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Data Attack Isolation in Power Networks Using
Secure Voltage Magnitude Measurements

Kin Cheong Sou, Henrik Sandberg, and Karl Henrik Johansson

Abstract—In this paper a procedure to detect and isolate data
attacks on power network power flow measurements is proposed.
This method can be used in conjunction with available bad data de-
tection (BDD) methods to isolate multiple bad data which are oth-
erwise difficult to handle. The proposed procedure relies on secure
measurements of bus voltage magnitudes to define a measurement
residual using potentially compromised active and reactive power
flow measurements on transmission lines. The proposed residual
can be calculated in real-time. In addition, the component of the
proposed residual on any particular line depends only locally on
the component of the data attack on the same line. This makes the
proposed residual well-suited for distributed data attack isolation
in large-scale power networks. Furthermore, it can be shown that
the proposed procedure becomes more effective when measure-
ments from multiple time instances can be utilized. A detailed nu-
merical case study on the IEEE 14-bus benchmark system demon-
strates the effectiveness of the proposed procedure.

Index Terms—Fault location, power network state estimation,
security, wide-area protection.

I. INTRODUCTION

T HE PROPER operation of the electric power distribution
and transmission systems is vital for our society. To su-

pervise and control these systems the Supervisory Control And
Data Acquisition (SCADA) systems are indispensable. Through
remote terminal units (RTUs), SCADA systems measure data
such as transmission line power flows, bus power injections,
and part of the bus voltages. These measurements are then sent
to the state estimator to estimate the power network states (e.g.,
the bus voltage phase angles and bus voltage magnitudes). The
estimated states are used for important power network opera-
tions such as optimal power flow (OPF) dispatch and contin-
gency analysis (CA) [1], [2]. Any malfunctioning of these oper-
ations can delay proper reactions in the control center, and lead
to significant social and economical consequences such as the
northeast US blackout of 2003 [3].
The SCADA systems of today are interconnected to office

LANs, and through the LANs they are connected to the Internet.
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Hence, there are more access points to the SCADA systems, and
also more functionalities to tamper with [4]. For example, the
RTUs can be subjected to denial-of-service attacks. The com-
municated data can also be subjected to false data attacks. Fur-
thermore, the SCADA master itself can be attacked. This paper
focuses on the cyber security issues related to false data attacks,
where the communicated measurements are subjected to addi-
tive data attacks. The motive of the data attack varies—the at-
tacker might want to cause damage to the system, or he simply
attacks for economic reasons (e.g., trying to mislead the util-
ities about his electricity usage). False data attacks have been
the subject of considerable literature (e.g., [5]–[12]). Reference
[5] was the first to point out that a coordinated intentional data
attack can be staged without being detected by state estima-
tion bad data detection (BDD) algorithm, which is a standard
part of today’s SCADA/EMS system [1], [2], [13]. References
[5]–[7], [9]–[12] investigate the construction and impact assess-
ment problem for such “unobservable” data attack, especially
the sparse ones requiring relatively few meters to compromise.
Countermeasures against unobservable data attack have been

studied. References [7], [8], [11], [12] consider the scenario
where certain measurements are protected (i.e., cannot be cor-
rupted). Procedures are proposed to plan the protection so that
data attack can always be detected. Reference [9] considers data
attack detection using extra information such as state statistical
distribution. A generalized likelihood ratio test for attack de-
tection is derived in [9]. In this paper, the goal is data attack
isolation. This is one step beyond data attack detection, since
it requires also that the exact location(s) of the compromised
measurement(s) be identified. The proposed data attack isola-
tion algorithm relies on some secure measurements, an assump-
tion also made in [7], [8], [11], [12]. In particular, this paper
assumes that the voltage magnitudes on the end buses of moni-
tored transmission lines are securely measured and received by
the network operator. Under this assumption, it is possible to
define a reactive power measurement residual vector, one entry
for eachmonitored line. Unlike the standard measurement resid-
uals [1], [2], the proposed reactive power measurement residual
vector has the advantage that each entry corresponding to a par-
ticular transmission line is a function of the data attack on the
same line only, making it suitable to detect and isolate the data
attack. In addition, the local nature of the proposed procedure
means that it can be independently carried out in different parts
of the network in a distributed fashion, enabling large-scale im-
plementation. Furthermore, the computation requirement for the
proposed data attack isolation procedure is similar to that of
the standard BDD algorithm. It can be carried out in real-time
without expensive computation. As shall be seen, the idea of the
proposed procedure can be based on any measurement relation-
ship. This means that the proposed procedure can be extended to
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take advantage of emerging equipment such as phasor measure-
ment unit (PMU) [14]. With advanced knowledge of the power
network (i.e., full state information) the attacker can still stage
an unobservable data attack, even if the proposed reactive power
measurement residuals are examined. However, if the network
operator can make use of multiple sets of reactive power mea-
surements taken from different sampling time instances and the
attacker can attack only once, then it becomes much more diffi-
cult to stage unobservable attacks as we will show in the paper.
The proposed procedure can detect and isolate measurement

bad data (e.g., random gross error due to meter failure), as if it
were data attack. Standard techniques for detecting and isolating
bad data include the test and the largest normalized residual
test [1]. These methods utilize the system-wide measurement
information (i.e., all available power flow and injection mea-
surements), and in practice the largest normalized residual test
performs well in isolating some random bad data (especially
single bad data). However, the reliance on system-wide infor-
mation can be a drawback, because the procedure can be sub-
ject to simultaneous bad data or data attacks as demonstrated in
[5]–[7], [9]–[12]. In addition, it is well-known that the largest
normalized residual test cannot isolate multiple interacting con-
forming bad data ([1, Ch. 5]. The proposed procedure, on the
other hand, is opposite to the existing methods regarding the
scale of information use. It utilizes only local transmission line
and bus measurements, and attempts to isolate the bad data
locally. As shall be seen, this strategy can be complementary
to the existing methods in that it can isolate part of the mul-
tiple bad data that are otherwise not detectable by the existing
methods. Among the more recent work, of particular relevance
are methods for isolating multiple interacting conforming bad
data (e.g., [15]–[20]). However, the current work is different.
It aims at an easy-to-implement procedure that isolates part of
the bad data (i.e., only the bad data on transmission lines). For
each transmission line, the online computation requirement for
the proposed scheme includes only the evaluation of a simple
scalar trigonometric function and a comparison of two scalars.
On the other hand, the previous work attempts to isolate gen-
eral bad data withmore expensive centralized computations. For
instance, [15], [16] require solving integer programming prob-
lems and [17], [18], [20] involve solving linear programming
problems. Furthermore, even in the case without measurement
noise (a typical situation considered in BDD analysis), the pre-
vious methods can result in bad data vector estimates which are
not the true ones. Contrary to this, even though the proposed
method is not expected to find all bad data, the ones isolated are
guaranteed to be bad data in the noiseless case.
Outline: Section II describes the model for BDD and states

the key assumptions of this paper. The problem considered is
also described. In Section III the proposed solution is described
in detail. Section IV describes an extension to improve the ef-
fectiveness of the proposed solution. Section V demonstrates
the proposed solution with a case study.

II. MODEL, ASSUMPTION, AND PROBLEM STATEMENT

A. Standard BDD and Its Limitations

Let us briefly describe the basics of BDD. The states of a
power network contain two groups: a) bus voltage phase angles

denoted by a vector and b) bus voltage magnitudes denoted by
a vector . It is assumed that one of the buses is a reference, and
the corresponding voltage phase angle is zero. To estimate the
states two types of power measurements are available: a) active
powermeasurements (flows on transmission lines and injections
at buses) denoted by a vector and b) reactive power measure-
ments (flows on transmission lines and injections at buses) de-
noted by a vector . In general, a linearized model relating the
states and the measurements is sufficient to analyze state estima-
tion and the subsequent BDD. Let denote the state deviation
from the linearization expansion point. The vector of linearized
measurement deviations, denoted , can be expressed in

(1)

where is the Jacobian of the measurement function, and
is a vector of bad data or data attack. From (1), a weighted least
squares problem [1, (5.2)] is solved to obtain the state estimate
as , where is a positive definite
diagonal weighting matrix, whose entries are typically the re-
ciprocals of the variance of the measurement noise. To detect
possible anomaly in the measurements, the following measure-
ment residual vector is formed

(2)

In a typical BDD algorithm, if (vector 2-norm for in-
stance) is too large then an alarm is sounded. This standard
BDD algorithm performs reasonably well when detecting single
random measurement errors. However, it can fail in face of a
malicious coordinated data attack on multiple measurements.
This observation was first reported in [5]. In particular, [5] in-
vestigated additive data attack of the form , for some
vector . Then (2) implies that . Hence, data attack of the
form can pass BDD test, and is referred to as unob-
servable data attack [9], [11] (also known as false data injection
attack [5], stealth attack [6], [21], etc.).

B. Measurement Model With Known Voltage Magnitudes

The unobservable data attack poses a fundamental limitation
to the standard BDD algorithm. To overcome this limitation a
change of the standard BDD practice is proposed in this paper.
As the level of penetration of distributed power generation in-
creases, local control of voltage magnitudes [e.g., automatic
voltage regulator (AVR)] becomes more common [22]–[25].
This makes it difficult to tamper with the voltage magnitude
measurements because they are closely monitored. In addition,
end-to-end authentication [26] can provide measurement com-
munication security so that the communicated measurements
cannot be compromised. In this paper, we follow these trends
and make the assumption that the voltage magnitudes on some
buses are known to the network operator. This paper focuses on
the transmission lines where the voltage magnitudes at the two
end buses are known. In the sequel, let and denote the two
end buses of such a transmission line, and let and denote
their bus voltage magnitudes, respectively. In fact, to simplify
the presentation it is further assumed that

(3)
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This coincides with the well-established DC power flow as-
sumption [1], [2]. Furthermore, in Section III-H it will be seen
that the assumption in (3) is not more restrictive than the one that
both and are known (but not necessarily fixed at unity).
The immediate consequence of (3) is that the phase angle
is the only unknown state related quantity in the expression of
transmission line power flow. The active power flow measure-
ment can be well approximated by a linear function:

(4)

where is the series susceptance of the transmission line and
assumed to be nonzero. is the active power measurement
error. The symbol denotes , and

. The expression in (4) is an approximation of the true
nonlinear relation

(5)

where is the series conductance of the transmission line. In
this paper, the reactive power flow measurement (as a function
of phase angle difference ) is considered to be nonlinear, as
the linearization is inaccurate:

(6)

where is the reactive power measurement error. In (6),
the shunt elements of the transmission line are ignored. The
exact expressions for the power injection measurements are
omitted as they are not relevant to the discussion in this paper.

C. Problem Statement

The measurement errors and typically con-
tain two parts: a) a gross error due to data attack or bad data,
and b) a random measurement noise. The data attack isolation
problem in this paper aims to determine whether or not the data
gross error parts of and are zero in the power
flow measurements in (4) and (6), for each transmission line

where and satisfy (3) (or simply that both and
are known). The required information for the proposed pro-

cedure includes power flow measurements and , the
measurement models (4) and (6) and the assumed knowledge of
voltage magnitudes in (3).

III. DATA ATTACK ISOLATION USING REACTIVE POWER
MEASUREMENT RESIDUAL

A. Reactive Power Measurement Residual

The proposed data attack isolation procedure is similar to the
standard residual-based BDD check, except that the residual is
defined differently. In particular, the following reactive power
measurement residual is proposed:

(7)

is calculated based on known information: active power
measurement , reactive power measurement and line
physical properties and . To motivate the definition in
(7), substitute (4) and (6) into (7) and this yields

(8)

This means that for the proposed residual the measurement error
dependency is local since depends on and
but not on the data attack on any other measurements. This en-
ables data attack isolation. In contrast, for the standard measure-
ment residual in (2) data attack dependency is not local, as
the residual sensitivity matrix is typ-
ically full. also depends on the phase angle difference

, and this dependency will be explained subsequently. The
line properties and are given throughout this paper. To
simplify the notion, in the subsequent discussions the expres-
sions for (7) and (8) will be simplified: The subscripts “ ”
will be dropped and the phase angle difference will be denoted
. That is, (7) simplifies to

(9)

and (8) simplifies to

(10)

Regardless of the value of is zero when both and
are zero. Conversely, is with probability one nonzero if
and are random with continuous probability distributions.
Fig. 1 shows the absolute value of as a function of , for
some typical settings with p.u., p.u., and
taking values of 0, 10, and 20 degrees (about 0, 0.17, 0.35 in
radians, respectively). In Fig. 1 the attack strength is presented
in “equivalent phase angle” , whose unit is degrees (or
radians). The dependency of on is linear and it is not
shown. Fig. 1 demonstrates that is a reasonable indicator of

( is also a good indicator of because of the linear de-
pendency). However, is not perfect. Certain nonzero values
of and can make zero or very small. Nevertheless,
the quality of as a data attack indicator can be improved if
more samples of the line power flow measurements are avail-
able. This will be explained in Section IV.

B. Data Attack Isolation Using Reactive Power Residual

If the purpose of data attack isolation is simply to determine
whether and or not, the data attack alarm
should be sounded for transmission line whenever
. However, in practice both and are corrupted by
noise. Therefore, the data attack alarm should be sounded when-
ever for some appropriately chosen threshold . The
choice of and the associated analysis are studied in sequel. In
general, the active power measurement error is the sum of two
parts:

(11)
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Fig. 1. Reactive power measurement residual in absolute value as a func-
tion of active power measurement error .

where represents gross error due to data attack or bad data,
and represents measurement noise which is assumed to be a
Gaussian random variable with zero mean and known variance
(i.e., ). Similarly, the reactive power measure-
ment error is

(12)

with . Substituting (11) and (12) into (10) im-
plies that is a random variable whose distribution is a non-
linear function of and . Therefore, a statistical ap-
proach should be used to determine the decision threshold for
sounding the alarm. This paper investigates the use of hypoth-
esis testing (e.g., [27]). In the hypothesis testing, the test statis-
tics is the residual . The null hypothesis is that there is no
data attack (i.e., and is between its allow-
able limits). The decision threshold is a function of the sig-
nificance level . is defined to be the maximum probability,
over all possible distributions under the null hypothesis, such
that . This is the worst case false alarm probability.
Once is determined, it is also necessary to compute the prob-
ability that when the null hypothesis is not true. It
is the probability of correctly sounding the alarm when there is
an attack, and this probability is known as the power of the test
associated with . In summary, it is important to calculate the
probability .

C. Bounding the Probability

Because of the trigonometric terms in (10), is
difficult to characterize exactly. However, it can be bounded:
Proposition 3.1: For any given and , define as

(13)

Let be a random variable such that

(14)

Let be a random variable such that

(15)

where “ ” abovemeans the pattens follow indefinitely. Denote
and as the expected value and standard deviation (i.e.,

the square root of variance) of , respectively. Then for all
and , it holds that

(16a)

(16b)

Proof: See Appendix.
Proposition 3.1 provides the lower and upper bounds for the

difficult-to-compute probability (with substi-
tuting in the statement). In fact, is expanded into the sum of
and which respectively correspond to the linear and higher

order terms of a Taylor series expansion of with respect to
. The bounds make use of the probability distribution of

which is Gaussian (because is), but only the first and second
order statistics of are used. Intuitively, some information of the
higher order terms can be ignored because the measurement
noise is typically “small” (i.e., having small variance).

defined in (13) can be regarded as a version of the reactive
power measurement residual which is due to gross error and
. Comparing (10) and (13), is simply when and
contain only their respective gross error components

and .

D. Computing Decision Threshold

The probability upper bound in (16a) can be used to compute
an upper bound for the decision threshold , for any given sig-
nificance level . The following statement provides the
basis.
Proposition 3.2: Let be given. Let be defined

in (14). Then with defined in (13) and
defined as

(17)

Also, let and be the expected value and standard devi-
ation of in (15), respectively. Let denote the inverse
of the cumulative distribution function of the standard Gaussian
distribution. For any given and such that

, if satisfies

(18)

then .
Proof: See Appendix.
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To find the hypothesis testing decision threshold , (18) is
applied to the case of the null hypothesis (i.e.,
but can vary in its range denoted as ). Under the null
hypothesis, is always zero regardless of the value of . To
ensure that a given significance level is observed (i.e., worst
case false alarm probability over all is less than ),

can be chosen, for any such that , as

(19)

where

(20)

was defined for notational convenience. The threshold de-
fined in (19) is a function of and , when the network prop-
erties and are given. In principle, the expression for
in (19) can be minimized with respect to . However, in typ-
ical situations the term in (19) is on the
order of unity. For instance, when and , then

. If in addition

(21)

then the decision threshold can be well approximated as

(22)

where is as large as possible (so that is least conservative),
provided that (21) is still valid. The following statement pro-
vides a simple criterion to check whether (21) is justified, based
on and :
Proposition 3.3: Let be defined by (20) and (17). Then

with , it holds that

(23)

In addition, assume that and . Define
by . Then

(24)

Consequently, the following inequalities hold:

(25)

Proof: See Appendix.
A consequence of Proposition 3.3 is that if and

, then (25) implies that (21) holds for relatively
large . This in turn implies that the decision threshold can
be approximately found by (22). In a typical setting,
p.u., p.u., range between and degrees,

p.u. and p.u. ([2, Ch. 8] exam-
ples). Then both and are less than 0.042, and
according to (25) the ratios and are at least
100.

E. Simplified Analysis of the Probability

Assume that and . This can be the
case, for instance, resulting from the fact that (21) holds and
is defined through (19) or (22). Then applying the probability
bounds in (16a) and (16b) with replacing yields

(26)

It is more convenient to characterize the probability
because . Indeed,

(27)

For a given is a function of and , which in
turn are functions of and . indicates the strength of
the data attack. When (e.g., when and ),

. This corresponds to the
significance level , the false alarm probability under the null
hypothesis. When increases (as and increase),

increases as well. This agrees with the intuition
that a more aggressive data attack (as measured by ) leads
to a higher probability for alarm. On the other hand, when
decreases, the decision becomes more sensitive to and .
This also agrees with the intuition. With more accurate mea-
surements, it becomes less ambiguous to decide whether or not
to sound the alarm.
For a numerical illustration, consider the example situation in

the end of Section III-D. Let (22) be used to determine with
and . Also, let and .

Fig. 2 (blue dashed line) shows the probability
as a function of when and degrees. The
green solid line shows the value of indicating that
correlates with . Another scenario with less significant

noise is also considered ( and ).
The corresponding value is plotted as the blue
solid line with square markers. This indicates a more sensitive
decision rule, demonstrating the effect of . Finally, in Fig. 2
the red circles correspond to empirical values of
(red circles) obtained through Monte Carlo simulation with
samples for each selected value of , for the large case.
Note that in Fig. 2 the theoretical model is close to the empirical
results.
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Fig. 2. The probability for two cases with different intensity of
the measurement noise . Also plotted is the data attack indicator and some
empirical values of based on Monte Carlo simulation.

F. Summary of Data Attack Isolation Procedure

When and , the proposed hypoth-
esis testing based data attack isolation approach for any partic-
ular transmission line satisfying (3) is as follows:
1) Calculate according to (20) and (17).
2) Choose significance level (e.g., ). Use (25) to
determine the largest possible such that (21) holds.

3) Define decision threshold based on (22).
4) Form reactive power measurement residual according
to (9).

5) Hypothesis testing: sound BDD alarm if and only if
.

G. Data Attack Isolation Using Secure PMU Measurements

The data attack isolation procedure presented in this section
is one of the many ways to utilize the power flow equations

(28)

and locally available secure information. Specifically, the pre-
vious discussions assume that . From (28) the
unknown is eliminated and a statistics containing
and is obtained and analyzed. Now suppose is also
available from secure PMU then more options for error statistics
are possible. For example, the assumption that both and
are known can be relaxed. Alternatively, two statistics, each lin-
early depending only on or , can be formed from
(28). This provides a framework to incorporate emerging equip-
ment such as PMU into the legacy measurement system to im-
prove its data attack isolation capability.

H. Discussion on the Voltage Magnitude Assumption in (3)

The assumption in (3) (i.e., ) is not more re-
strictive than the assumption that both and are known.
Indeed, the procedure to eliminate the unknown variable in (28)

can be proceeded as long as and are known—they do not
need to be fixed at unity.
In practice voltage magnitude sensors have finite precision.

Therefore, it is necessary to analyze the reactive power mea-
surement residual when and , where
and represent small but nonzero measurement mismatches.
For simplicity, consider the noiseless case where in
(11) and in (12). Then, with the imperfect and
substituted in (28), the expression for the reactive power mea-
surement residual becomes

(29)

where is defined in (13) and the dominating part of the error
term, denoted , can be expressed in

For normal network operation the phase angle difference is
small (i.e., ). Hence,

(30)

The expression in (29) means that there is a component in
unrelated to the data attack (the data attack is represented in ).
represents the inaccuracy due to imperfect voltage magnitude

information. In addition, to maintain the desired false alarm rate
in face of , the decision threshold defined in Section III-D
should be increased. The amount of increase should be compa-
rable to the value in (30). The increase in the decision threshold
decreases the power (i.e., the probability for data attack detec-
tion) of the proposed procedure. For example, consider the pre-
vious numerical illustration with the additional condition that
and are not precisely known. Let (i.e., 1%
of nominal voltage magnitude). The residuals with imperfect
voltage magnitudes and the increased threshold are illustrated
in Fig. 3. In summary, the imperfect information of voltage
magnitudes results in inaccuracy of and increased decision
threshold , both undesirable from the viewpoint of the pro-
posed bad data isolation scheme. This motivates the assumption
in (3) to have very accurate voltage magnitude measurements.
On the other hand, for attacks with larger magnitudes is typ-
ically larger (see Fig. 3) and the effect due to becomes less
significant. In another situation, if and appear as unknown
but uniform biases, then the effect of the voltage magnitude mis-
match is expected to be insignificant since . Finally, no-
tice that the effect of the mismatch is local since the residual is
based entirely on local measurement information.

IV. IMPROVED DATA ATTACK ISOLATION USING RESIDUALS
AT MULTIPLE TIME INSTANCES

The analysis in Section III-E [particularly (27)] indicates that
if is small, then the probability of alarm

would be small. Therefore, to avoid detection the
attacker couldmanipulate and so that is set to zero (i.e.,
minimizing with respect to ). To counter this, it
is proposed in this paper that the network operator should utilize
reactive power measurement residuals due to independent mea-
surements from multiple time instances. In particular, let be
the number of time instances when the measurements are avail-
able. For time instance index , let be the
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Fig. 3. Reactive power measurement residuals calculated with imperfect
voltage magnitudes (i.e., through (29)). Magenta dashed line is the decision
threshold with perfect voltage magnitudes. Black solid line is the increased
decision threshold taking into account the imperfect voltage magnitudes.

vectors of available active power measurements for the corre-
sponding time instances. Similarly, for the considered transmis-
sion line, let and be the quantities defined in Section III
for time instance index . The improved data attack isolation
scheme basically follows the procedure in Section III-F with the
exception in step 4) and 5): Multiple reactive power measure-
ment residuals are formed

The alarm is sounded if

(31)

As discussed earlier, the attackers’ goal is to make a nontrivial
choice of and (i.e., and and are
reasonably small) to satisfy

(32)

where (defined in (13)) is treated as a function of and
and . The network operator’s hope is that if is large enough
it becomes impossible to satisfy (32) for any reasonable choice
of . This is indeed true, as formalized by the following
statement:
Proposition 4.1: If , then for any

such that for , there does not exist
with such that (32) is satisfied.

Proof: See Appendix. .
To demonstrate the benefit offered by utilizing the measure-

ments from multiple time instances, the residual corresponding
to degrees in Fig. 3 is revisited. Here it is assumed that
in addition to having the measurement for degrees, four
measurements corresponding to 90%, 95%, 105%, and 110%
of this value of are available. Fig. 4 shows the proposed
residual calculated using one measurement and the time-max-
imum residual in (31). While the data attack can still be missed
if is too small in amplitude, the improved time-maximum

Fig. 4. Reactive power measurement residuals calculated with the measure-
ment at one time instance and the maximum residual calculated with measure-
ments at multiple time instances.

residual consistently detects the presence of when it be-
comes larger. In particular, it no longer misses the alarm when

is about 35 degrees, as in the original case.

V. NUMERICAL CASE STUDY

In this section the data attack isolation in the IEEE 14-bus
benchmark system [28] in Fig. 5 is demonstrated. In this ex-
ample, the values of the series susceptance and conductance of
the transmission lines, the generator supplies, bus loads, and bus
voltages (both magnitude and phase angle) are from [28], [29].
However, the line charging and tap ratio of the lines and the
shunt susceptance of the buses are removed. This is to ensure
that the power measurement expressions in (28) and (33) are
sufficiently accurate. Nevertheless, as noted in Section III-G,
the idea of the proposed method can be applied to handle the
case where the power flow measurements are not truly repre-
sented by (28) or (33).
In this example, the active and reactive power injections at

the following seven buses are measured: 1, 4, 5, 7, 8, 10, and
13. In addition, the active and reactive power flows are mea-
sured on the following thirteen lines: (1,2), (3,2), (2,4), (2,5),
(7,4), (9,4), (5,6), (6,11), (6,12), (6,13), (11,10), (12,13), and
(14,13). For instance, (3,2) corresponds to the power flow mea-
surements from bus 3 to bus 2. The meters of the measurement
system are indicated by black squares in Fig. 5 and the system
is verified to be observable. In total there are 40 measurements.
The non-corrupted measurements are computed using the fol-
lowing nonlinear expressions for power flows [1], [2]:

(33)

Each measurement is corrupted by independent additive
Gaussian noise whose variance is 0.1% of the absolute value of
the corresponding non-corrupted measurement.
The data attack is unobservable according to [5], [9], [11],

[21]. The attacker has the information of the Jacobian matrix
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Fig. 5. IEEE 14-bus benchmark system. The meters are indicated by black
squares. The figure is adapted from [28].

of the measurement function, evaluated at the operating point
provided by [28]. The attacker uses the algorithm in [10], [30]
to compute the unobservable data attack on the measurements.
The attacker typically needs to attack, in addition to the target
measurement, several other measurements which are required
to make the attack unobservable. For example, the attacker aims
to compromise the active power injection measurement at bus
1, which is referred to as the target measurement in the attack.
However, to ensure that the attack is unobservable, the attacker
needs to compromise additionally the following measurements:
the reactive power injection at bus 1, the active power injection
at bus 5 and the active and reactive power flows on line (1,2).
In total, the data attack compromises five measurements, and it
can be described by the vector

(34)

where, for our example, is the normalized attack vector
having forty entries with five being nonzero corresponding
to the five compromised measurements. is normalized
in the sense that the entry corresponding to the target mea-
surement is unity (in the example, the target measurement
is the active power injection at bus 1). is the absolute
value of the target measurement. can take the following
values: % % % % , indicating the rela-
tive strength of the data attack.
In addition to the mentioned example attack scenarios, in this

section we consider other attack scenarios including all target
measurement/attack strength pairs (in total 40 4 pairs). For
each attack scenario, the network operator first estimates the
states by solving a nonlinear weighted least squares problem [1,
(2.10)] using the Gauss-Newton method with Armijo step-size
rule [31]. Upon convergence of the Gauss-Newton method, the
network operator computes the vector of measurement residuals
for all 40 active and reactive injection and line power flow

measurements. These residuals are used to calculate the normal-
ized residuals [1], [2] for each measurement. Measurement is
declared attacked if

(35)

where is the standard deviation of the th entry of and
the threshold is chosen so that the false alarm probability
is no more than 0.5%. It turns out that .
Next, the proposed data attack isolation procedure described

in Section III-F is applied to detect whether each of the 13
measured transmission lines is compromised or not (though the
procedure would not distinguish between whether the compro-
mised measurement is active power or reactive power or both).
For eachmeasured transmission line, the decision threshold
(for line , for example) is found with the relevant param-
eters being

and . These thresholds are further increased
by an amount specified in (30) for to ac-
count for the imperfect knowledge of the voltage magnitudes.
For instance, the threshold for line (1,2) is about 0.598. This
corresponds to step 3) in the procedure in Section III-F. Then,
the residual for each measured transmission line is com-
puted with two modifications to the procedure in Section III-F:
a) the measurement expressions in (28) are used, and b) the
voltage magnitudes and are perturbed from their nom-
inal values (perturbation is random and uniformly distributed
up to %). The modifications are introduced to simulate the
effect of the lack of the assumption in (3). That is, instead of (9)
the following expression is used to form the residual for
line :

where and are perturbed from nominal values. Com-
puting the residuals for all transmission lines finishes
step 4) in the procedure in Section III-F. After that, the criterion

is checked to determine whether or not each of
the 13 measured transmission lines is compromised.
The above descriptions correspond to one sample of a random

experiment, since measurement noise is random. In total 1000
samples of the above random experiment are obtained in this
case study, for each attack scenario with a particular pair of
target measurement and attack strength. For each data attack
scenario, the number of attacked transmission lines varies be-
tween 0 to 13 (in total there are 13 lines measured in the mea-
surement system). Also, in some of the 1000 random samples
the Gauss-Newton algorithm for state estimation fails to con-
verge. For each convergent sample in each data attack scenario,
a transmission line is declared attacked by the normalized
residual test if

(36)

where and are the measurement indices of the active
and reactive power flows on transmission line , respectively.
The numbers of misses (i.e., the transmission lines which are at-
tacked but not declared attacked) and the number of false alarms
(i.e., the transmission lines which are not attacked but declared
attacked) can be counted. Note that in this part of the study we
only consider the miss and false alarm for line flows but not for
bus injections because the proposed method does not handle the
injection case. We define the following relative average number
of miss and relative average number of false alarm (FA in short),
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Fig. 6. Relative average number of miss for the normalized residual test and
the proposed reactive power measurement residual test. The attack strength is

%. Blue dashed lines indicate the data attack scenarios where the
normalized residual test performs worse, whereas red solid lines indicate the
contrary.

Fig. 7. Relative average number of false alarm for the normalized residual test
and the proposed reactive power measurement residual test. The attack strength
is %. The proposed method is uniformly no worse than the normal-
ized residual test.

for a data attack scenario with a particular pair of target and at-
tack strength:

(37)

Similarly, we can define the corresponding relative average
miss and false alarm for the proposed test based on reactive
power measurement residuals. In this case, instead of (36)
transmission line is declared attacked if ,
where is the alarm decision threshold for line . Fig. 6
shows the relative average number of miss for the normalized
residual test and the proposed test, for all attack scenarios

Fig. 8. Relative average number of miss for the normalized residual test and
the proposed reactive power measurement residual test. The attack strength is

%. The negative crosses indicate the data attack scenarios where all
1000 random samples fail to converge.

Fig. 9. Relative average number of false alarm for the normalized residual test
and the proposed reactive power measurement residual test. The attack strength
is %. The negative crosses indicate the data attack scenarios where all
1000 random samples fail to converge.

with different attack targets and the data attack strength being
%. Fig. 7 shows the corresponding relative average

number of false alarm. It can be seen that even though the
proposed method has worse miss performance than the nor-
malized residual test in some scenarios (i.e., the cases with
red solid lines in Fig. 6), it detects the attacks in certain cases
where the normalized residual test fails (i.e., the cases with
blue dashed lines in Fig. 6). In addition, Fig. 7 indicates that
the proposed method does not incur any false alarm while
this can be a serious problem for the normalized residual test.
These detection and false alarm properties, coupled with the
computation efficiency, make the proposed data attack isolation
method a promising complement to standard methods such as
the normalized residual test.
For the data attack scenario with attack strength being
%, the corresponding error indicators are shown in Figs. 8

and 9. For the scenarios with % and %, the
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Fig. 10. Relative average number of miss for the normalized residual test and
the proposed reactive power measurement residual test. The attack strength is

%.

Fig. 11. Relative average number of false alarm for the normalized residual test
and the proposed reactive power measurement residual test. The attack strength
is %.

results are shown in Figs. 10–13. These figures again demon-
strate that the proposed method has much better false alarm per-
formance while the miss performance is complementary to that
of the normalized residual test.

A. Detailed Study for the Case Targeting Active Power
Injection at Bus 1

For the rest of the case study the scenarios with target mea-
surement being the active power injection at bus 1 are focused
for more detailed examination. These scenarios correspond to
the cases related to measurement 1 in Figs. 6–13. These attack
scenarios involve five compromised measurements: the active
power injection at bus 1 (i.e., the target measurement), the re-
active power injection at bus 1, the active power injection at
bus 5 and the active and reactive power flows on line (1,2). The
range of attack strength is slightly larger in this part, with

% % % % % % % % .

Fig. 12. Relative average number of miss for the normalized residual test and
the proposed reactive power measurement residual test. The attack strength is

%. The negative crosses indicate the data attack scenarios where all
1000 random samples fail to converge.

Fig. 13. Relative average number of false alarm for the normalized residual test
and the proposed reactive power measurement residual test. The attack strength
is %. The negative crosses indicate the data attack scenarios where all
1000 random samples fail to converge.

Data attack detection (i.e., detecting the presence of any at-
tack) is first considered. Standard methods include the measure-
ment residual based test and the largest normalized residual
test [1], [2]. In the test, an alarm is sounded if and only if

(38)

where is the covariance matrix of the measurement noise, and
is chosen so that the probability of false alarm when there

is no data attack is no more than 0.5%. The actual value of
is about 28.3. In the largest normalized residual test, an alarm is
sounded if and only if

(39)

where is chosen, again, so that the false alarm probability
is no more than 0.5%. The actual value of is about 2.58.
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Fig. 14. The ensemble average of the weighted sum of measurement resid-
uals in (38) for the test. On average only when % is the
weighted sum large enough to warrant the BDD alarm.

Fig. 15. The ensemble average of the largest normalized residuals in (39) for
the largest normalized residual test. On average only when % is the
residual large enough to warrant the BDD alarm.

For the test and the largest normalized residual test, the de-
tection considers all possible attacks (i.e., both line power flows
and bus injections). On the other hand, to detect the attacks
on the lines the proposed reactive power measurement resid-
uals can be used. Fig. 14 shows the ensemble average (over
1000 samples) of the weighted sum of the measurement resid-
uals in (38). Fig. 15 shows the ensemble average of the
largest normalized residuals in (39). Fig. 16 shows the ensemble
average of the proposed reactive power measurement residuals
for all 13 measured transmission lines. Figs. 14 and 15 indicate
that the standard methods such as the test and the largest
normalized residual test are not sufficient to detect the data at-
tack. On the contrary, the proposed reactive power measurement
residual test can complement the standard methods to detect the
data attack much earlier. In addition, Fig. 16 verifies that the
proposed procedure correctly isolates the attacked transmission
line [i.e., line (1,2)]. The residuals for the rest of the lines remain
small, and they are below the smallest threshold for the alarm.
Next, data attack isolation is considered. For this the com-

parison is between the normalized residual test as in (35) (can
be used for both line and bus measurements) and the proposed

Fig. 16. The ensemble average of the proposed reactive power measurement
residuals in absolute value for all transmission lines. The residuals associated
with line (1,2) increase rapidly in absolute value with the attack strength .
On average the data attack is detected when %. On the other hand,
the residuals associated with the rest of the lines do not increase significantly to
lead to any false alarm.

residual test (for lines only). To demonstrate the attack isolation
capability of the normalized residuals the following empirical
relative frequencies are defined: a random experiment sample
belongs to “miss-all” event if and only if

(40)

where is the index set of all measurements which are at-
tacked. This event means that the normalized residual test fails
to detect any attack on the attacked measurements. The relative
frequency (over all 1000 samples) of samples in the miss-all
event is denoted . In addition, the random sample belongs
to “miss-partial” event if and only if

(41)

This event means that the normalized residual test fails to detect
some attacks on the attacked measurements. The relative fre-
quency of samples in the miss-partial event is denoted .
Further, the random sample belongs to “false-alarm” event if
and only if

(42)

This event means that the normalized residual test wrongly
declares some measurements to be attacked when they are in
fact not attacked. The relative frequency of samples in the
false-alarm event is denoted . Table I shows these empir-
ical relative frequencies. In order to compare with the proposed
data attack isolation method which only works for line power
flow measurements, in Table II the above empirical relative
frequencies are modified where the index set in (40)
and (41) are replaced by where is a subset of
containing only the indices of the transmission lines whose
active or reactive power flows are measured. In addition, in
(42) the index chooses from the complement of , relative
to the index set of all line measurements. To compare against
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Fig. 17. Relative frequency of attack declaration for different lines. The detec-
tion is based on the reactive power measurement residuals. %. Red
bars correspond to the lines which are indeed attacked. The other lines are not
attacked and are never mistakenly declared attacked by the proposed data attack
isolation scheme.

Fig. 18. Relative frequency of attack declaration for different measurements.
The detection is based on the normalized residuals. %. Red and
dashed bars correspond to the measurements which are indeed attacked (1, 3,
8, 21, 28). Blue bars correspond to the measurements which are in fact not at-
tacked. In addition to failing to identify the attacked measurements, the normal-
ized residual test leads to significant false alarms.

the proposed method, the corresponding empirical error prob-
abilities are shown in Table III. The comparison by Tables II
and III further suggests that the proposed method exhibits
much better attack isolation capabilities especially for attack
with significant strength (e.g., % %). To examine
more closely a specific scenario of significant attack strength
(i.e., %), Fig. 17 shows the relative frequency out of
the 1000 samples, for each measured line (in total 13 lines), of
the sample instances where the reactive power measurement
residual is larger than its respective threshold in absolute value
(i.e., declared attacked). On the contrary, Fig. 18 shows the
corresponding relative frequencies of attack declaration for
all 40 measurements, for the normalized residual test. Fig. 18
indicates that even if the BDD alarm is sounded, the normalized

TABLE I
EMPIRICAL ERROR RELATIVE FREQUENCIES CHARACTERIZING THE DATA
ATTACK ISOLATION CAPABILITY OF THE NORMALIZED RESIDUAL TEST. ALL
ATTACKED MEASUREMENTS (INJECTION AND LINE FLOW) ARE INCLUDED

IN THE CALCULATION

TABLE II
EMPIRICAL ERROR RELATIVE FREQUENCIES CHARACTERIZING THE DATA

ATTACK ISOLATION CAPABILITY OF THE NORMALIZED RESIDUAL TEST. ONLY
MEASURED TRANSMISSION LINES ARE INCLUDED IN THE CALCULATION

TABLE III
EMPIRICAL ERROR RELATIVE FREQUENCIES CHARACTERIZING THE DATA
ATTACK ISOLATION CAPABILITY OF THE PROPOSED REACTIVE POWER
MEASUREMENT RESIDUAL TEST. ONLY MEASURED TRANSMISSION LINES

ARE INCLUDED IN THE CALCULATION

Fig. 19. Absolute value of the reactive power residual on line (1,2) in the noise-
less setup for a larger range of .

residual information is not helpful in isolating the measure-
ments which are under attack. This explains the relatively large
miss and false alarm relative frequencies displayed in the first
column of Table I.
While in this example the attack strength is limited to
%, Fig. 19 shows the reactive power measurement

residual on line (1,2) for up to % in the noiseless setup.
The result indicates that with an appropriate nonzero value of
(about 700%) the data attack might remain undetected even

if the proposed detection procedure is employed. Nevertheless,
it should be emphasized that such large values of might not
be realizable, as the Gauss-Newton iterations might not even
converge.
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B. Summary of the Numerical Case Study and Discussions

From the case study it can be concluded that the proposed
reactive power measurement residuals can be used to comple-
ment the detection and isolation of data attack or bad data as
indicated by Figs. 6, 8, 10, and 12. The proposed method does
not detect the presence of all attacks on the lines because of the
limited information available for the distributed localized test.
As indicated by (8), the proposed residual is affected jointly by
the physical properties of the line, the actual phase angle dif-
ference, and the strength of the active and reactive power at-
tack/bad data. Nevertheless, the case study suggests that the pro-
posed method has excellent false alarm performance as it in-
curs no false alarm in Figs. 7, 9, 11, and 13. Combined with the
fact that the proposed residuals can be computed efficiently in
a distributed fashion, this makes the proposed data attack iso-
lation method an attractive complement to standard data attack
detection/BDD methods such as the test and the normalized
residual test.
The numerical case study also suggests that improving the

miss performance of the proposed residual test is a worthwhile
research effort. Improving the quality of the estimate phase
angle difference can be a step forwards this direction. For
instance, instead of utilizing the linearized active power mea-
surement equation in (28), the following nonlinear one can be
utilized [cf. (33)]:

(43)

In particular, if , then it is possible to form

as a corrupted estimate of the phase angle difference . This
estimate can be more accurate than the linear one studied in this
paper, and it can be used in (43) to form measurement residuals
for data attack isolation. Its analysis can be a potential research
topic of great interest.

VI. CONCLUSION

It is well-known that secure measurements can help con-
tribute to the defense against data attack by enabling the network
operator to detect “unobservable” type attack. By combining
the knowledge of secure measurements and power system
specific measurement model, an unconventional measurement
residual can be obtained to achieve data attack isolation in
addition to the standard BDD. Also, if utilized appropriately
the increased amount of available information (a main feature
of smart grid) can indeed lead to additional benefits in data
security. This is demonstrated by using measurements from
multiple time instances.

APPENDIX A

A. Proof of Proposition 3.1

Substituting the expressions and
into (10) yields

Expanding the terms as
and

and applying
the definitions of and in (13), (14) and (15) yields

. Therefore,

(44)

This shows (6a). In (44), the first inequality is true since
. The second one

is true since is in the
union of and

. The third one is a consequence of the
Chebyshev’s inequality. Similarly, for (16b):

B. Proof of Proposition 3.2

The definition of in (14) implies that .
(16a) states that if satisfies

(45)

then . The inequality in (45) is implied by

(46)

Since , (46) is the same as

where is the cumulative distribution function of a standard
Gaussian random variable. Rearranging terms and inverting
in above yields (18).
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C. Proof of Proposition 3.3

Equation (23) is a restatement of (20) and (17).
For the first statement in (24), denote

. Since is a zero mean
Gaussian random variable, for all posi-
tive integer . Therefore,

In above, the symbol denotes the product
. Hence, for all and

the inequality holds. The convergence of the series follows from
the assumption that . Finally, in the last equality the
fact that is used.
For the second statement in (24), denote

. Note that both and satisfy
and . Then

(47)

The third and fourth inequalities in (47) hold because of the
following facts: For all ,

Finally, (25) is a direct consequence of (23) and (24).

D. Proof of Proposition 4.1

For given define the function as

(48)

The statement of the proposition is equivalent to: If ,
then for any with , there does not
exist such that for
that satisfies .
Now the proof begins: If then , since

and implies . It is claimed that
implies that and in (48) cannot both be zero. Under the
claim, with .
For such statement can be verified by inspection.
Finally, to see the claim note that if and , then

(49)

This implies that . Since
is either 0 or (as ). The choice of
is not allowed, since otherwise the assumption

that and would imply that and .
Therefore, and imply that , and its
contrapositive is the claim above.
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