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Abstract: This article addresses the distributed optimization problem in the presence of
malicious adversaries that can move within the network and induce faulty behaviors in the
attacked nodes. We first investigate the vulnerabilities of a consensus-based secure distributed
optimization protocol under mobile adversaries. Then, a modified resilient distributed optimiza-
tion algorithm is proposed. We develop conditions on the network structure for both complete
and non-complete directed graph cases, under which the proposed algorithm guarantees that
the estimates by regular nodes converge to the convex combination of the minimizers of their
local functions. Simulations are carried out to verify the effectiveness of our approach.
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mobile adversary agents.

1. INTRODUCTION

Along with the development of information and communi-
cations technology, distributed computation over wireless
networks has received increasing attention. It features us-
ing a group of computing units/agents whose local compu-
tations are coordinated by real-time peer-to-peer commu-
nication, thereby solving large-scale problems efficiently
while being robust to node failures. This work considers
the finite-sum distributed optimization problem, which
finds broad applications in distributed control, sensor fu-
sion, and federated learning (Yang et al., 2019).

Large-scale systems operating over wireless works in-
cluding distributed optimization are vulnerable to cyber-
attacks such as false data injections (FDI), denial-of-
service (DoS) and eavesdropping attacks (Ishii et al.,
2022). Those attacks deteriorate the performance and even
threaten the operation of distributed systems. To this end,
tailored distributed optimization algorithms resilient to
specific types of attacks have been proposed lately. In this
work, our focus is placed on the FDI attack which falsi-
fies the transmitted signals among agents without being
detected (Dibaji et al., 2017; Sundaram and Gharesifard,
2019). We should point out that related works in the
literature mostly assumed a time-invariant set of malicious
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agents. By contrast, we consider more powerful attacks in
distributed optimization systems, where a fixed number
of adversaries are able to move within the system and
manipulate the behaviors of agents.

Since the distributed consensus-seeking protocol is the
fundamental tool to design distributed optimization algo-
rithms, next we provide a brief review of both resilient
consensus and distributed optimization algorithms.

Resilient Consensus: Resilient distributed consensus or
agreement-seeking algorithms have been studied for a long
time; see (Dolev et al., 1986; Kieckhafer and Azadmanesh,
1992) for a few early works. However, the algorithms have
not been adapted to sparse networks and analyzed based
on the graph robustness until the last decade (Dibaji et al.,
2017; LeBlanc et al., 2013; Zhang et al., 2015). The core
mechanism therein to defend FDI attacks is known as
the mean subsequence reduced (MSR) algorithm, where
every regular agent removes a number of extreme values
from the set of messages received from its neighbors at
each round. Under proper conditions on the graph, the
regular agents with the MSR algorithm reach asymptotic
consensus (LeBlanc et al., 2013). Note that the aforemen-
tioned works considered the compromised agents to be
the same throughout the consensus-seeking process. Wang
et al. (2022) considered a mobile attack model in which a
fixed number of adversaries may switch their targets, and
developed modified MSR algorithms to handle the effects
due to switching.



Resilient Distributed Optimization: Sundaram and Ghare-
sifard (2019) considered the distributed scalar optimiza-
tion problem in the presence of malicious agents. A re-
silient algorithm is developed based on the MSR-based
consensus and the subgradient methods. Under proper as-
sumptions on the attack model and communication graph,
the authors proved that the estimates by regular agents
converge to the convex hull of their local minimizers.
The algorithm was extended to the multi-dimensional case
in (Kuwaranancharoen et al., 2020). Recently, Wu et al.
(2022) proposed a general robust aggregation rule and
incorporated it into distributed stochastic optimization to
defend FDI attacks. In another line of research, Gupta
and Vaidya (2020) coined the notion of redundancy in
objective functions (later extended by Zhu et al. (2022))
and used it to develop the condition that ensures full
resilience in distributed optimization, that is, convergence
to the consensual optimum of regular agents.

The contribution of this work is threefold: First, we show
that the secure version of the consensus-based distributed
optimization protocol under static adversary model (Sun-
daram and Gharesifard, 2019) is fragile under the mobile
malicious adversary model. Second, we propose a novel
secure distributed optimization protocol for the regular
nodes under a mobile malicious model. The protocol is
modified from the resilient approach based on the Lo-
cal Filtering (LF) algorithm (Sundaram and Gharesifard,
2019). Third, we consider networks in both complete and
non-complete graphs, and characterize the necessary con-
nectivity structures for the proposed modified LF protocol
such that the regular nodes’ states converge to the convex
hull of the minimizers of their local functions, regardless of
the behaviors of a certain number of the adversarial nodes.

This paper is organized as follows. We formulate the
problem and present some preliminaries in Section 2.
Aiming at the mobile malicious model, our algorithm
and its theoretical properties are developed in Section 3.
Section 4 provides a few numerical examples and Section
5 concludes the paper.

2. PROBLEM FORMULATION

2.1 General notations

Let R,N be the real, and natural numbers, 1= [1, 1, . . . , 1]′,
0= [0, 0, . . . , 0]′. The Euclidean norm on Rn is written
by || · ||. A nonnegative matrix A ∈ Rn×n is called row-
stochastic if its rows are probability vectors. A probability
vector is a numerical vector whose entries are real numbers
between 0 and 1 and add up to 1.

Consider a directed network G(V, E) consisting of n nodes,
where the set of nodes is V = {1, . . . , n}, and the set of
edges is E = V×V. An edge (j, i) ∈ E means that the node
j can send a value to node i, and this edge is called the
in-coming edge of node i, and the out-going edge of node
j. Let N−

i = {j ∈ V : (j, i) ∈ E} be the set of in-coming
neighbors of node i, and N+

i = {j ∈ V : (i, j) ∈ E} be
the set of out-going neighbors of node i. In this paper, the
degree di of node i is the cardinality of N−

i .

2.2 Distributed optimization and consensus

A typical objective for distributed optimization is to solve
the following minimization problem by local computation
and peer-to-peer communication:

minimize f(x) =
1

n

n∑
i=1

fi(x). (1)

For each node i, there is a local cost function fi : R → R
that is assumed to be convex with bounded subgradients,
and hence globally Lipschitz. As a popular approach to
solve the distributed optimization problem, the agents
combine the consensus dynamics and the gradient flow to
find the minimizer (Nedić and Ozdaglar, 2009; Nedić et al.,
2010). Specifically, at each time k ∈ N, the agents have a
temporary local solution xi(k) for problem (1). Each agent
sends xi(k) to its neighbors and updates its state by

xi(k + 1) = aii(k)xi(k) +
∑

j∈N−
i

aij(k)xj(k)− αkdi(k),

(2)

where aij(k) is the weight that satisfies aii(k) +
∑

j∈N−
i

aij(k) = 1, and there exists a constant γ such that aij ∈
[γ, 1] for all node i. The quantity di(k) is the subgradient
of fi evaluated at aii(k)xi(k) +

∑
i∈N−

i
aij(k)xj(k). The

step-size sequence is written as {αk}k∈N in (2).

Problem (1) can be solved by (2) if the network topology is
strongly connected, and the weights are doubly stochastic
(Nedić et al., 2010).

Definition 1. (Double Stochasticity) The weights are called
doubly stochastic, if for all i ∈ V and k ∈ N, it holds
aii(k)+

∑
j∈N−

i
aij(k) = 1, and aii(k)+

∑
j∈N+

i
aji(k) = 1.

Proposition 1. Suppose the network is strongly connected,
the weights are doubly stochastic, and all local functions fi
have bounded subgradients. Consider the update rule (2)
and let

∑n
k=1 αk = ∞,

∑n
k=1 α

2
k < ∞. Then, the mini-

mizer x∗ of problem (1) is asymptotically achieved, i.e.,
limk→∞ |xi(k)− x∗| = 0 for all i ∈ V.

The above result shows that a perfect global optimizer can
be distributively attained if there is no attack. However, in
the presence of attacks, such perfect global optimizer x∗ is
vulnerable to malicious node that may deviate the nodes
from the prescribed update rule. Since achieving a perfect
global optimizer under malicious attacks is hard (Su and
Vaidya, 2021), one of the main objectives of distributed
optimization under malicious attacks is to develop secure
distributed algorithms such that the influence of the mali-
cious nodes is mitigated. Here, we address a variant of the
secure distributed optimization problem from (Sundaram
and Gharesifard, 2019), where the states of regular nodes
reach consensus in the convex hull of regular local mini-
mizers rather than the ideal global optimizer x∗.

2.3 Mobile malicious model

In this article, we examine multi-agent systems operating
in unpredictable or even hostile environments. Some of
the agents are unreliable and/or adversarial. Such agents
improperly implement the provided algorithm and may
even update their states arbitrarily in an effort to obstruct
the ongoing consensus process. For these faulty agents,
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we present a new mobile malicious model. Informally,
this class has the following three features: a) Adversarial
agents have the ability to broadcast their false states to
their neighbors, meaning that every adversarial agent’s
neighbors receive the same information from it. b) Over
time, the malicious agents’ identities may change. That
is, at specific time instants, an attacker may transform
a regular agent into a malicious one. c) A malicious
agent may recover and become regular. When an attacker
switches to a different non-adversarial agent, the original
attacked agent is considered to be in the cured status.

To proceed, we introduce the following notations. At each
time k, the set V of nodes is partitioned into two subsets:
The set R(k) of regular agents and the set A(k) of
adversarial agents. Moreover, we have |R(k)|+ |A(k)| = n.
In the static malicious model, both sets R(k) and A(k)
remain invariant over time.

The upper bound as well as the faulty behaviors of the
adversarial agents are defined below.

Definition 2. (F -total) The mobile adversarial set A(k)
follows the F -total model if |A(k)| ≤ F for all k, where
F ∈ N.
Definition 3. (Malicious nodes) An adversarial node i ∈
A(k) is said to be malicious if it makes updates in its
value xi(k) arbitrarily and sends the same value to all of
its neighbors.

Under the mobile adversary model, the adversaries may
switch their targets, but we limit their influence by bound-
ing the total number of them in the network over time. In
addition, even though the adversarial nodes can arbitrarily
send their states, we assume that they cannot change the
local function fi. Otherwise, it is clear that the distributed
optimization problem cannot be solved after n steps, since
the local functions of all agents may be corrupted.

We present the model of mobile malicious activities. This
model is based on the literature in computer science for the
Byzantine attack (Buhrman et al., 1995). We present the
version modified for the scenario of malicious adversaries
case. Here, each agent executes three steps during each
round: Send out its own state, collect the states of its
neighbors, and then update its state. The three steps are
carried out by all agents simultaneously.

(Buhrman’s model (Buhrman et al., 1995)): Only at the
sending step in each round k the adversary is allowed to
move away from an attacked agent i. In such a round,
agent i broadcasts its corrupted state to its neighbors as
xi(k), but it instantly recovers; as a result, agent i collects
and updates its state like any other regular nodes. Due to
this, agent i will be categorized as regular in this round k,
meaning that i ∈ R(k). We have j ∈ A(k) if the adversary
switched from agent i to agent j after i sends out its
state. Note that there are at most F incorrect values in
the network at any given round. An illustration of such
mobile behavior can be found in Fig 1.

2.4 Attacking the Local Filtering (LF) dynamics

The objective of this paper is to develop distributed
algorithms for the regular agents in the system to solve
the optimization problem with secure guarantees under the

Fig. 1. Mobile malicious model model where i ∈ R(k) and
j ∈ A(k).

mobile malicious model. This problem is an extension of
that studied in (Sundaram and Gharesifard, 2019), which
is limited to the static adversary model.

Definition 4. (Resilient optimization) If for any possible
sets and behaviors of the mobile malicious nodes in A(k)
and any initial state values of the regular nodes, the follow-
ing conditions are satisfied, then the resilient optimization
is solved in multi-agent system:

1) (Consensus condition) The regular nodes ∀i, j ∈ R(k)
eventually take the same value as limk→∞ |xi(k) −
xj(k)| = 0.

2) (Safety condition) Set the interval S ⊂ R containing
the local minimizers of all regular nodes. Then, it
holds limk→∞ xi(k) ∈ S for all ∀i ∈ R(k).

In particular, solving the resilient distributed optimiza-
tion problem means that, if the sequence of step-sizes
decreases to zero and is not summable (a typical condition
in gradient-based optimization dynamics (Nedić et al.,
2010)), the states of the regular nodes stay within the
safety region that is bounded by regular local minimizers,
regardless of the influences by the adversarial nodes.

One approach to solve the resilient distributed optimiza-
tion problem under static adversarial model is the Local
Filtering (LF) dynamics in (Sundaram and Gharesifard,
2019). The LF dynamics provide a safety guarantee such
that the states of the regular nodes converge to the convex
hull of the minimizers of the local cost functions. As a very
brief introduction for the LF dynamics, each regular node
executes three basic steps: Send, collect, and update. At
time (or round) k, first, a regular agent i broadcasts its
current value xi(k) to its neighboring agents. Second, it
collects the values of the in-coming neighbor nodes xj(k)
for j ∈ N−

i . Third, after discarding the most extreme
neighbor values, its value is updated to xi(k + 1). For the
third step of state update, the update rule is given by

xi(k + 1) = aii(k)xi(k) +
∑

j∈M−
i
(k)

aij(k)xj(k)− αkdi(k),

(3)

where M−
i (k) ⊂ N−

i is the set of in-neighbors of node i
whose states were retained. The value removal for node i
is to remove the F largest and F smallest values that are
larger and smaller than its own value, respectively. If there
are fewer than F values higher (resp. lower) than its own
value, node i removes all of those values.
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However, we can demonstrate that if the conventional
LF dynamics for the static F -total model are applied
directly, mobile adversary agents can quickly demolish
resilient optimization (for numerical simulations showing
such properties, see Section 4).

Proposition 2. Suppose the local objective functions at
each node are convex with bounded subgradients, but
otherwise completely arbitrary, and the step-size αk → 0
as k → ∞. Suppose Γ is the LF algorithm that solves
the resilient optimization problem under F -total static
adversarial model. Then, a single mobile adversary can
cause all the nodes’ solutions to be outside of the safety
interval S when they run algorithm Γ.

3. MODIFIED RESILIENT OPTIMIZATION
ALGORITHM

Here, we present the modified LF dynamics with mobile
malicious agents. It will be shown that this algorithm is
effective to deal with Buhrman’s malicious model.

Algorithm 1. (Modified LF dynamics). At each round k,
regular node i ∈ R(k) executes the following three steps:

1. (Send) Node i sends its current value xi(k) to all
neighbors.

2. (Collect) Node i collects the neighbor values xj(k), j ∈
N−

i .
3. (Update) Node i updates the value xi(k + 1) by:

(a) Sorting all received values (include its own value)
in a descending order.

(b) Removing the F largest values and the F smallest
values. The remained set of agent values are
written by M+

i (k) ⊂ {i} ∪ N−
i .

(c) Updating its value by

xi(k + 1) =
∑

j∈M+
i
(k)

âij(k)xj(k)− αkdi(k), (4)

where {αk}k∈N is a sequence of non-negative step-
size, and di(k) is a subgradient of fi evaluated at∑

j∈M+
i
(k) âij(k)xj(k). The weight aij(k) satisfies∑

j∈M+
i
(k) âij(k) = 1, and furthermore, there exists a

constant γ such that âij(k) ∈ [γ, 1] for all node i and
k ∈ Z+.

The possibility that agent i may not use its own value
makes this method special. This is due to the fact that in
Step 3, 2F values are eliminated regardless of the agent
i’s value. In contrast, the amount of values to be deleted
in the typical techniques for the static adversary models
in (LeBlanc et al., 2013; Sundaram and Gharesifard, 2019)
depends on the current value of agent i. In particular, only
those larger (respectively, smaller) than xi(k) are elimi-
nated if agent i’s value is among the largest (respectively,
the smallest) F .

3.1 Convergence result for complete graph

Here, we first present the convergence properties of the
modified LF dynamics (4) for networks in the complete
graph form. More general graphs will be treated in the
next subsection. In particular, we provide the necessary
and sufficient conditions for complete graphs under F -total
mobile malicious adversaries.

Theorem 1. Consider the multi-agent system whose net-
work G forms a complete graph. Suppose that the mobile
malicious agents follow the F -total and Buhrman’s model,
and the local objective functions fi at each node are convex
with subgradients bounded by some constant L, the step-
size αk → 0 as k → ∞. Then, the regular nodes using
Algorithm 1 reach consensus if and only if n ≥ 2F + 1.

From the technical viewpoint, the proof of Theorem 1 can
be seen as a natural extension of that in (Wang et al.,
2022), which deals with the resilient consensus problem
under the mobile adversary model. In both problems, the
condition N ≥ 2F +1 is a tight one and hence consistent.
Adding the subgradient term with a vanishing step-size
αk → 0 keeps the convergence properties for regular nodes.
We further remark that the advantage of this analysis
approach is that it can be extended to non-complete graph
cases as we discuss in the next subsection.

3.2 Convergence result for non-complete graph

Next, we demonstrate the effectiveness of the modified LF
algorithm for the non-complete graph case and provide
a sufficient condition on the graph structure for resilient
optimization under the mobile malicious model.

Theorem 2. Consider the multi-agent system under the
network G where the mobile malicious agents follow the F -
total and Buhrman’s model. Suppose that the local objec-
tive functions fi at each node are convex with subgradients
bounded by some constant L, the step-size αk → 0 as
k → ∞. Then, the regular agents using Algorithm 1 reach
consensus if the following conditions are satisfied:

C1 n ≥ 4F + 4.
C2 For every node i, the number of neighbors satisfies

|N−
i | ≥ 2F + 1 + n

2 .

For comparison, Theorem 6.4 in (Sundaram and Ghare-
sifard, 2019) shows convergence findings for the LF algo-
rithm under the F -total static malicious model. It states
that the regular nodes are guaranteed to reach consensus if
and only if the network is a (F+1, F+1)-robust graph (see
definition of robust graph in (Sundaram and Gharesifard,
2019)). However, according to our result under the F -
total mobile malicious model, if conditions C1 and C2
are met, the network will always be (2F + 1)-robust (and
not vice versa). It is known that (2F + 1)-robust graphs
have more connections than (F +1, F +1)-robust graphs.
In order to counter the more harmful mobile attacks, the
regular agents must remove 2F neighbor values, which may
include their own values. Comparing with the conventional
LF algorithm, more values are removed at the removal
step, and therefore, in our problem setting, a denser graph
condition is necessary in order to guarantee the consensus.

3.3 Asymptotic safety result

In the previous subsections, we provided graph properties
that guarantee consensus for the regular nodes under
Algorithm 1. In this subsection, we provide a safety
guarantee on these dynamics under additional conditions
on the step-sizes, as detailed in the following theorem.

Theorem 3. Consider the multi-agent system under the
mobile malicious agents following the F -total Buhrman’s
model. Suppose that one of the following conditions holds.
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D1) The network is a complete graph, and n ≥ 2F + 1.
D2) The network satisfies C1 and C2 in Theorem 2.

Suppose that all regular nodes use Algorithm 1, and the
local objective functions fi at each node i are convex
with subgradients bounded by some constant L, and each
node i has a nonempty compact set of local minimizers
Mi ⊂ R. Let M = max{x|x ∈ Mi, i ∈ V} and M =
min{x|x ∈ Mi, i ∈ V}. If the step-sizes satisfy

∑∞
k=1 αk =

∞,
∑∞

k=1 α
2
k < ∞, then lim supk→∞ xi(k) ≤ M and

lim infk→∞ xi(k) ≥ M for all i ∈ R(k).

According to the safety result under the static mali-
cious model (Theorem 7.1 in (Sundaram and Gharesifard,
2019)), the regular agents converge to the convex hull of
the local minimizers of regular agents i ∈ R. We can
observe that all agents i ∈ V decide the safety area
S = [M,M ] in Theorem 3. The convex hull of regular
agents’ local function minimizers exhibits time-varying
behavior because mobile malicious actors may change their
positions. For any i ∈ R(k), it is evident that the safety
area S = [M,M ] contains all local function minimizers of
regular agents because the local function fi(x) cannot be
altered by malicious agents.

As shown in Theorem 3, the modified LF dynamics guar-
antee consensus within the convex hull of the local mini-
mizers and prevent the adversarial nodes from driving the
states of the regular nodes to arbitrarily large values under
the appropriate conditions on the network topology. How-
ever, a single malicious node can still prevent the regular
nodes from converging to a constant value under certain
classes of step-sizes. This is different from the safety results
in (Wang et al., 2022), where the regular nodes converge to
a constant value. Note that the convergence to a constant
in modified LF dynamics (Algorithm 1) does not hold even
with a single mobile malicious node.

As a simple example, we consider a 3-node complete
graph. The local functions of nodes are f1(x) = (x − 1)2,
f2(x) = (x − 2)2, f3(x) = (x − 3)2. Suppose that initially
the mobile malicious node is node 1 and it does not move
for a long time. The malicious node sends out a constant
value that is much smaller than those of the regular nodes.
Then, based on Theorems 6.4 and 7.1 in (Sundaram and
Gharesifard, 2019) under static model, the states of nodes
2 and 3 converge in the area (2, 3). Then, let the malicious
node move to node 3 and stay there for a sufficiently long
time. Then, the states of nodes 1 and 2 converge in the
area (1, 2). If such movements are conducted repeatably,
the regular states oscillate within the area (1, 3) and do
not converge to a constant.

4. NUMERICAL EXAMPLES

Numerical simulations are performed with two commu-
nication networks, that is, a complete graph and a non-
complete graph.

Complete Graph: First, we test both the conventional LF
algorithm and the proposed modified LF algorithm under
a 10-node complete graph. Partition the nodes into two
groups V1 and V2. For Group V1 (respectively V2), set the
objective function to be fi = (x− 4)2, i ∈ V1 (respectively
fi = (x − 6)2, i ∈ V2). Therefore, the safety area is
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Fig. 2. Conventional LF dynamics under a single mobile
malicious node.
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Fig. 3. Modified LF dynamics under complete graph with
mobile malicious model, F = 4.

S = [4, 6]. Initially, the regular nodes randomly take their
values in [0, 10], and let step-size αk = 1/k. Moreover, the
mobile strategy of the malicious nodes is to move randomly
in the whole network at each time. The malicious nodes
i ∈ A(k) take the constant value xi(k) = −10. The goal of
the mobile malicious nodes is to mislead all regular nodes
outside the safety area S.
In Fig. 2, we display the conventional LF dynamics under
a single mobile malicious node. It shows that all regular
nodes are outside the safety area after time k = 500. As
we analysed in Proposition 2, when the mobile malicious
node left, the cured node is equipped with the corrupted
negative value. Such values are used in the following
updates based on the LF algorithm, which eventually
misleads all regular nodes outside the safety area. As a
comparison, we check the performance of the proposed
modified LF algorithm. Based on Theorem 1, we know
that a 10-node graph may tolerant at most four mobile
malicious agent. Therefore, we set F = 4. Four nodes are
initially chosen as malicious nodes, and they follow the
aforementioned mobile strategy. The system dynamics is
shown in Fig. 3, where we can check that all regular nodes
eventually reach consensus in the safety area.

Non-complete Graph: Our focus of another experiment
setup is to determine how well the proposed protocol
performs under practical settings when the assumptions
introduced in Theorem 2 may not hold. Specifically, we
use randomly generated networks where the connectivity
requirements are in general difficult to check due to the size
of the network. For the network topology, we generated
one hundred random geometric graphs with 100 nodes
located in an area of 100 × 100 randomly under the
uniform distribution. Each agent has a communication
range determined by the radius r = 40, within which it
can communicate with all agents. The network topology
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Fig. 4. Network topology G1 with F = 5.
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Fig. 5. Modified LF dynamics under graph G1 with mobile
malicious model, F = 5.

G1 is shown in Fig. 4. The regular agents are drawn in
blue while the initial malicious agents are in red. Here,
five malicious agents are introduced.

The system dynamics for the modified LF algorithm
under graph G1 is depicted in Fig. 5. The regular agents
asymptotically reach consensus in the safety interval S =
[4, 6], despite the influences of mobile malicious behaviors.
In addition, the topology G1 does not meet the condition
D2 in Theorem 2. Therefore, comparing with the non-
complete networks discussed in Theorem 2, the proposed
modified LF dynamics can practically solve the resilient
optimization problem in a wider range of networks.

5. CONCLUSION

In this paper, we have considered the multi-agent dis-
tributed optimization problem in the presence of mobile
misbehaving agents and have developed a resilient algo-
rithm to mitigate their influence on the regular agents.
Particularly, a modified LF algorithm has been suggested
in a mobile malicious model. Through theoretical in-
vestigations under networks in both complete and non-
complete graph forms, we have characterized the criteria
on the required graph structures for the protocol to per-
form the resilient optimization with safety guarantees. We
have further investigated the performance of the proposed
resilient optimization algorithms for non-complete net-
works where the theoretical assumptions might not hold
using numerical simulations. For future, we plan to de-
vise more general algorithms for various mobile adversary

models. Additionally, it is important to consider commu-
nication time delays and asynchronous update behaviors.
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