Attack Identification for
Cyber-Physical Security in Dynamic
Games under Cognitive Hierarchy

Christos N. Mavridis *, Aris Kanellopoulos **,
Kyriakos G. Vamvoudakis *** John S. Baras *,
Karl Henrik Johansson **

* Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD
e-mails: {mavridis,baras} @umd.edu
## School of Flectrical Engineering and Computer Science, KTH Royal
Institute of Technology, Sweden
e-mail: {arisk,kallej} @kth.se
*** The Daniel Guggenheim School of Aerospace Engineering, Georgia
Institute of Technology, Atlanta, GA
e-mail: kyriakos@gatech.edu

Abstract: This paper considers the problem of identifying the profiles and capabilities of
attackers injecting adversarial inputs to a cyber-physical system. The system in question
interacts with attackers of different levels of intelligence, each employing different feedback
controllers against the system. Principles of behavioral game theory — specifically the concept of
level-k thinking — is employed to construct a database of potential attack vectors. By observing
the state trajectories under sequential interactions with different adversaries, the defender
adaptively estimates both the number and profiles of the different attack signals using an online
deterministic annealing approach. This information is used to dynamically estimate the level of
intelligence of the attackers. Simulation results showcase the efficacy of the proposed method.

1. INTRODUCTION

Cyber-physical systems (CPS) are complex systems inte-
grating physical with digital components, whose nature
renders them vulnerable to external attacks. The effects
of attacks to CPS have become more obvious, due to
various high profile instances, such as the Stuxnet virus, a
malicious computer worm targeting programmable logic
controllers (Farwell and Rohozinski, 2011). The history
of these attacks highlights the need for the development
of security algorithms that explicitly consider the CPS
as a whole, rather than focusing on the software and
communication vulnerabilities.

Game theory (Basar and Olsder, 1999) is a potent tool
for modeling interactions between selfish and competitive
agents. At the core of game theory one can find the notion
of the solution concept; the focal policies that describe
the expected behavior of the agents according to a set
of predefined assumptions on their cognitive capabilities.
The most commonly used solution concept in game theory
is the Nash Equilibrium (NE), according to which the
players of the game are both optimal in their actions
and mutually consistent in their beliefs over their oppo-
nents’ behavior. However, experimental results have shown
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that human agents rarely act according to a game’s NE
(Camerer, 2003). Alternatively, approaches to modeling
bounded rationality of agents have been proposed since
the advent of game theory. Level-k thinking (Crawford
and Iriberri, 2007) is a bounded rationality framework
that augments the agents with a specific cognitive ability
corresponding to the number of iterative best response
steps they are able to perform. Level-k thinking players
operate under the assumption that their opponents have
abilities of level k — 1, i.e., they are strictly one step less
strategic than themselves. Regardless of the intuition, the
value of adopting a cognitive hierarchy approach in CPS
systems under attack is twofold. First, it greatly reduces
the computational complexity of estimating a possibly in-
tractable optimal policy in differential games, and, second,
it constructs a database of attacker policies that can be
used to identify their intelligence level.

Identification of the attacker’s profile and intelligence level
is crucial in defending against dynamically changing ad-
versaries that may become more intelligent with time,
especially in the context of level-k thinking. In this work,
to identify the different deployed attack profiles, the de-
fender observes the state trajectories of the system under
sequential interactions with different adversaries, and uses
an adaptive recursive least squares filter to estimate the
attack policies. Then, an online deterministic annealing
learning scheme (Mavridis and Baras, 2023b) is used as
a discrete-time dynamical system that estimates a quan-



tized distribution of the attacks in the space defined by a
set of level-k attacker policies. Thus, online deterministic
annealing acts as an adaptive partitioning algorithm in
the space of attack policies and provides information on
the number of different attacks observed, as well as their
distribution in the space of level-k policies.

Related work

Iterative bounded rationality methods are investigated in
(Chong et al., 2016). Those methods have been studied
extensively in the context of autonomous driving. Specif-
ically, the authors in (Li et al., 2016) leverage a bounded
rationality approach called cognitive hierarchy in order to
train autonomous vehicles against realistic human-driver
models. Similar ideas of bounded rationality have been
explored in driver modeling in (Albaba and Yildiz, 2020).
Furthermore, level-k thinking and its extensions have
found use in various security-related problems where the
performance of complex systems rests on their ability to
successfully defend against the full unpredictability of hu-
man attackers. As such, the authors in (Abuzainab et al.,
2016) considered the problem of distributed uplink random
access for the Internet of Things, while various results have
been presented regarding securing CPS (Vamvoudakis and
Kokolakis, 2020; Kanellopoulos et al., 2020; Kokolakis
et al., 2021, 2020). In frameworks of repeated games,
bounded rationality has been introduced in (Dai et al.,
2020), where the authors propose a recursive reasoning
formalism for Bayesian games with unknown payoff func-
tions. Results on repeated games have also been reported
in (Tian et al., 2020) with the extraction of interpretable
human behavior models and (Tian et al., 2020), where
autonomous agents are trained to beat humans in simple
repeated games. Finally, bounded rationality in the form
of level-k thinking and cognitive hierarchy is employed
in (Fotiadis and Vamvoudakis, 2022) in the context of
stochastic games, solved via both recursive and parallel
algorithms.

Learning algorithms for attack identification are mainly
represented by clustering approaches with prototype-based
models (Mavridis and Baras, 2020, 2023b). These methods
can be viewed as iterative, consistent (Mavridis and Baras,
2020), interpretable (Mavridis et al., 2022), and topology-
preserving competitive-learning neural networks (Uriarte
and Martin, 2005). They use a set of representatives to
partition the observation space mimicking similar concepts
from cognitive psychology and neuroscience. Determin-
istic annealing methods (Mavridis and Baras, 2023b,a;
Rose, 1998) define a specific class of prototype-based al-
gorithms, that offer properties desirable to cyber-physical
systems applications, such as adaptive adjustment of the
model complexity, robustness and the ability to control the
performance-complexity trade-off of the algorithm.

Contributions: The contributions of the present paper are
twofold. First, we model a CPS under attack as a dynam-
ical system with adversarial input injection, and present
a computationally feasible framework to construct: (i) a
database of level-k attack policies, and (ii) the correspond-
ing defend policies for level-k attacks. Second, we em-
ploy an adaptive identification algorithm based on online
deterministic annealing learning to estimate a quantized

distribution of the attacks in the space defined by the set
of level-k attacker policies, and we use this information to
identify the intelligence level of the attackers.

2. PROBLEM FORMULATION

Consider a CPS under attack by N, attackers which
interact with the system in a serial manner. As such, the

evolution of the CPS is described by a linear time-invariant
(LTT) system:

(t) = Ax(t) + Bu(t) + Y Ljp—g Kidi(t), t =0, (1)

where x(t) € R™ is the state of the system with z(0) =
xo, u(t) € R™ the defender’s input to the system and
d;(t) € R? the attacking signal injected by the active
attacker ¢ € {1,..., N4} to the system. The activation
function o : [0,00) — {1,...,Ng} is used to model the
sequential attacks. Finally, A € R"*" B e R™ ™ and
K; € Rk i e {1,...,Ny} are the drift, input, and
adversarial matrices, respectively.

Remark 1. For ease of exposition, we drop the subscript 4
in the attacker during the construction of the database of
attacks based on level-£ thinking theory. O

2.1 Designing Defense Strategies

In designing defense strategies for the system’s operator, a
typical approach is to consider a zero-sum game between
the defender and the active attacker. The analysis of the
game rests on the choice of the solution concept employed.
The most common and well-understood solution concept
for a differential game is the Nash equilibrium (NE),
formalized through the following cost function:

a0
J(z;u,d) = % J (z7Qz + u"Ru—~?|d|?) dt,  (2)
0

where for the weight matrices of appropriate dimensions,
it holds that @ > 0, R > 0 and v > ~v* > 0, where v* is
the attenuation level of the attacker, required to guarantee
that the integral is finite.

Assumption 1. The pair (A, B) is controllable and the pair
(A,Q2) is detectable. O

To derive the feedback policies corresponding to the NE
the defender minimizes (2) while the attacker maximizes
it. Consequently, we can define a function V* : R — R
that quantifies the value of the game given an initial state
x € R™ subject to (1). The value of the game is then given
by

o0

V(z) = mgn mng (27 Qz + v Ru —+?|d|?) dr.

t
We can derive the NE policies by defining the Hamilto-
nian function associated with the given cost function and
dynamics as

H(z,u,d,VV(x)) = 27 Qx + v Ru — +?|d|?

+(VV@0TMw+Bu+K®,@)

where VV(z) € R™ is the gradient of the value function.

Applying the stationarity conditions to (3), ones gets
Vr e R"”

1

u*(z) = —R™'BTVV (z), =—

d*(x) = " K'™VV(2),



as the NE feedback policies for the defender and the
attacker, respectively. Furthermore, it is known that the
value function satisfies the Hamilton-Jacobi-Isaacs equa-
tion H(z,u*(z),d*(z),VV(z)) = 0, Yo € R", which, in
the linear-quadratic case (when it holds that V (z) = 2T Px
for a matrix P > 0) becomes the Riccati equation:

1
A'P+PA—-PBR'B"P+ —PKK"P+Q=0. (4)
v

It is known that (4) has a unique positive definite solution
under Assumption 1.

2.2 Attack Identification

We assume that the defender can estimate the attacker’s
control trajectory X? := d;(x(t; — Tine : t;)) € S using
state observations gathered in a time window W, :=
[t; — Tint : t;] while the system is under attack by a set of
active adversaries i € {1, ..., Ng}. To estimate the different
attack profiles observed, we treat X; as realizations of a
random variable X : 0 — S. Our goal is to estimate the
distribution of X. We build upon the notion of Online
Deterministic Annealing (ODA) (Mavridis and Baras,
2023b,a), and define a discrete random variable Q : S — S,
with a finite domain p representing different attac profiles.
Once the joint probability space of (X, Q) is defined, we
successively solve a series of optimization problems:

min (1 -AD(X,Q) - AH(X,Q), ()

parameterized by a Lagrange coefficient A € [0, 1] control-
ling the trade-off between minimizing an average distor-
tion measure D(X, Q) (to be defined in Section 4), and
maximizing the Shannon entropy H (X, Q).

In Section 4 we show that the optimization problems (5)
can be solved using gradient-free stochastic approximation
updates, i.e., using a discrete-time dynamical system run-
ning at times {nTin}, . Moreover, decreasing the values
of A will lead in a series of bifurcation phenomena when
the cardinality of the domain u of @ increases and the
underlying probability distribution of the observations X*
is more closely represented (Mavridis and Baras, 2023b).

3. BOUNDED RATIONALITY IN DIFFERENTIAL
GAMES

Level-0 (Anchor) Policy: To construct the reasoning it-
erations for a player, we must define a “naive” policy of a
level-0 player. Thus, we let a level-0 defender act based on
the belief that there are no attackers in the environment.
Their policy comprises the solution of an optimal feedback
problem, corresponding to the value function

0
VI(z) = minf (zTQz + uTRu)dr, Yz e R™.  (6)
v Jt

The optimal feedback policy based on (6) is given as
u'(z) = —R'B'VWV (z) = ~R'BY Pz, Vr e R",
and is solved based on the assumption that d(t) = 0, V¢ >
0 in (1). Moreover, due to the linear-quadratic nature of
the problem, the value function has the form V?(z) =

2T POz, where P? solves

A"P)+ P)A+Q - P)BR'B"P) = 0.
Extending the same principles to a level-0 attacker, we
model their naive anchor policy as an attack under the

belief that the defender is also level-0, i.e., unaware of the
attack. Thus, the attacker assumes the use of a feedback
defense policy u(z) = u%(z), Vo € R™ and solves an
optimal feedback problem according to the value function

0
Vi(z) = mng (TQz + u"TRu® — 42| d|?)dr, Yz e R™,
t

subject to,
i(t) = (A— BR'BTPY)x(t) + Kd(t), 2(0) = o, t = 0.
Consequently, the level-0 attack becomes

1
d(x) = —2KTP(§)$, Vo e R",
Y

where PJ solves the following Riccati equation:
0=(A-BR'B"P)TPY + PY(A—- BR™'B'P?)
1
+(Q+ P)BR'B'P)) + P]KK"P}.
¥

Higher level policies: Once we have defined the level-0
strategies of both players, we introduce a procedure of
constructing higher level policies in an iterative manner.
Specifically, a player of level-k solves for their best response
policy by holding the belief that their opponent is of level-
k—1. In the case of the level-k defender, the best response
feedback policy u*(x) will be derived via the level-k value
function V,F(z) defined as

o0
Vuk(wo) = minf (gcTQ:E +u"Ru — 72||dk_1\|2)d7'7
v Jo

subject to
@(t) = Az(t) + Bu(t) + Kd* 1 (z(t)), z(0) = zo, t = 0.
Assuming that the attacker is of level-k — 1, the defender
lets d*~1(z) = V—EKTPfflx, Vo € R™ which yields the
level-k best response
uF(z) = —R'BTP*s = —LFa, VzeR™ (7)
Similar to the previous levels, matrix P¥ solves the follow-

ing level-k Riccati matrix equation:

1 1
0=(A+—KK"P; ") Pi+ Py (A+ S KK"P; ™)
Y Y

1
+Q-— P 'KK"P; " )-PFBR'BTP}.
gl

Via the same process, the attacker of a level-k rationality,
designs their attack based on the best response to a level-k
defender. This corresponds to the following value function,
defined Vz € R™:

Vi )= e |

t

Q0

T
(J:TQaH- (uk) RuF—~2 |d|*)dr,

subject to
@(t) = Azx(t) + BuF(t) + Kd(t), 2(0) = zq, t = 0.
Their best response is

1
d*(z) = —QKTP(;CI =Lk, VreR™ (8)
Y

The matrix P(f solves the following Riccati equation:
0=(A—-BR'BTP"TP} + PY(A - BR'BTPF)
. 1
+(Q+ PYBR'B'P})+ PKK"P}.
Y

In the following theorem we characterize conditions of
existence of level-k policies.



Theorem 1. ((Kanellopoulos and Vamvoudakis, 2019)).

Consider the system (1) under the effect of agents with
bounded rationality and policies given by (7) and (8) for
the defender and the attacker, respectively. The game can
be solved up to any level-k as long as the following holds:

1 1
PYBR™'BTP} > max (5 Py ' KK"Pj~', — Py KK"P}).
gl gl

The described process enables the construction of a
database of policies that a defender can utilize along with
level estimation algorithms, such as ODA.

4. ATTACK IDENTIFICATION WITH ONLINE
DETERMINISTIC ANNEALING

We assume that the defender has access to the state
trajectory vector x(t), t > 0 of system (1) gathered while
the system is under attack by a set of active adversaries
1€ {l,...,Ng}. We define a single observation at time t;
to be obtained by the trajectory x(t; — Tint : t;), where the
interaction time T}, € R* is defined a priori, and assumed
large enough such that the estimation algorithms (9), (10)
presented below are able to achieve practical convergence.
This approach can be generalized to dynamically changing
time windows.

Within the time window W; := [t; — Tin : ¢;], assuming

the system dynamics of (1) and linear feedback control
laws as in (7), (8) with unknown gain on the attacker’s

controller Ly, we can Acreate an estimate ﬁd of Ly, by
adaptively estimating A of the system:
i(t) = (A= BLy + KLg)x(t) := Ax(t), te W;.
We introduce a stable filter
w(t) = Aw(t) + x(t), wo, teW; 9)

such that, asymptotically, z(t) = (A — A)w(t) = O*w(t),
where the elements of ©* € R™*"™ can be estimated by,

o(t) = =y (0()w(t) — x(1))w™ (t) P(t)

P(t) = —P(t)wt)wT (t)P(t), t e W;
where v > 0, and ©gy, Py are initial conditions such

that Py is invertible. It can be shown through standard
Lyapunov analysis that (10) asymptotically minimizes the

error ming SSO Lle®)|dt, e(t) == Ow —z = (© — O*)w.

(10)

Using the adaptive identification scheme in (10), we can
estimate Lfi as the attacker’s control gain for the observa-
tion window W;. To estimate the different attack profiles
observed, we define the observations X* := L((j) e R for
each time window W;, as realizations of a random variable
X : © > R"™ defined in a probability space (Q,F,P). In
a more general framework, where the linear dynamics as-
sumptions (1) do not hold, the attacker’s control trajectory
X% :=di(x(t; — Tint : t;)) can be used as an observation.
Our goal is to to find a set of profiles {,ui}f.vil eS:=R"
that estimate the distribution of X, i.e., the distribution of
the observed attacks X, expressed as a linear combination

of the set {L’j}}]zzl, computed by the defender using (8).
Following the principles of online deterministic anneal-

ing (Mavridis and Baras, 2023b), we define a discrete
random variable @ : S — ri(S) (ri(S) represents the

relative interior of S) described by the association prob-
abilities p(u;|z) = P[Q = u;|X = x] that represent the
probability of x € S to belong to the subset S; :=

x €S :i=arg min; d¢(ac,uj)}. Once the joint probabil-
ity space of (X, Q) is defined, we successively solve a series
of optimization problems:

min F\(X,Q) = (1-XD(X,Q) - AH(X,Q), (11)
Hi

parameterized by a Lagrange coefficient A € [0, 1] control-
ling the trade-off between minimizing an average distortion
measure D(X,Q) = E[dy(X,Q)], for an appropriately
defined Bregman divergence dy, and maximizing the Shan-
non entropy H(X,Q) := E[—logp(X,Q@)]. Bregman di-
vergences are information-theoretic dissimilarity measures
that generalize convex metric measures and include the
widely used squared Euclidean distance and the Kullback-
Leibler divergence, as two notable examples. For more
information on Bregman divergence, the reader is referred
to (Banerjee et al., 2005; Mavridis and Baras, 2023b). It
can be seen that the solution of the optimization problem:

¥ := min F s.t. ) =1
(W) = min F\() Zi]p(uzl )

is given by the Gibbs distributions
e_%d(ﬁ#li)

0 T vreS
S, e 5 ) *

P (pilw) = (12)
In addition, the following theorem proven in Mavridis
and Baras (2023b), provides a stochastic approximation
algorithm Borkar (2009) to solve the optimization problem
min, F¥(p).

Theorem 2. ((Mavridis and Baras, 2023b)). Let {z,} be a
sequence of independent realizations of X. Then p;(n),
defined by the stochastic approximation updates

{pi(n +1) = pi(n) + an) [p(pilzn) — pi(n)]
oi(n+1) = 0i(n) +a(n) [znp(plen) —oi(n)]
where >, a(n) = o, >, a?(n) < o, and the quantities
P(pilzn) and p;(n) are recursively updated as follows:

_ d(@n.p(n)
T

(13)

oi(n . pi(n)e
el = 7 ) = L
pin) 3, pi(n)e
converges almost surely to a locally asymptotically stable
solution of the optimization min, F}(p), as n — .

(14)

@i ()
T

Using the observations X?, we sequentially solve (11)
for decreasing values of A\. For A = 1, the solution
to min, F}(p) yields a unique solution gy, ie., we get
{,ui}f\il = {ui}i]\ill = u1, where M; = 1 is the cardinality
of the estimated profiles. As explained in (Mavridis and
Baras, 2023b), as A decreases a bifurcation phenomenon
takes place, according to which, there exist critical values
Ae when the cardinality M, of {ul}ﬁ*l increases. At
the same time, the average distortion term D(X,Q) :=
E [dy(X, Q)] decreases, indicating a better representation
of the underlying distribution of X by a finite set of profiles
{ ul}f\i*l This process continues until a certain level Ay, iS
achieved. The algorithmic implementation of this process
and details on its parameters are discussed in (Mavridis
and Baras, 2023b, 2022). Finally, notice that at Apin, the
Gibbs probabilities (12) represent the similarity of any
point in § = R™ at the desirable level of detail. We



use (12) to compute the similarity between the estimated
profiles {ui}?ﬁ’“‘“ and the set {L’j}lzzl, computed by

A

o M
the defender using (8). This yields a set of {ng)}‘ )
identified attacks expressed as distributions over the set
{L’;}L , which indicates the level of intelligence of the
observed attack profiles.

min

5. SIMULATION RESULTS

The simulation study was conducted on a linearized vehicle
system found in (Guo et al., 2010; Yan et al., 2017), whose
dynamical system representation is

0

where ¢,£ € R denote the lean rotation and rotation of
the front wheel with respect to the rear wheel respectively,
and u,d € R are the defender’s and the attacker’s inputs,
respectively.

¢ —2.11 —6.61 9.48 —357.057 [ ¢
d [ ¢] _ | 7354 —61.70 11.71 ~757.81 | | ¢
dt | ¢ - 1 0 0 0 o
¢ 0 1 0 0 ¢
1.2 0
+ 100 u+ g d, t >0,
0

The simulated system is under attack sequentially by mul-
tiple adversaries, each launching an attack signal based
on a random feedback policy that is generated as a
noisy mixture of multiple level-k attacks. This random-
ness highlights the ability of the algorithm to capture
arbitrary attack signals of agents that may change their
levels during the game or even play sub-optimal instead
of best responses. The components of the control gains

. k _
{LS) € R”} , for k = 5 generated attacks are shown in
i=1

Table 1. The computation of k = 5 level-k policies is done
by the defender offline.

While the system is under attack, the defender has access
to the state of (1), estimates the control gain of the

attacker Ly in time windows of length Ti, with (10), and
runs the attack identification algorithm (13), (14) starting
with initial temperature A = 0.9 and stopping temperature
A = 0.005. The evolution of the estimated attack gains is
shown in Tables 2, 3, and 4. The identification algorithm
is able to identify both the exact number and the average
values of the original attack gains using only online ob-
servations. Finally, the similarity between the identified
attacks and the pre-computed level-k attack profiles is
shown in Fig. 1. The information of Fig. le reveals the
intelligent levels of the different attackers, i.e., there exists
one attacker (Attacker #3) that operates mainly on level-
0, one (Attacker #2) that operates mainly on level-2, and
SO on.

6. CONCLUSION AND FUTURE WORK

We have addressed the problem of identifying the cognitive
ability level of agents attacking a CPS. Leveraging a level-k
thinking model we have constructed a database of policies
that correspond to specific numbers of strategic thinking

Attack #1 Attack #1
032 Attack #2

pLEX"
plLER)

113435 123125

11343
Attacks Detected Attacks Detected

(a) Identification for A = 0.09.  (b) Identification for A = 0.045.

=
Attack #1
Attack #2
Attack #3
Attack #4

Attack #1
. Attack #2 o7
Attack #3
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pILEX")

5 12345 12345 43 123153

12345 1234 5 234
Attacks Detected Attacks Detected

00 ‘\\\

(c) Identification for A = 0.023.  (d) Identification for A = 0.011.

08 T T T 11
Attack #1
07 Attack #2
Attack #3
o Attack #4
s Attack #5
X
*_‘_? 0.
&
03
0.2
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00
121345 1 5 12345

Attacks Detected

(e) Identification for A = 0.006.

Fig. 1. Evolution of the attack identification process for
decreasing temperature levels A. The similarity values
between the identified attacks and the pre-computed
level-k attack profiles are depicted.

ArTACcK 1 -0.04+ 0.1 0.084 0.1 -0.19401 0.74+ 0.1
ATTACK 2 -0.10+02 0.11+02 -0.72+02 0.95+ 02
ATrTACK 3 -0.35+02 0.38+02 -0.70+02 0.87+02
ATTACK 4  -0.16+03 0.18+03 -0.86+03 1.16+03
ATTACK 5  -0.084 0.2 0.08+02 -1.11+02 1.31+0.2
Table 1. Generated Attacks.
ArTACK 1 -0.11 0.13 -0.53 0.89

Table 2. Identified Attacks for A = 0.09.

steps. Subsequently, we let the CPS gather trajectory
data generated under the effect of different attackers over
specified time intervals. Using a least-squares adaptation
process, the operator of the CPS can derive the attack
inputs which are then employed by an ODA algorithm to
identify the levels of the attackers. The ODA algorithm
is shown to successfully identify the distribution of levels
and the number of strategic steps observed.



ArTACK 1 -0.14 0.16 -0.70 0.92
ATTACK 2 -0.14 0.16 -0.95 1.23
ATTACK 3 -0.04 0.08 -0.19 0.72

Table 3. Identified Attacks for A = 0.023.

AtTACK 1 -0.04 0.08 -0.19 0.75
ArTACcKk 2 -0.09 0.10 -0.68 0.89
AtrTACK 3 -0.35 0.38 -0.69 0.86
AtrTACK 4 -0.13 0.15 -0.78 1.05
AtrTACK 5 -0.11 0.12 -1.05 1.29

Table 4. Identified Attacks for A = 0.006.

Future work will focus on generalizing the problem of
adversarial intelligence identification in general static and
repeated non-zero sum games. Furthermore, we will in-
vestigate methods of constructing mixed policies for a
defender based on the expected behaviors of the attackers
in their environment.
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