantees on performance for the greedy algorithm (Theorem 3).

The applicability of the framework was illustrated through simulations. It was verified that Algorithm 1 allows us to
search through a large number of attack scenarios efficiently. We also demonstrated that solving the security measure
allocation problem is not necessarily complex. In the experiment, the exact solution was obtained using a standard integer
linear program solver in a matter of seconds. Furthermore, it was shown that the greedy algorithm can return a solution
close to the optimal and considerably better than the worst-case theoretical bound. The greedy algorithm also proved to
be faster than an integer linear program solver, which indicates that we can rely on this method in the case that the use
of the solver becomes time consuming.
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MILOŠEVIĆ ET AL. 23

ACKNOWLEDGEMENTS

This work was supported by The Swedish Civil Contingencies Agency (CERCES project), the Swedish Research Council,
The Swedish Foundation for Strategic Research, and Knut och Alice Wallenbergs foundation.

ORCID
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38. Vuković O, Sou K, Dán G, Sandberg H. Network-aware mitigation of data integrity attacks on power system state estimation. IEEE J Sel

Areas Commun. 2012;30(6):1108-1118.
39. Deka D, Baldick R, Vishwanath S. Data attack on strategic buses in the power grid: design and protection. In: Proceedings of the 2014

IEEE PES General Meeting and Conference Exposition; 2014; National Harbor, MD.
40. Bi S, Zhang Y. Graphical methods for defense against false-data injection attacks on power system state estimation. IEEE Trans Smart

Grid. 2014;5(3):1216-1227.
41. Liu X, Li Z, Li Z. Optimal protection strategy against false data injection attacks in power systems. IEEE Trans Smart Grid.

2017;8(4):1802-1810.
42. Deng R, Xiao G, Lu R. Defending against false data injection attacks on power system state estimation. IEEE Trans Ind Inform.

2017;13(1):198-207.
43. Cárdenas A, Amin S, Lin Z, Huang Y, Huang C, Sastry S. Attacks against process control systems: risk assessment, detection, and response.

In: Proceedings of the 6th ACM Symposium on Information Computer and Communications Security; 2011; Hong Kong, China.
44. Teixeira A, Sou K, Sandberg H, Johansson KH. Secure control systems: a quantitative risk management approach. IEEE Control Syst.

2015;35(1):24-45.
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