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a b s t r a c t 

The set-based estimation has gained a lot of attention due to its ability to guarantee state enclosures for 

safety-critical systems. However, collecting measurements from distributed sensors often requires out- 

sourcing the set-based operations to an aggregator node, raising many privacy concerns. To address this 

problem, we present set-based estimation protocols using partially homomorphic encryption that pre- 

serve the privacy of the measurements and sets bounding the estimates. We consider a linear discrete- 

time dynamical system with bounded modeling and measurement uncertainties. Sets are represented by 

zonotopes and constrained zonotopes as they can compactly represent high-dimensional sets and are 

closed under linear maps and Minkowski addition. By selectively encrypting parameters of the set repre- 

sentations, we establish the notion of encrypted sets and intersect sets in the encrypted domain, which 

enables guaranteed state estimation while ensuring privacy. In particular, we show that our protocols 

achieve computational privacy using the cryptographic notion of computational indistinguishability. We 

demonstrate the efficiency of our approach by localizing a real mobile quadcopter using ultra-wideband 

wireless devices. 

© 2023 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

State estimation from noisy measurements is of great impor- 

ance in many areas, such as navigation, communication, and 

emote sensing. Many of these applications are based on prior 

nowledge of noise distributions. However, assumed noise distri- 

utions are not always sufficiently accurate or even unknown. Fur- 

hermore, safety-critical applications require guaranteed state in- 

lusion in a bounded set to provably avoid unsafe sets. This moti- 

ates the need for set-based estimation, which estimates the set of 

ll possible system states when input disturbances and observation 

rrors are unknown but belong to given bounded sets [12] . Set- 

ased estimators are used in many applications, such as underwa- 

er robotics [34] , fault detection [19,46] , leader-follower problems 

27] , and localization [16] . We refer the reader to [9] and refer-
nces therein for more related work on set-based estimation. 
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Some state estimation algorithms require measurements ma- 

e by a set of spatially distributed sensors. For instance, cellu- 

ar signals from distributed mobile devices can be measured by 

ase stations to estimate the targeted device location [4] . Situ- 

tional awareness in safe autonomous driving requires collecting 

easurements from distributed vehicles and infrastructure nodes 

43] . These computations require cloud-based services that aggre- 

ate and process gathered information to provide estimates with 

uarantees. However, this often requires that clients disclose sen- 

itive information to the cloud to receive appropriate control deci- 

ions. This causes security vulnerabilities [18,31] , especially when 

ensors do not belong to the same trust zone in which members 

f the same organization trust each other. For this reason, we focus 

n set-based estimation in the cloud with estimation and privacy 

uarantees. 

.1. Related work 

There exist three types of set-based observers: strip-based ob- 

ervers, set-propagation observers, and interval observers [9] . Since 

e will use strip-based observers in this work, we focus our liter- 

ture review on this observer type and refer the interested reader 
rved. 
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o [9] for the other observer types. Strip-based observers intersect 

he propagated set of states with the set of states consistent with 

he next measurement to obtain the next set of possible states. The 

et representation is essential to obtain a good computational com- 

lexity ratio and the estimated sets’ achieved tightness. Ellipsoids 

re explored in [12 , 41 , 51] , where the computations are generally

fficient but not exact for the Minkowski sums. A new geomet- 

ic method based on the Minkowski sum is proposed in [51] to 

roduce a distributed ellipsoidal estimation. Zonotopes [38] are 

 special class of polytopes for which one can efficiently com- 

ute linear maps and Minkowski sums – both are important op- 

rations for set-based observers. Set-membership using zonotopes 

s explored in [26] . A novel zonotope intersection method and a 

ew distributed set-based estimator were proposed in [2] . A dis- 

ributed zonotopic and Gaussian Kalman filter is proposed in [21] , 

here each network node implements a local state estimator using 

onotopes and Gaussian noise mergers. Polytopes [13] and ortho- 

opes [11,32] were explored as well. 

Related work on set-based estimation does not provide privacy 

uarantees. Homomorphic encryption allows processing over en- 

rypted data and has been used as a countermeasure for cloud- 

ide information leakage, enabling useful tasks to be accomplished 

hile keeping the data confidential from untrusted parties. Over 

he past few years, a significant effort in the form of a homo- 

orphic library [28] has been made to make fully homomorphic 

ncryption practical. Homomorphic encryption has been used for 

omputationally expensive tasks over genome data [39] and clas- 

ification over encrypted data [15] . However, fully homomorphic 

ncryption remains impractical for real-time estimation [1 , Sec- 

ion 2.10.1]. That said, partial homomorphic encryption methods 

re more promising and have been used for encrypted control 

6,37] , image processing [53] , estimation [4,44] , deep learning [10] , 

ptimization [50] , and ride-sharing [25] . 

A related technique to our work is differential privacy [33,52] , 

hich relies on the addition of structured noise to the data before 

haring it, which preserves privacy. Variants of this scheme, such 

s local differential privacy [22,23] and geo-indistinguishability 

14] , have been designed to ensure differential privacy for location 

ata. However, the privacy guarantees of these methods are often 

chieved at the expense of accuracy [17] . In other words, the added 

tructured noise results in a loss of estimation accuracy, making it 

nsuitable for use in safety-critical systems. To overcome the ad- 

ition of excessive noise, a combination of homomorphic encryp- 

ion with distributed noise has been proposed in [49] , where each 

stimator generated its share of the aggregated noise required for 

ifferential privacy [24] and sent encrypted and obfuscated data to 

he aggregator. 

.2. Contributions 

To the best of our knowledge, for the first time, we leverage 

 partially homomorphic cryptosystem to calculate encrypted sets 

hat enclose states based on encrypted measurements and esti- 

ates from sensors or sensor groups. This work introduces two 

rotocols providing state inclusion and privacy guarantees. In par- 

icular, we show that our protocols achieve computational privacy 

sing computational indistinguishability against different coalitions 

f participated entities. We leverage state-of-art state estimation 

echniques in combination with homomorphic encryption to pro- 

ide privacy-preserving set-based estimation protocols with secu- 

ity guarantees. Our entire code and data are available online. 1 

More specifically, we make the following contributions: 
1 https://github.com/aalanwar/Encrypted- set- based- estimation . a

2 
• We encrypt a set of states using a partially homomorphic 

cryptosystem with different levels of privacy based on se- 

lective encryption and geometric features of the chosen set 

representation. 

• We present two set-based estimation protocols which pre- 

serve privacy between sensor and sensor groups. 

• We prove security guarantees of the two protocols against 

different coalitions, using formal cryptographic definitions 

of computational indistinguishability for protecting the es- 

timated set position ( Theorems 1 and 3 ) and protecting the 

estimated set position and shape ( Theorems 2 and 4 ). 

.3. Outline 

The paper is organized as follows: In Section 2 , we provide the 

ecessary preliminaries. We formulate the problem and set our 

rivacy goals in Section 3 . After proposing the notion of encrypted 

ets in Section 4 , we introduce protocols to privately bound the 

tate among distributed sensors in Section 5 and then among sen- 

or groups in Section 6 . Finally, we evaluate the proposed protocols 

n Section 7 and conclude this paper with Section 8 . 

.4. Notation 

Vectors and scalars are denoted by lowercase letters, matrices 

re denoted by uppercase letters, the real and natural numbers 

re denoted by R and N . We denote the set of positive real and

ositive natural numbers by R 

+ and N 

+ , respectively, and all other 

ontinuous sets are denoted by calligraphic letters. For a given ma- 

rix M ∈ R 

o×k , its Frobenius norm is given by ‖ M ‖ F = 

√ 

tr 
(
M 

T M 

)
. 

or two sets M 1 ⊆ R 

q , and M 2 ⊆ R 

q , the Minkowski sum and the

ntersection are denoted by M 1 �M 2 and M 1 ∩ M 2 , respectively. 

or a set M ⊆ R 

q , its linear map is denoted by L M , where L ∈ R 

v ×q .

or a given matrix M (can also be a vector or scalar), we denote 

ith � M� the encrypted value of M. For given vectors a 1 and a 2 of

ame dimension, we denote with � a 1 � � � a 2 � and � a 1 � � � a 2 � the

um and difference over the encrypted values of a 1 and a 2 , re- 

pectively. For two real scalars a and b, we denote with a � � b�

he multiplication of the encrypted scalar b with the unencrypted 

calar a . We denote probability of an event E by Pr [ E] . The cardi-

ality of a set M is denoted by | M | . For a given vector x ∈ R 

p , the

 th component of x is denoted by x [ i ] ∈ R . We denote the reduce

perator returning an over-approximative zonotope with q genera- 

ors by ↓ q . 

. Preliminaries 

In this section, we review the required preliminaries. 

.1. Set representations and set-based estimation 

We define the following set representations: 

efinition 1 (Zonotope) [38] . An n -dimensional zonotope Z is de- 

ned as 

 = 

{ 

x ∈ R 

n 

∣∣∣x = c + Gβ, ‖ 

β‖ ∞ 

≤ 1 

} 

, (1) 

here c ∈ R 

n is the center, G ∈ R 

n ×e is the generator matrix of the

onotope, and β ∈ R 

e is the vector of zonotope factors. For later 

se, we represent the zonotope by Z = 〈 c, G 〉 . Note that G consists

f e generators g (i ) ∈ R 

n , i = 1 , . . . , e , such that G = [ g (1) , . . . , g (e ) ] . 

This definition can be interpreted as the Minkowski sum of 

 finite set of line segments l i = 

{ 

g (i ) βi ∈ R 

n 

∣∣∣| βi | ≤ 1 

} 

, where 

https://github.com/aalanwar/Encrypted-set-based-estimation
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Fig. 1. Construction of a zonotope. 
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3

s

 ∈ { 1 , . . . , e } (see Fig. 1 ). For a zonotope Z = 〈 c, G 〉 , we de-

ote its F -radius as ‖ G ‖ F . Given two zonotopes Z 1 = 〈 c 1 , G 1 〉
nd Z 2 = 〈 c 2 , G 2 〉 , the Minkowski sum is computed as Z 1 � Z 2 =
 c 1 + c 2 , [ G 1 , G 2 ] 〉 , whereas the linear map is computed as L Z 1 =
 Lc 1 , LG 1 〉 [7] . 

efinition 2 (Constrained Zonotope) [48 , Prop. 1] . An n - 

imensional constrained zonotope is defined as 

 = 

{ 

x ∈ R 

n 

∣∣∣x = c + Gβ, Aβ = b, ‖ 

β‖ ∞ 

≤ 1 

} 

, (2) 

here c ∈ R 

n is the center, G ∈ R 

n ×n g is the generator matrix, β ∈
 

n g , and A ∈ R 

n c ×n g and b ∈ R 

n c constitute the constraints. In short,

e write C = 〈 c, G, A, b〉 . 
.2. Paillier homomorphic cryptosystem and privacy eefinitions 

A homomorphic cryptosystem supports computation over en- 

rypted data. Our protocols heavily rely on Paillier additive ho- 

omorphic cryptosystems [45] , which is a probabilistic public key 

ryptography scheme. The Paillier cryptosystem supports 

ecrypt sk (� a � � � b� ) = a + b, (3) 

ecrypt sk (a � � b� ) = a · b, (4) 

here sk is the private key associated with the public key pk used 

or encryption. We will omit the symbol � when the type of multi- 

lication can be inferred from the context. Our proposed protocols 

an utilize different homomorphic encryption schemes instead of 

he Paillier cryptosystem as long as it supports the same function- 

lity. 

Homomorphic encryption does not support float numbers. The 

aive solution is multiplying the float number by 10 f where f is 

he number of floating digits [5,35,42] . However, the recursive ex- 

cution of the estimator or the controller generally requires recur- 

ive multiplication with fractional numbers. This approach requires 

runcating the significance of the state from time to time to avoid 

verflow. Such truncation might lead to computation errors and 

ast overflow. We can not use a solution that introduces compu- 

ation errors because we provide safety and set containment guar- 

ntees. To overcome this limitation, we represent float numbers by 

 positive integer exponent and an integer mantissa, as we did in 

ur previous work [53] . This representation provides exact compu- 

ations. However, it still suffers from overflows after some itera- 

ions. 

We define { 0 , 1 } � as a sequence of bits of unspecified length. An

nsemble X = { X o } o∈ N is a sequence of random variables X o ranging

ver strings of bits of polynomial length in o. We need the follow- 

ng definitions in our privacy proofs. 

efinition 3 (Computationally Indistinguishable) [30 , p.105] . The 

nsembles X = { X o } o∈ N and Y = { Y o } o∈ N are computationally indis-

inguishable, denoted X 
c ≡ Y , if for every probabilistic polynomial- 
3 
ime algorithm D, every positive polynomial p : N 

+ → R 

+ , and all

ufficiently large o, it holds that 

Pr [ D (X o ) = 1] − Pr [ D (Y o ) = 1] 

∣∣∣ < 

1 

p(o) 
. (5)

In other words, given an algorithm D , we consider the proba- 

ility that D outputs 1 given an ensemble taken from the two ran- 

om variables X o and Y o as input. Then, we say X 
c ≡ Y if no efficient

lgorithm can tell the difference between them except with small 

robability 1 
p(o) 

. 

efinition 4 (Execution View) . Let f : R 

o → R 

o be a deterministic

olynomial-time function and � a multi-party protocol comput- 

ng f ( ̄x ) , where x̄ ∈ R 

o . The view of the i th party during an ex-

cution of � on x̄ , denoted by V �
i 

, is (x i , coins, M i ) , where coins

epresents the outcome of the i th party’s internal coin toss, and 

 i represents the set of messages it has received. For coalition 

 = { i 1 , . . . , i t } ⊆ { 1 , . . . , o} of parties, the view V �I ( ̄x ) of the coali-

ion during an execution of � is defined as 

 

�
I ( ̄x ) = 

(
I, V 

�
i 1 

( ̄x ) , . . . , V 

�
i t 

( ̄x ) 
)
. (6)

This means that the view of the party is all its accessible infor- 

ation and the view V �
I 

( ̄x ) of the coalition I is the union of all the

iews of coalition parties. 

efinition 5 (Multi-party Privacy w.r.t. Semi-honest Behavior) . Let 

f : R 

o → R 

o be a deterministic polynomial-time function and � a 

ulti-party protocol computing f ( ̄x ) , where x̄ ∈ R 

o . For a coalition 

 = { i 1 , . . . , i t } ⊆ { 1 , . . . , o} of parties, we have x̄ I = (x i 1 , . . . , x i t ) and

f I ( ̄x ) = 

(
f i 1 ( ̄x ) , . . . , f i t ( ̄x ) 

)
. We say that � computes f ( ̄x ) privately

f 

• there exists a probabilistic polynomial time algorithm, de- 

noted by simulator S, such that for every I ⊆ { 1 , . . . , o} [30 ,

p.696] 

S 
(
x̄ I , f I ( ̄x ) 

) c ≡ V 

�
I ( ̄x ) , (7) 

• the input and output of the coalition cannot be used to infer 

extra private information. 

Put differently, a protocol privately computes f ( ̄x ) if whatever 

an be obtained from a party’s view of a (semi-honest) execution 

ould be essentially obtained from the input and output available 

o that party [30 , p. 620]. Also, the inputs and outputs of the coali-

ion cannot be used to infer extra private information. Thus, our 

rivacy proofs will always consist of the two parts of Definition 5 . 

. Problem setup 

Next, let us introduce some entities for our problem setups vi- 

ualized in Figs. 2 and 3 . 



A. Alanwar, V. Gaßmann, X. He et al. European Journal of Control 71 (2023) 100786 

Fig. 2. Diagram for the considered setup in Problem 1 . 

Fig. 3. Diagram for the considered setup in Problem 2 . 
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• Plant T : A passive entity whose set of possible states needs 

to be estimated. We consider discrete-time linear systems 

with bounded noise, specifically 

x k +1 = F x k + n k 

y i,k = H i,k x k + v i,k , 
(8) 

where x k ∈ R 

n is the state at time k ∈ N , y i,k ∈ R 

p denotes

the measurement observed at sensor i , F is the process 

matrix, H i,k stands for the measurement matrix, n k ∈ Q k is 

the process noise bounded by process noise zonotope Q k = 

〈 0 , Q k 〉 , and v i,k ∈ R k is the measurement noise bounded by

measurement noise zonotope R k = 〈 0 , diag ([ r 1 ,k , . . . , r m,k ]) 〉 .
All vectors and matrices are real-valued and have proper di- 

mensions. 

• Sensor S i : An Entity with index i that provides private mea- 

surements. Its owner does not trust other active entities. 

• Aggregator A (or Cloud): An untrusted party which has rea- 

sonable computational power. It executes the proposed pri- 

vate set-based estimation protocols over encrypted sensor 

information. 

• Query Node Q : An untrusted party that has a known public 

key pk and a hidden private key sk . The query node is the 

only node that is entitled to know the set of states of the 

plant T . It might be the plant T , but can also be any other

entity other than the aggregator A (in order to preserve pri- 

vacy). 

• Manager M 

( j) : An Entity with index j which estimates the 

state for a group of sensors and handles communication 

with other entities. 

• Sensor Group G 

( j) : An Entity with index j which consists 

of m j sensors S ( j) 
i 

, i ∈ { 1 , . . . , m j } , and one manager M 

( j) 

owned by one organization. All sensors within a group trust 

each other and do not trust other entities. Each sensor group 

aims to keep its measurements and estimates private from 

other groups and parties. 

We provide the following definitions which are essential for 

et-based estimation: 

efinition 6 (Set-based Estimator) . Given system (8) with initial 

tate x 0 ∈ 〈 c 0 , G 0 〉 , the set-based estimator aims to find the cor-

ected state set S̄ i,k with state containment guarantees at each 

ime step k , i.e., ∀ k : x k ∈ S̄ i,k . 
4 
With x 0 ∈ 〈 c 0 , G 0 〉 , the predicted state set ˆ S i,k , i.e., the set of all

ossible state values, is, according to (8) , given by 

ˆ 
 i,k = F S̄ i,k −1 �Q i . (9) 

or a given measurement y i,k , the measurement state set P i,k is the 

et of all possible state values satisfying the strip equation, i.e., 

 i,k = 

{ 

x 

∣∣∣| H i,k x − y i,k | ≤ r i,k 

} 

. (10) 

here convenient, we will use the shorthand P i,k = 〈 y i,k , H i,k , r i,k 〉
or a strip. The corrected state set S̄ i,k is then the over-approxima- 

ion of the intersection between 

ˆ S i,k and P i,k , specifically 

¯
 i,k ⊇

(
ˆ S i,k ∩ P i,k 

)
. (11) 

We aim to find solutions for the following two problems: 

roblem 1. We want to estimate the set of possible state values of 

he plant T while ensuring that measurements are private to the 

ensor nodes S 1 , . . . , S m 

, m ∈ N 

+ , and the estimated set is private

o the query node Q . 

roblem 2. We want to estimate the set of all possible state values 

f the plant T while ensuring that measurements and internally 

stimated sets are private to the sensor groups G 1 , . . . , G d , d ∈ N 

+ ,
nd the estimated set is private to the query node Q . 

To illustrate the practical relevance of Problems 1 and 2 , con- 

ider the following scenario: 

xample 1. To avoid collisions between traffic participants in a 

ypical highway scenario (see Fig. 4 ), each participant aims to per- 

eive and comprehend a traffic situation by predicting the intent 

f vehicles and road users. This can be done by computing and 

haring the reachable sets of all other traffic participants, known 

s shared situation awareness [43] . However, computing these sets 

s not always possible due to computational constraints or having a 

articipant in an occluded area from the perspective of others (see 

he pedestrian in Fig. 4 ). The different entities are the following: 

he plant is the combination of different car dynamics commu- 

icated in an initial phase, the sensors measure the distance be- 

ween the traffic participants, the cloud is the aggregator, and the 

treet management unit that guarantees participants’ safety is the 

uery node, which aims to compute the estimated set of the po- 

ition of each participant. A possible solution hereby is to let the 

loud compute reachable sets (and possible intersections thereof) 

hile preserving the privacy of each participant ( Problem 1 ). Spe- 

ific future scenarios may contain a car platoon trusting its partic- 

pants but not other platoons ( Problem 2 ). 

For both problems it is required to guarantee computational se- 

urity during the estimation process. The query node Q is inter- 

sted in finding the set of all possible state values of plant T in

oth problems. We should note that the group manager locally es- 

imates over unencrypted data in Problem 2 , which is not the case 

or Problem 1 (no group manager). If we consider the group of one 

ensor, there is still a need for a group manager to perform the lo- 

al estimation over unencrypted data, so that Problem 1 is not a 

pecial case of Problem 2 . 

To set our privacy goals, we must first define the following 

oalitions that the attacker can perform for Problem 1 : 

efinition 7 (Sensor Coalition) . A sensor colludes with up to t −
 other sensors in Problem 1 by exchanging their private mea- 

urements and cryptographic private keys, constituting the sensor 

oalition. The coalition aims to retrieve the private information of 

he non-participating sensors and the query node. 

efinition 8 (Cloud Coalition) . The aggregator A colludes with up 

o t sensors in Problem 1 by exchanging their private values, cryp- 

ographic private keys, and intermediate results, constituting the 
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Fig. 4. Highway scenario with construction work as possible application for Problems 1 and 2 . Reachable sets for each car are shown in their respective, transparent color 

[36 , adapted]. 
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ggregator coalition. The coalition aims to retrieve the private in- 

ormation of the non-participating sensors and query node. 

efinition 9 (Query Coalition) . The query node Q colludes with 

p to t sensors in Problem 1 by exchanging their private values, 

ryptographic private keys, and the final decrypted outcome of the 

stimation protocol, constituting the query coalition. The coalition 

ims to retrieve the private information of the non-participating 

ensors. 

The same definitions hold for Problem 2 by considering sensor 

roups instead of sensors. We consider semi-honest parties [4] fol- 

owing the protocol properly, with the exception that they keep 

 record of all its intermediate computations to infer extra infor- 

ation. This paper aims to solve Problems 1 and 2 by proposing 

ultiple secure multi-party computation protocols. These proto- 

ols should guarantee computational privacy against the aforemen- 

ioned coalitions. The privacy goals are based on the concept of 

omputational indistinguishability, which is presented next, along 

ith the formal definition of multi-party privacy with respect to 

emi-honest behavior while considering coalitions. 

We state and summarize the assumptions of this work subse- 

uently: 

ssumption 1. We assume that both process noise n k and mea- 

urement noise v i,k are bounded by a zonotope, i.e., n k ∈ Q k = 

 0 , Q k 〉 , and v i,k ∈ R k = 〈 0 , diag ([ r 1 ,k , . . . , r m,k ]) 〉 . 
Furthermore, we make the following assumption for the at- 

acker’s ability: 

ssumption 2. The attacker can form sensor, aggregator, or query 

oalitions (see Definitions 7 –9 ). 

It is worth mentioning that we exclude an aggregator-query 

oalition, which is a common assumption in homomorphic encryp- 

ion; see [5] . 

. Encrypted set of states 

The aforementioned set representations are deliberately chosen 

uch that they can be used with the Paillier cryptosystem and do 

ot reveal critical information about the measurements and esti- 

ates. More specifically, we propose using zonotopes, constrained 

onotopes, and strips as set representations in privacy-preserving 

et-based estimation: 

1. Zonotopes: We homomorphically encrypt the center and 

reveal the generator matrix, thus hiding the position of 

the zonotope and only revealing the estimation uncertainty 

(zonotope shape) described by the generator matrix. 
5 
2. Constrained zonotopes: To protect the estimation uncer- 

tainty (more privacy) while introducing extra computation 

overhead, we use constrained zonotopes instead of zono- 

topes. Changing b of a constrained zonotope 〈 c, G, A, b〉 (see 

Definition 2 ) changes both its position and shape as shown 

in Fig. 5 (a). We propose to encrypt the vectors c and b and 

thus encrypt both position and shape of the set. 

3. Strips: For a strip given by (10) , we encrypt y i,k , and re-

veal H i,k and r i,k . Encrypting y i,k preserves the privacy of 

the strip position as shown in Fig. 5 (b) for two strips with 

H i,k = [ −1 . 25 , 1] , r i,k = 1 , and y i,k ∈ { 3 . 5 , 9 . 5 } . 
The chosen selective encryption will allow us to decouple the 

omputation of public information from private information, as we 

ill show later. We propose two protocols to solve Problems 1 and 

 while preserving the mentioned privacy goals. Two variants of 

he proposed protocols solve the problems using zonotopes while 

evealing the estimation uncertainty. The other two variants solve 

he problems using constrained zonotopes while preserving the 

ncertainty around the estimates. We start by discussing the pro- 

ocol solving Problem 1 . 

. Private estimation using distributed sensors 

In this section, we introduce a protocol for estimating the set of 

ossible states using zonotopes and constrained zonotopes while 

chieving our privacy goals. We first describe both protocols using 

 general set representation and then specify the required opera- 

ions for zonotopes and constrained zonotopes. The query node Q 

enerates the Paillier public key pk and private key sk and shares 

he public key with other parties. It then chooses a large enough 

nitial set of possible states, enclosing the true state according to 

he public information. The initial set ˆ S q, 0 is encrypted by the 

uery node. We add the subscript q to the set notation to indicate 

hat the set computation is done at the query node. The initial en- 

rypted set � ̂  S q, 0 � is sent to the aggregator. 

Our proposed privacy-preserving approach consists of three 

teps: the measurement update, the time update, and sharing of 

he results in a continuous loop, as presented in Protocol 1 . More 

pecifically, during the measurement update, the aggregator col- 

ects an encrypted strip � P i,k � from each sensor node i at step k , as

hown in Fig. 6 . The family of encrypted strips (measurements) is 

ntersected in the encrypted domain with the predicted reachable 

et at the aggregator (indicated by subscript a ) – initially, it is the 

nitial encrypted set � ̂  S q, 0 � sent by the query node – to obtain the 

ncrypted corrected set � ̄S a,k � , shown in Fig. 6 . Finally, the aggre-

ator performs the time update and sends the encrypted corrected 

et � ̂  S a,k � , after decreasing its order, to the query node, which de- 

rypts the result for each time step k . 
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Fig. 5. Changing the effective parameter of constrained zonotope and strips. 

Fig. 6. Overview of Protocol 1 where every sensor shares an encrypted strip with 

the aggregator, which then privately intersects these encrypted strips with an en- 

crypted zonotope. 

Protocol 1 Private estimation using distributed sensors. 

The query node Q encrypts the initial set � ̂  S q, 0 � and sends it to 

the aggregator node to have � ̂  S a, 0 � = � ̂  S q, 0 � . At every time in- 

stant k , every sensor node shares an encrypted strip � P i,k � = 

〈 � y i,k � , H k , r i,k 〉 with the aggregator which executes the following 

steps: 

Step 1 : Measurement update at the aggregator: 

� ̄S a,k � = � ̂  S a,k −1 � ∩ � P 1 ,k � ∩ . . . ∩ � P m,k � (12) 

Step 2 : Time update at the aggregator: 

� ̃  S a,k � = F � ̄S a,k � �Q k (13) 

� ̂  S a,k � = ↓ q � ̃  S a,k � (14) 

Step 3 : The aggregator sends the encrypted set � ̂  S a,k � to the 

query node which decrypts the result for each time step k . 
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We start by describing the required operations for the zono- 

opic case. The intersection between zonotopes and a family of 

trips can be performed according to [40] and is summarized in 

he following lemma. 

emma 1 [40 , Prop.1] . The intersection ˆ Z k −1 ∩ P 1 ,k ∩ . . . ∩ P m,k of

 zonotope ˆ Z k −1 = 〈 ̂ c k −1 , 
ˆ G k −1 〉 and the family of m strips P j,k =

 y i,k , H i,k , r i,k 〉 in (10) , ∀ j ∈ N , | N | = m , is overapproximated by a
6 
onotope Z̄ k = 〈 ̄c k , Ḡ k 〉 , where λ j,k ∈ R 

n ×p is the design parameter, 

nd 

¯
 k = 

ˆ c k −1 + 

∑ 

j∈N 
λ j,k (y j,k − H j,k ̂  c k −1 ) , (15) 

¯
 k = 

[ 
(I −

∑ 

j∈N 
λ j,k H j,k ) ̂  G k −1 , λ1 ,k r 1 ,k , . . . , λm,k r m,k 

] 
. (16) 

The factor λ j,k ∈ R 

n ×p is a degree of freedom in Lemma 1 which 

e use to maximize the tightness of the intersection over- 

pproximation. Thus, we want to find �k = 

[
λ1 ,k , . . . , λm,k 

]
that 

ecreases the uncertainty around the estimates. We achieve this by 

omputing the �k that decreases the Frobenius norm of the gen- 

rator matrix Ḡ k in (16) [20] . 

During the time update step, the aggregator computes the time 

volution of the estimated encrypted zonotope according to (13) 

nd (14), i.e., 

ˆ 
 a,k = F c̄ a,k , (17) 

˜ 
 a,k = [ F Ḡ a,k , Q k ] , ˆ G a,k = ↓ q ˜ G a,k . (18) 

Decreasing the order of the generator matrix, denoted by ↓ q , is 

one according to [29] , which can be done over encrypted set as 

he generator matrix is revealed. 

The generators do not participate in determining the position of 

he zonotope. Thus, it is sufficient to process over encrypted zono- 

ope centers, as clarified in Section 4 . Given the nature of the in-

ersection between the strips and a zonotope in Lemma 1 , the op- 

rations in the encrypted domain are decoupled from the plaintext 

omain computations. Note that the Paillier properties in (3) and 

4) allow one to process (15) over the encrypted center � ̄c k � and 

easurement � y j,k � in Protocol 1 . This protocol computes (15) in 

he encrypted domain and (16) in the unencrypted domain, where 

e also compute �k . More specifically, we operate over encrypted 

enters and measurements as follows: 

 ̄c k � = � ̂  c k −1 � �
∑ 

j∈N 
λ j,k (� y j,k � � H j,k � ̂  c k −1 � ) , (19) 

 ̂

 c a,k � = F � ̄c a,k � . (20) 

he generators are in the unencrypted domain in all our algo- 

ithms. The Minkowski sum in (13) is computed over encrypted 

enters and unencrypted generators. 

The next theorem summarizes the privacy of Protocol 1 against 

ifferent coalitions in Definitions 7 –8 when we use zonotopes and 

trips as sets. 
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Fig. 7. Overview of Protocol 2 where every sensor group computes the intersection 

between a zonotope and its strips. The aggregator then computes the intersection 

over the encrypted zonotopes. 
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heorem 1. Protocol 1 solves Problem 1 using encrypted zonotopes 

hile revealing the shape of the estimated zonotope and achieving 

rivacy against 

• sensor coalitions, 

• cloud coalitions, 

• query coalitions if m r p > n , where m r is the number of non-

colluding sensors, p the measurement size, n the size of the 

state. 

The proof is detailed in the Appendix. To overcome the infor- 

ation leakage in case of query coalitions when m r p ≤ n , we pro-

ose a slight modification by keeping the strip parameter r i,k pri- 

ate to the sensor and aggregator. Then, the aggregator swaps the 

olumns of the generator matrix ˆ G a,k before sending it to the query 

ode. Swapping the generator columns produces the same esti- 

ated zonotope, but preserves privacy by preventing the coalition 

rom computing �k and thus also prevents the extraction of the 

enter � ̂ c a,k � . 

Next, we present the required operations using constrained 

onotopes. The following theorem shows the intersection in the 

nencrypted domain. 

emma 2. The intersection ˆ C k ∩ P 1 ,k ∩ . . . ∩ P m,k of a constrained 

onotope ˆ C k = 〈 ̂ c k , ˆ G k , 
ˆ A k , ̂

 b k 〉 and the family of m strips P j,k =
 y j,k , H j,k , r j,k 〉 in (10) , ∀ j ∈ N , | N | = m , is a constrained zonotope

¯
 k = 〈 ̄c k , Ḡ k , Ā k , ̄b k 〉 where λ j,k ∈ R 

n ×p is a degree of freedom and 

¯
 k = 

ˆ c k + 

∑ 

j∈N 
λ j,k (y j,k − H j,k ̂  c k ) , (21) 

¯
 k = 

[ 
(I −

∑ 

j∈N 
λ j,k H j,k ) ̂  G k , λ1 ,k r 1 ,k , . . . , λm,k r m,k 

] 
, (22) 

¯
 k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ A k 0 0 . . . 0 

H 1 ,k ̂
 G k −r 1 ,k 0 . . . 0 

H 2 ,k ̂
 G k 0 −r 2 ,k . . . 0 

. . . 
. . . 

. . . 

H m,k ̂
 G k 0 0 . . . −r m,k 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (23) 

¯
 k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ b k 
y 1 ,k − H 1 ,k ̂  c k 
y 2 ,k − H 2 ̂  c k 

. . . 
y m,k − H m,k ̂  c k 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (24) 

roof. The results can be obtained by applying an intersection 

rom [48 , Prop. 1] and then adding a degree of freedom from [48 ,

rop. 5]. �

During the measurement update in Protocol 1 when using 

onstrained zonotopes, the aggregator performs the proposed in- 

ersection over the encrypted center � ̂ c a,k −1 � and the encrypted 

onstraint shift � ̂ b a,k −1 � . Note that various combinations of zono- 

opes and constraints can represent the same constrained zono- 

ope. Here, we exploit the additional degree of freedom in �k and 

hoose it at random in our protocol, which improves privacy, as 

iscussed in the Appendix. Next, the aggregator propagates the 

ets forward in time according to (8) , and then reduces the order 

f the given set [48] , i.e., 

ˆ 
 a,k = F c̄ a,k , ˜ G a,k = [ F Ḡ a,k , Q k ] , ˆ b a,k = b̄ a,k , (25) 

 ̂

 G a,k , ˆ A a,k } = ↓ q { ̃  G a,k , Ā a,k } . (26) 

t

7 
The privacy of Protocol 1 against different coalitions in 

efinitions 7 –9 is summarized in the following theorem. 

heorem 2. Protocol 1 solves Problem 1 using encrypted constrained 

onotopes while protecting the shape of the estimated set and achieves 

rivacy against 

• sensor coalitions, 

• cloud coalitions, 

• query coalitions. 

The proof is detailed in the Appendix. After presenting our con- 

trained zonotopic privacy-preserving protocol for Problem 1 , we 

ove on to the privacy-preserving protocol for Problem 2 . 

. Private estimation using sensor groups 

We provide a privacy-preserving protocol for Problem 2 in 

rotocol 2 , which is represented graphically in Fig. 7 for the zono- 

rotocol 2 Private estimation using sensor groups. 

The query node Q sends the initial set to each sensor group i ∈ 

{ 1 , . . . , d} , and the aggregator node A . For each sensor group i , 

m i strips � P 

(i ) 
j,k 

� = 〈 � y (i ) 
j,k 

� , H k , r 
(i ) 
j,k 

〉 , j ∈ { 1 , . . . , m i } , are available. At

every time instant k , the following steps are executed: 

Step 1 : Measurement update at each sensor group i : 

S̄ (i ) 
k 

= 

ˆ S a,k −1 ∩ P 

(i ) 
1 ,k 

∩ . . . ∩ P 

(i ) 
m i ,k 

(29) 

Step 2 : Diffusion update at the aggregator: 

� S̀ a,k � = � ̄S (1) 
k 

� ∩ . . . ∩ � ̄S (d) 
k 

� (30) 

Step 3 : Time update at the aggregator: 

� ̃  S a,k � = F � S̀ a,k � �Q k (31) 

� ̂  S a,k � = ↓ q � ̃  S a,k � (32) 

Step 4 : The aggregator sends the encrypted set � ̂  S a,k � to the 

query node which decrypts and sends the results to the sensor 

groups. 

opic case. Each sensor j within group i is participating with a strip 

measurement) set P 

(i ) 
j,k 

at each time step k . All strips are collected 

ithin the group i and are then intersected with the previously es- 

imated set ˆ S a,k −1 in (29) in the unencrypted domain, as the group 
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Fig. 8. Custom anchor with ARM Cortex M4 processor and UWB slot. 

Fig. 9. Ceiling-mounted anchor with UWB radio in 3D-printed enclosure. 

Fig. 10. CrazyFlie 2.0 quadrotor helicopter with UWB expansion. 
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9

articipants trust each other and the plaintext execution is faster 

han the encrypted domain execution. The owner of each sensor 

roup encrypts the resulting set S̄ (i ) 
k 

and sends it to the aggregator, 

hich in turn computes the intersection of all received encrypted 

ets in the encrypted domain in (30). Next, the aggregator per- 

orms the time update. Finally, the aggregator submits � ̂  S a,k � to the 

uery node, which decrypts the result and sends it to each sensor 

roup. 

We first describe the required operations for zonotopes and 

hen proceed with constrained zonotopes. In the measurement up- 

ate step, the intersection between a zonotope and a family of 

trips is performed as described in Lemma 1 . Unlike Protocol 1 , 

here we perform the aforementioned intersection at the aggre- 

ator in the encrypted domain, we now intersect at the sensor 

roup level in the unencrypted domain since each sensor trusts all 

ther sensors from the same group. Different methods exist in the 

iterature for the zonotope intersection required during the diffu- 

ion update. Here, we picked our previously proposed intersection 
8 
ethod described in [2] , which fits the homomorphic computa- 

ions, as summarized in the following lemma. 

emma 3 [2 , Th.2] . The intersection Z̄ 1 ,k ∩ . . . ∩ Z̄ d,k between d

onotopes Z̄ i,k = 〈 ̄c i,k , Ḡ i,k 〉 , i ∈ { 1 , . . . , d} , can be over-approximated

sing the zonotope Z̀ k = 〈 ̀c k , G̀ k 〉 given by 

`
 k = 

1 ∑ d 
i =1 w i,k 

d ∑ 

i =1 

w i,k ̄c i,k , (27) 

`
 k = 

1 ∑ d 
i =1 w i,k 

[ w 1 ,k ̄G 1 ,k , . . . , w d,k ̄G d,k ] , (28) 

here the weights w i,k are chosen such that 
∑ d 

i =1 w i,k � = 0 . 

Let w k = [ w 1 ,k , . . . , w d,k ] , where d is the number of sensor

roups. Ideally, w k is chosen such that the size of the zonotope 
`
 k = 〈 ̀c k , G̀ k 〉 is minimized. The size of the zonotope appears in the 

nencrypted generator matrix due to the selective encryption, and 

an be replaced by the Frobenius norm of the generator matrix. 

he next theorem summarizes the privacy features of the protocol 

gainst different coalitions in Definitions 7 –8 . 

heorem 3. Protocol 2 solves Problem 2 using encrypted zonotopes 

hile revealing the shape of the estimated set and achieving privacy 

gainst 

• sensor coalitions, 

• cloud coalitions, 

• query coalitions if (d r > 1) , where d r is the number of non- 

colluding sensor groups. 

The proof is detailed in the Appendix. In order to solve 

roblem 2 without revealing the shape of the estimated set as in 

heorem 3 , we again use constrained zonotopes. The intersection 

etween the constrained zonotopes and strips during the measure- 

ent update of Protocol 1 is done according to Lemma 2 in the un-

ncrypted domain. Then, the intersection between the constrained 

onotopes is performed, which we describe next. 

emma 4. The intersection C̄ 1 ,k ∩ . . . ∩ C̄ d,k between d constrained 

onotopes C̄ j,k = 

〈
c̄ j,k , Ḡ j,k , Ā j,k , ̄b j,k 

〉
is a constrained zonotope Z̀ k = 

 ̀c k , G̀ k , À k , ̀b k 〉 , where 

`
 k = c̄ 1 ,k , G̀ k = 

[ 
Ḡ 1 ,k , 0 , . . . , 0 

] 
, (33) 

`
 k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Ā 1 ,k 0 . . . 0 

0 Ā 2 ,k . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . Ā d,k 

Ḡ 1 ,k −Ḡ 2 ,k . . . 0 

. . . 
. . . 

. . . 
. . . 

Ḡ 1 ,k 0 . . . −Ḡ d,k 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, b̀ k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b̄ 1 ,k 

b̄ 2 ,k 

. . . 

b̄ d,k 

c̄ 2 ,k − c̄ 1 ,k 

. . . 

c̄ d,k − c̄ 1 ,k 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (34) 

roof. The lemma is the multi-strip intersection of [48 , Prop. 

]. �

Unlike for zonotopes, Lemma 4 computes the intersection ex- 

ctly. Then, the time update is done according to (25) and (26) . The

rivacy of the protocol against different coalitions in Definitions 7, 

 , and 8 is summarized in the following theorem. 
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Fig. 11. Ground truth, upper and lower bounds on the position components of the three-dimensional estimated states in meters of Protocol 1 . 

Fig. 12. Estimation error for Protocol 1 using zonotopes and constrained zonotopes. 
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heorem 4. Protocol 2 solves Problem 2 using encrypted constrained 

onotopes while protecting the shape of the estimated set and achieves 

rivacy against 

• sensor coalitions, 

• cloud coalitions, 

• query coalitions. 

The proof is detailed in the Appendix. In the next section, we 

ill evaluate the presented protocols. 

. Evaluation 

In this section, we evaluate the proposed protocols using data 

rom a real-world testbed. We first describe our testbed in detail 

nd then evaluate the proposed protocols. The protocols are eval- 

ated on a custom ultra-wideband (UWB) RF testbed based on the 

ecaWave DW10 0 0 IR-UWB radio. 2 The overall setup is the same 

s in [3] . The main components of the considered testbed can be 

ummarized as follows: 

1. The motion capture system consists of eight cameras capable 

of performing 3D rigid body position measurements with an 

accuracy of less than 0.5 mm. 

2. The fixed nodes each consist of a custom-built circuit board 

equipped with a ARM Cortex M4 processor with 196 MHz 

( Fig. 8 ), powered over Ethernet and communicating via a De- 

cawave DW10 0 0 ultra-wideband radio ( Fig. 9 ). 

3. The battery-powered mobile node is a modified CrazyFlie 2.0 

helicopter 3 ( Fig. 10 ) and is equipped with the same DW10 0 0 

radio and ARM Cortex M4 processor. 

For the sake of a fair evaluation between the four variants of 

ur two protocols, we used a collected data from the testbed and 

an the four variants on the same set of measurements. We aim to 

stimate the set that encloses the location of the quadrotor while 
2 Decawave DW10 0 0: http://www.decawave.com/products/dw10 0 0 . 
3 Bitcraze CrazyFlie 2.0: https://www.bitcraze.io/ . 

g

1

s

9 
reserving our aforementioned privacy goals. We start with an ini- 

ial set of size ( 8 × 8 m 

2 ) covering the whole localization area 

t the initial point (time step k = 0 ). This set is then iteratively

hrunk by using the received measurements and performing geo- 

etric intersections to correct the estimated set. Figure 11 shows 

he true values, upper bounds, and lower bounds of the three- 

imensional estimated location of the four variants of Protocol 1 . 

e omit the results of Protocol 2 as they are close to the results 

f Protocol 1 . The upper bounds and lower bounds are obtained 

y converting the zonotopes and constrained zonotopes to inter- 

als. It is worth mentioning that the result using the zonotopic 

ase of Protocol 1 is tighter than the result using the zonotopic 

ase of Protocol 2 . This is because Protocol 2 requires two over- 

pproximations, namely, the intersection between every zonotope 

nd the family of strips and the intersection of the family of zono- 

opes. 

We consider the center of the estimated set to be the single- 

oint estimate in the zonotopic case. Thus, we report the local- 

zation error with respect to the center of the zonotope. For con- 

trained zonotopes, the reported center in the representation is the 

enter of the original zonotope without constraints and hence can 

e outside of the constrained zonotope. Therefore, we compute the 

hebychev center of the polytope in the constrained zonotope fac- 

or space [8] . The estimation error of the four variants is presented 

n Fig. 12 . 

There is a trade-off between the provided privacy, the compu- 

ation overhead, and the exactness of set operations. Constrained 

onotopes provide more privacy, more computation overhead, and 

ess conservatism due to the exact set operations. On the other 

and, zonotopes provide less privacy due to revealing the shape 

f the sets, less computation overhead, and more conservative sets. 

he trade-off between the provided privacy and the execution time 

s presented in Table 1 . Keeping the shape of the estimated set pri-

ate by using constrained zonotopes instead of zonotopes increases 

he required execution time. All computations were run on a sin- 

le thread of an Intel(R) Core(TM) i7-8750 with 16 GB RAM with 

024 key size. The comparison between the size of the reachable 

ets appears in Fig. 11 . 

http://www.decawave.com/products/dw1000
https://www.bitcraze.io/
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Table 1 

Execution time in ms. 

Entities 

Sensor/sensor group Aggregator Query 

Protocol 1 using zonotopes 2.371 3.195 0.550 

Protocol 1 using constrained zonotopes 2.371 6.632 14.529 

Protocol 2 using zonotopes 8.389 5.968 0.550 

Protocol 2 using constrained zonotopes 81.426 9.787 14.529 
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. Conclusions 

We proposed the first privacy-preserving, set-based observers 

sing homomorphic encryption. Both a traditional sensor setup as 

ell as a scenario where trusting sensors are grouped into sen- 

or groups are presented. We showed that by choosing zonotopes 

nd constrained zonotopes to represent our sets, it is possible to 

electively encrypt only the critical set parameters while achieving 

he desired level of privacy. To prove that privacy for each protocol, 

he concept of computational indistinguishability was used. Finally, 

e evaluated our algorithms on real data from a physical test bed, 

hich showed that the proposed protocols achieve satisfactory re- 

ults while guaranteeing privacy. 

One main drawback of guaranteeing privacy using homomor- 

hic encryption is the overflow problem after a sequence of op- 

rations in the encrypted domain. To overcome the overflow lim- 

tation, we send the encrypted set to the query node each time, 

hich decrypts the estimated set and sends the re-encrypted set 

ack to the aggregator. This solves the overflow problem at the 

ost of computation and communication overhead. However, af- 

er the encrypted estimated set is sent from the aggregator to the 

uery node, decrypting said set is not regarded as overhead since 

he query node is interested in the estimated set after each time 

tep by assumption, and thus decryption is required anyway. That 

aid, solving the overflow problem in a more efficient way is an 

pen research problem that we leave for future work. 
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ppendix A. Theorems’ proofs 

We need to show in the following proofs that the views and 

imulators of the coalitions are computationally indistinguishable 

nd that the input and output of the coalition do not leak extra 

rivate information according to Definition 5 . This will be done for 

ach type of coalition. Showing the computational indistinguisha- 

ility is done by building the views of each coalition then proving 

hat there is an equivalent simulator that could be obtained from 

he input and output available to the coalition. 
10 
emark 1. The view V and simulator S are computationally indis- 

inguishable V 
c ≡ S, if they have the same list of values or have val-

es that are generated according to the same distribution and in- 

ependent from other parameters [5] . 

We denote the quantities obtained by the simulator by ˜ () , 

hich follow the same distribution but are otherwise different 

rom the quantities of the views. We may omit the time index k 

rom the views and simulators for simplicity. Here, the coins are 

andom numbers that are used for the encryption process and key 

eneration. Further information that is exchanged between other 

arties over an encrypted channel is denoted by � �X � for coalition 

. Note that the encrypted channel uses extra keys different from 

he homomorphic encryption keys and uses double encryption to 

rotect privacy. 

1. Proof of Theorem 1 

The proof consists of three types of coalitions as described bel- 

ow. 

1.1. Coalition of sensors s 

The strip information is considered as the input to the sensor 

nd appears as part of the view and the simulator of the coalition. 

e denote the view of coalition s consisting of the set of sensors 

 = { s 1 , . . . , s t } by V �s , which is defined as the combination of every

ensor view and given by 

 

�
s = 

(
V 

�
s 1 

, . . . , V 

�
s t 

)
= 

(
H s,k , y s,k , r s,k , � y s,k � , coins s , pk , � �s � 

)
, (A.1) 

here the subscript s on H s,k , y s,k , r s,k denotes an array of strip in-

ormation of the coalition. The sensors only submit their encrypted 

ata to the aggregator. Hence, a simulator, denoted by S s , consists 

f the input and output and by generating ˜ � �s � , ̃  � y s,k � and 

˜ coins s , 

.e. 

 s = 

(
pk , H s,k , y s,k , r s,k , ˜ � y s,k � , ̃

 coins s , ˜ � �s � 
)
. (A.2) 

he ˜ coins s are generated according to the same distribution of 

oins s and are independent from other parameters, where the 

ame is true for ˜ � �s � and � �s � as well as ̃  � y s,k � and � y s,k � . Therefore,

e conclude that S s 
c ≡ V �s . 

Moreover, the information contained in each strip is indepen- 

ent from all others. Thus, the coalition strips cannot be used to 

nfer new information about other strips. The information in each 

teration is different from other iterations. That is why we con- 

idered only a single step in the previous proof. In the following 

wo subsections, we will prove that the view of each coalition after 

 ∈ N 

+ iterations of the protocol is computationally indistinguish- 

ble from the view of a simulator that executes K iterations. 

1.2. Coalition of sensors s and aggregator 

The view of the aggregator is denoted by V �a . We denote the 

iew of a coalition consisting of a set of sensors by s = { s 1 , . . . , s t }
nd the aggregator by V �sa which is defined by 

 

�
sa = 

(
V 

�
s , V 

�
a 

)
= 

(
V 

�,K 
s , V 

�,K 
a 

)
, (A.3) 

https://doi.org/10.13039/501100000781
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here V �,K 
s and V �,K 

a are the views of the aggregator and coalition 

f sensors, after executing K iterations, respectively, and are given 

y 

 

�,k +1 
s = (V 

�,k 
s , I k +1 

s ) , V 

�,k +1 
a = (V 

�,k 
a , I k +1 

a ) (A.4) 

 k = 0 , 1 , . . . , K − 1 , where I k s and I k a are the newly added data

oints at the k th iteration for the coalition of sensors V �, 0 
s = 

 

0 
s and aggregator V �, 0 

a = I 0 a . The view of the aggregator con- 

ains encrypted strips 〈 H s,k , � y s,k � , r s,k 〉 from the sensors, initial

et 〈 � ̂ c q, 0 � , ˆ G q, 0 〉 from the query node, and the estimated set

 � ̂ c a,k � , ˆ G a,k 〉 at k th iteration. Let us denote the strip information of

he sensors at the k th iteration, which are not part of the coalition 

y subscript r, i.e., 〈 H r,k , � y r,k � , r r,k 〉 , k = 0 , 1 , . . . , K − 1 . Then, I k a and

 

k 
s are 

 

k 
a = 

(
H s,k , � y s,k � , r s,k , H r,k , � y r,k � , r r,k , � ̂  c q, 0 � , 

ˆ G q, 0 , � ̂  c a,k � , ˆ G a,k , coins a , pk , q, F , Q k 

)
, (A.5) 

 

k 
s = 

(
H s,k , y s,k , r s,k , � y s,k � , coins s , pk , � �s � 

)
, (A.6) 

here Z q, 0 = 〈 ̂ c q, 0 , ˆ G q, 0 〉 is the initial zonotope at the query node

nd Z a,k = 〈 ̂ c a,k , 
ˆ G a,k 〉 is the estimated zonotope on the aggregator 

ide at time step k . The view of the coalition V �sa is constructed 

rom (A.3) to (A.6) . Let the simulator of the coalition be denoted 

y S sa = S K sa , where S K sa is the simulator after executing K iterations. 

he simulator S sa can be iteratively constructed by combining the 

alues obtained at each time step k as follows: 

 

k +1 
sa = (S k sa , I 

S,k +1 
sa ) , k = 0 , 1 , . . . , K − 1 , (A.7) 

here I S,k +1 is the portion of the simulator generated at iteration 

 + 1 , which is given by 

 

S,k 
sa = 

(
H s,k , 

˜ � y s,k � , r s,k , H r,k , 
˜ � y r,k � , r r,k , 

˜ � ̂  c q, 0 � , ˆ G q, 0 , 

˜ � ̂  c a,k � , ˆ G a,k , ̃
 coins sa , q, F , Q k , y s,k , pk , ˜ � �s � 

)
nd where the values are computed or generated as follows: 

1. Generate ˜ � �s � , ̃  � ̄c q, 0 � , ̃
 � ̂ c a,k � , 

˜ � y r,k � , and 

˜ � y s,k � according to the 

same distribution of � �s � , � ̄c q, 0 � , � ̂ c a,k � , � y r,k � and � y s,k � , re-

spectively. 

2. Compute ˆ G a,k according to (16) . 

3. Let the combination of all coins of the parties be coins sa = 

( coins a , coins s ) . Generate ˜ coins sa according to the distribu- 

tion of coins sa . 

Based on this generation scheme, the values ˜ �� and �� are indis- 

inguishable and all remaining variables in I S,k +1 
sa are either public 

r feasible through the protocol steps. After all iteration steps, we 

nd up with a simulator that satisfies S sa 
c ≡ V �sa . 

The second part of the proof is about inferring extra private in- 

ormation from the input and output. The coalition’s target is to 

etermine the private measurement of the remaining sensors y r,k . 

ote that the relation between � y s,k � and � y r,k � is characterized by

A.8) . ∑ 

j∈N r 
λ j,k � y j,k � = 

∑ 

j∈N 
(λ j,k H j,k − 1) � ̂  c a,k −1 � � � ̄c a,k � 

�
∑ 

j∈N /r 

λ j,k � y j,k � 

︸ ︷︷ ︸ 
known to the coalition in plaintext 

, (A.8) 

here N r is the set of the remaining sensors. Since the coalition 

oes not have the private key and the query node sends the ini- 

ial encrypted center � ̂ c a, 0 � , we end up with an underdetermined 

ystem in (A.8) . 
11 
1.3. Coalition of sensors s and query node 

We denote the view of a coalition consisting of a set of sensors 

y s = { s 1 , . . . , s t } and define the query as 

 

�
sq = 

(
V 

�
s , V 

�
q 

)
= 

(
V 

�,K 
s , V 

�,K 
q 

)
, (A.9) 

here 

 

�,k +1 
s = (V 

�,k 
s , I k +1 

s ) , V 

�,k +1 
q = (V 

�,k 
q , I k +1 

q ) , (A.10) 

 k = 0 , 1 , . . . , K − 1 , where I k s is given in (A.6) , and I k q are the newly

dded data points from the k th iteration for the query node with 

 

�, 0 
q = I 0 q such that 

 

k 
q = 

(
ˆ c q, 0 , ˆ G q, 0 , ̂  c a,k , ˆ G a,k , � ̂  c a,k � , coins q , � �sq � , pk , sk 

)
. (A.11) 

The view of the coalition V �sq is constructed from (A.6), 

A.10) and (A.11) . The construction of the simulator is similar to 

ppendix A.1.2 . Thus, we focus on the values added in the k th it-

ration to the simulator. Let the combination of all coins of the 

arties be denoted by coins sq = ( coins q , coins s ) . The inputs and 

utputs to the coalition are ( pk , sk , H s,k , y s,k , r s,k , ̂  c a,k , 
ˆ G a,k , ̂  c q, 0 , ˆ G q, 0 ).

hus, the simulator S k sq can be easily generated by 

 

k 
sq = 

(
pk , sk , H s,k , y s,k , r s,k , ̂  c q, 0 , ˆ G q, 0 , ̂  c a,k , ˆ G a,k , 

˜ � ̂  c a,k � , 

˜ coins sq , ˜ � �sq � , S 
k −1 
sq 

)
. (A.12) 

The tuples 
(
� ̂ c a,k � , coins sq , � �sq � 

)
and 

(
˜ � ̂ c a,k � , ̃

 coins sq , ̃  � �sq � 

)
are 

enerated according to the same distribution and are independent 

rom other parameters. Therefore, S k sq 
c ≡ (I k s , I 

k 
q ) , which leads to 

 sq 
c ≡ V 

�
sq . (A.13) 

In case of a coalition between s sensors and the query node, the 

im would be to find the measurements of the remaining group, 

enoted by N r with size m r . Rewriting (A.8) after decryption – as 

he query has the Paillier private key sk – results in 

r,k Y r,k = z s,k , (A.14) 

here 

z s,k = 

∑ 

j∈N 
(λ j,k H j,k ) ̂  c a,k −1 + c̄ a,k −

∑ 

j∈N /r 

λ j,k y j,k , 

r,k = [ λ j 1 ,k , λ j 2 ,k , . . . , λ j m r ,k 
] ∈ R 

n ×pm r , 

Y r,k = [ y T j 1 ,k , y 
T 
j 2 ,k 

, . . . , y T j m r ,k 
] T ∈ R 

pm r , 

here z s,k is known to the coalition given that λ j,k is computed 

ased on the generator matrix. To find the conditions at which the 

rivacy of Y r,k is ensured, we show that there is no unique retrieval 

or Y r,k . This non-unique retrieval requires that (A.14) has multi- 

le solutions. According to [47 , Theorem 6.4], ˜ Y r,k is a solution of 

A.14) for any X r ∈ R 

pm r with 

˜ 
 r,k = �−

r,k 
z s,k + (I pm r 

− �−
r,k 

�r,k ) X r , (A.15) 

here �−
r,k 

is any generalized inverse of �r,k . For every solution 

˜ 
 r,k of (A.14) there is an X r . For I pm r − �−

r,k 
�r,k = 0 , the system

s consistent and thus has one solution [47 , Theorem 6.1]. There- 

ore, we aim to find conditions at which I pm r − �−
r,k 

�r,k � = 0 to en-

ure privacy. We have rank (�−
r,k 

�r,k ) ≤ min { pm r , n } according to 

47 , Theorem 2.8]. Thus, under the condition pm r > n , we have

 pm r − �−
r,k 

�r,k � = 0 which ensures the privacy of Y r,k . �

2. Proof of Theorem 2 

In the following proof, we consider the view and simulation for 

ne step (i.e., k th step) for notational convenience. The proof for 

 ∈ N 

+ steps is similar to the proof of Theorem 1 . We are going to

rove the privacy against the three coalitions as follows: 
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2.1. Coalition of sensors s 

The strips information is considered to be an input to the sen- 

or and appears as part of the view and the simulator of the coali-

ion. The strips information is exactly the same as for zonotopes. 

hus, the proof is similar to Appendix A.1.1 and is therefore omit- 

ed. 

2.2. Coalition of sensors s and aggregator 

The aggregator has encrypted strips 

H s,k , � y s,k � , R s,k , H r,k , � y r,k � , R r,k ) from the sensors, the initial

onstrained zonotope 〈 � ̂ c q, 0 � , ˆ G q, 0 , � ̂ b q, 0 � , ˆ A q, 0 〉 from the query

ode, and estimated constrained zonotope 〈 � ̂ c g,k � , ˆ G g,k , � ̂
 b g,k � , ˆ A g,k 〉

t each k -iteration. The view of the coalition is defined as 

 

�
sa = 

(
V 

�
s , V 

�
a 

)
= 

(
V 

�
s , H s,k , � y s,k � , R s,k , H r,k , � y r,k � , R r,k , � ̂  c q, 0 � , ˆ G q, 0 , � ̂ b q, 0 � , 

ˆ A q, 0 , � ̂  c g,k � , ˆ G g,k , � ̂ b g,k � , ˆ A g,k , coins sa , pk , q, F , Q k 

)
A.1 = 

(
H s,k , y s,k , R s,k , � y s,k � , H r,k , � y r,k � , R r,k , � ̂  c q, 0 � , ˆ G q, 0 , � ̂ b q, 0 � , 

ˆ A q, 0 , � ̂  c g,k � , ˆ G g,k , � ̂ b g,k � , ˆ A g,k , coins sa , pk , q, F , Q k 

)
. (A.16) 

The simulation is the same as in Appendix A.1.2 , except for the 

dditional information contained in a constrained zonotope, i.e., 

he constraints. This results in 

 sa = 

(
H s,k , y s,k , R s,k , 

˜ � y s,k � , H r,k , 
˜ � y r,k � , R r,k , 

˜ � ̂  c q, 0 � , ˆ G q, 0 , 

˜ 

� ̂ b q, 0 � , ˆ A q, 0 , 
˜ � ̂  c g,k � , ˆ G g,k , 

˜ 

� ̂ b g,k � , ˆ A g,k , ̃
 coins sa , pk , q, F , Q k 

)
. 

(A.17) 

e arrive at a simulator that satisfies S sa 
c ≡ V �sa . Thus, similarly to 

ppendix A.1.2 , the coalition cannot infer extra information from 

he input and the output. 

2.3. Coalition of sensors s and query node 

The view of the coalition consists of the view of the sensors 

 

�
s and the view of the query node V �q which consist of the initial

stimated constrained zonotope 〈 ̂ c q, 0 , ˆ G q, 0 , ˆ A q, 0 , ̂
 b q, 0 〉 and resultant 

stimated set 〈 ̂ c a,k , 
ˆ G a,k , 

ˆ A a,k , ̂
 b a,k 〉 at each k th iteration as follows: 

 

�
sq = 

(
V 

�
s , V 

�
q 

)
= 

(
V 

�
s , ̂  c q, 0 , ˆ G q, 0 , ˆ A q, 0 , ̂  b q, 0 , ̂  c a,k , ˆ G a,k , ˆ A a,k , ̂

 b a,k , coins s , � �s � , 

pk , sk 
)

(A. 1) = 

(
H s,k , y s,k , R s,k , � y s,k � , H r,k , � y r,k � , R r,k , ̂  c q, 0 , ˆ G q, 0 , ˆ A q, 0 , ̂  b q, 0 , 

ˆ c a,k , ˆ G a,k , ˆ A a,k , ̂
 b a,k , coins sq , � �sq � , pk , sk 

)
. (A.18) 

The simulator will be again similar to Appendix A.1.3 af- 

er adding and generating the constrained zonotope information, 

pecifically 

 sq = 

(
H s,k , y s,k , R s,k , 

˜ � y s,k � , H r,k , 
˜ � y r,k � , R r,k , ̂  c q, 0 , ˆ G q, 0 , ˆ A q, 0 , ̂  b q, 0 , 

ˆ c a,k , ˆ G a,k , ˆ A a,k , ̂
 b a,k , ̃

 coins sq , ˜ � �sq � , pk , sk 
)
. (A.19) 

As before, the generated values ˜ � y s,k � , ̃
 � y r,k � , ̃

 coins sq and 

˜ � �sq � 

re generated according to the distribution of the original values 

nd are independent from other parameters. Therefore S sq 
c ≡ V �sq . 

The coalition aims to find the measurements of the remaining 

roup, denoted by N r with size m r . Note that �a,k is chosen by 

he aggregator and not known to the query; additionally, it is also 

hosen at random and not dependant on publicly shared gener- 

tor matrix. Thus, computing the measurement y r,k according to 

A.14) is not valid anymore. In contrast to Theorem 1 , privacy can 

e guaranteed in all cases. �
12 
3. Proof of Theorem 3 

In the following proof, we consider the view and simulation for 

ne step (i.e., k th step) for notational convenience. The proof for 

 ∈ N 

+ steps is similar to the proof of Theorem 1 . We prove again

he privacy against the following three coalitions: 

3.1. Coalition of sensors groups g

We define the view of a coalition consisting of a of set of sensor 

roups g = { g 1 , . . . , g t } by V �g by 

 

�
g = 

(
V 

�
g 1 

, . . . , V 

�
g t 

)
= 

(
pk , H g,k , y g,k , R g,k , Ḡ g,k , ̄c g,k , � ̄c g,k � , � �g � , coin g 

)
, (A.20) 

here the subscript g denotes the variables owned by the coali- 

ion. The sensor groups only submit their encrypted data to the 

ggregator. Hence, a simulator S g , defined by 

 g = 

(
pk , H g,k , y g,k , R g,k , Ḡ g,k , ̄c g,k , 

˜ � ̄c g,k � , 
˜ � �g � , 

˜ coin g 

)
, (A.21) 

s obtained by generating ˜ � ̄c g,k � , ̃
 � �g � and 

˜ coins g according to the 

istribution of ( � ̄c g,k � , � �g � , coin g ) and are independent from other

arameters. Therefore, we conclude that S g 
c ≡ V �g . 

Moreover, the resulting zonotopes from the sensor groups are 

ndependent. As a result, the coalition zonotopes cannot be used 

o infer new information about other zonotopes. 

3.2. Coalition of sensor groups g and the aggregator 

The view of the coalition is defined by 

 

�
ga = 

(
V 

�
g , V 

�
a 

)
(A.22) 

ith 

 

�
a = 

(
� ̄c g,k � , Ḡ g,k , � ̄c r,k � , Ḡ r,k , � ̂  c a,k � , ˆ G a,k , q, F , Q k , coins a , pk 

)
(A.23) 

here � ̄c r,k � and Ḡ r,k represents the encrypted center and the gen- 

rators of the remaining sensor groups which are not part of the 

oalition. The simulator, denoted by S ga , can be constructed from 

he input and output ( H g,k , R g,k , F , pk , q, Q k , y g,k ). Specifically: 

1. Add H r,k and R r,k as they are public information. 

2. Compute Ḡ g,k and Ḡ r,k according to (16) . 

3. Compute ˆ G a,k according to (18) . 

4. Generate ˜ � ̄c g,k � , 
˜ � ̄c r,k � , ̃

 � �g � , and 

˜ � ̂ c a,k � according to the distri- 

butions of the original values. 

5. Let the combination of coins of all parties be coins ga = 

( coins a , coins g ) . Generate ˜ coins ga according to the distribu- 

tion of coins ga . 

6. Compute c̄ g,k according to (15) . 

We end up with the simulator 

 ga = 

(
pk , H r,k , R r,k , H g,k , y g,k , R g,k , Ḡ g,k , ̄c g,k , 

˜ � ̄c g,k � , ̃
 � ̄c r,k � , 

˜ � �g � , 

Ḡ r,k , 
˜ � ̂  c a,k � , ˆ G a,k , q, F , Q k , ̃

 coins ga , pk 
)
. (A.24) 

Thus, we find that S ga 
c ≡ V �ga . The target of this coalition is to get

he zonotopes of the remaining groups, denoted by N r with size d r . 
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he centers of the zonotopes are related by ∑ 

j∈N r 
w 

j 

a,k 
� ̄c g j ,k � � � ̀c a,k � 

∑ 

j∈N 
w 

j 

a,k 
= 

∑ 

j∈N /r 

w 

j 

a,k 
� ̄c g j ,k � . (A.25) 

The right hand side of (A.25) is known to the coalition. How- 

ver, since the coalition does not have the private key, the privacy 

f the centers of the remaining group can be guaranteed. 

3.3. Coalition of sensor groups g and the query 

The view of the coalition is defined as V �gq where V �gq = 

V �g , V �q 
)

with V �q given by 

 

�
q = 

(
� ̂  c a,k � , ̂  c a,k , ˆ G a,k , q, F , Q k , coins q , pk , sk , � �q � 

)
. (A.26) 

Constructing the simulator S gq from the inputs and outputs of 

he coalition as done before results in 

 gq = 

(
pk , sk , H g,k , y g,k , R g,k , Ḡ g,k , ̄c g,k , 

˜ � �q � ̃
 � ̂  c a,k � , ̂  c a,k , ˆ G a,k , ̃

 coins gq 

)
, 

(A.27) 

hich implies that S gq 
c ≡ V �gq . The target of this coalition is to get

he zonotopes of the remaining group, denoted as before by N r 

ith size d r . Rewriting (A.25) after decryption – as the query has 

he Paillier private key sk – results in 

 r,k C r,k = z g,k , (A.28) 

ith 

 g,k = 

∑ 

j∈N /r 

w 

j 

a,k ̄
c g j ,k − c̀ a,k 

∑ 

j∈N 
w 

j 

a,k 
, (A.29) 

 r,k = [ w 

j 1 
a,k 

I n , w 

j 2 
a,k 

I n , . . . , w 

j d r 
a,k 

I n ] ∈ R 

n ×nd r , (A.30) 

 r,k = [ c T j 1 ,k , c 
T 
j 2 ,k 

, . . . , c T j d r ,k 
] T ∈ R 

nd r , (A.31) 

here z g,k is known to the coalition. Similarly to the proof of 

heorem 1 and according to [47 , Theorem 6.4], ˜ C r,k is a solution 

f (A.28) for any X r ∈ R 

nd r where 

˜ 
 r,k = W 

−
r,k 

z g,k + (I nd r − W 

−
r,k 

W r,k ) X r , (A.32) 

nd where W 

−
r,k 

is any generalized inverse of W r,k . For every so- 

ution 

˜ C r,k of (A.14) there is a X r . If I nd r − W 

−
r,k 

W r,k = 0 , we end

p with a consistent system with one solution [47 , Theorem 6.1]. 

hus, we aim to find conditions at which I nd r − W 

−
r,k 

W r,k � = 0 to

nsure privacy. We have rank (W 

−
r,k 

W r,k ) ≤ min { nd r , n } according to

47 , Theorem 2.8]. Thus, under the condition d r > 1 , it follows that

 pd r − W 

−
r,k 

W r,k � = 0 which ensures privacy of C r,k . 

4. Proof of Theorem 4 

In the following proof, we consider the view and simulation for 

ne step (i.e., k th th step) for notational convenience. The proof for 

 ∈ N 

+ steps is similar to the proof of Theorem 1 . We are going to

rove the privacy against the three coalitions as follows: 

4.1. Coalition of sensor groups g

The view of the coalition can be defined by 

 

�
g = 

(
V 

�
g 1 

, . . . , V 

�
g t 

)
= 

(
pk , H g,k , y g,k , R g,k , Ḡ g,k , ̄c g,k , � ̄c g,k � , 

Ā g,k , ̄b g,k , � ̄b g,k � , � �g � , coin g 

)
. (A.33) 

gain, sensors only submit their encrypted data to the aggregator. 

ence, a simulator S s given by 

 g = 

(
pk , H g,k , y g,k , R g,k , Ḡ g,k , ̄c g,k , 

˜ � ̄c g,k � , Ā g,k , ̄b g,k , 
˜ 

� ̄b g,k � , 
˜ � �g � , 

˜ coin g 

)
,

(A.34) 
13 
s obtained by generating ˜ � ̄c g,k � , ̃
 � �g � , 

˜ 

� ̄b g,k � and 

˜ coins g . The gener- 

ted and the original values are generated according to the same 

istribution and are independent from other parameters. Therefore, 

e conclude that S g 
c ≡ V �g . 

Moreover, the resulting constrained zonotopes from the sensor 

roups are independent. Thus, the coalition zonotopes cannot be 

sed to infer new information about other zonotopes. 

4.2. Coalition of sensor groups g and the aggregator 

The view of the coalition, denoted by V �ga , is 

 

�
ga = 

(
V 

�
g , V 

�
a 

)
= 

(
V 

�
g , � ̄c g,k � , Ḡ g,k , Ā g,k , � ̄b g,k � , � ̄c r,k � , Ḡ r,k , Ā r,k , � ̄b r,k � , � ̂  c a,k � , 

ˆ G a,k , ˆ A a,k , � ̂ b a,k � , q, F , Q k , coins a , pk 
)

(A. 33) = 

(
H r,k , R r,k , H g,k , y g,k , R g,k , ̄c g,k , Ḡ g,k , � ̄c g,k � , Ā g,k , ̄b g,k , � ̄b g,k � , 

� ̄c r,k � , Ḡ r,k , Ā r,k , � ̄b r,k � , � ̂  c a,k � , ˆ G a,k , ˆ A a,k , � ̂ b a,k � , q, F , Q k , 

coins ga , pk 
)

(A.35) 

here 〈 � ̄c r,k � , Ḡ r,k , Ā r,k , � ̄b r,k � 〉 , represents the encrypted constrained

onotopes of the sensor groups which are not part of the coalition. 

he simulator, denoted by S ga , can be constructed given the input 

nd output ( H g,k , R g,k , F , pk , q, Q k , y g,k , ̄b g,k , ̄c g,k ) as follows: 

1. Add H r,k , R r,k as they are public information. 

2. Compute Ḡ g,k and Ḡ r,k according to (22) . 

3. Compute Ā g,k and Ā r,k according to (23) . 

4. Compute ˆ G a,k according to (28) and reduction operation sim- 

ilar to (26) . 

5. Compute ˆ A a,k according to (34) and reduction operation sim- 

ilar to (26) . 

6. Generate ˜ � ̄c g,k � , 
˜ � ̄c r,k � , and 

˜ � ̂ c a,k � according to the distribu- 

tions of the original values. 

7. Generate 
˜ 

� ̄b g,k � , 
˜ 

� ̄b r,k � , and 

˜ 

� ̂ b a,k � according to the distribu- 

tions of the original values. 

8. Let the combination of the coins of all parties be coins ga = 

( coins a , coins g 1 , . . . , coins g t ) . Generate ˜ coins ga according to 

the distribution and of coins ga . 

We end up with the following simulator 

 ga = 

(
H r,k , R r,k , H g,k , y g,k , R g,k , ̄c g,k , Ḡ g,k , 

˜ � ̄c g,k � , Ā g,k , ̄b g,k , 
˜ 

� ̄b g,k � , 

˜ � ̄c r,k � , Ḡ r,k , Ā r,k , 
˜ 

� ̄b r,k � , 
˜ � ̂  c a,k � , ˆ G a,k , ˆ A a,k , 

˜ 

� ̂ b a,k � , q, F , Q k , 

˜ coins ga , pk 
)
. (A.36) 

Thus, we find that S ga 
c ≡ V �ga . Similarly to Appendix A.3.2 , the 

oalition is not be able to infer information about the constrained 

onotopes of the remaining group. 

4.3. Coalition of sensor groups g and the query 

The view of the coalition is defined by 

 

�
gq = 

(
V 

�
g , V 

�
q 

)
= 

(
V 

�
g , � ̂  c a,k � , � ̂ b a,k � , ̂  c a,k , ˆ G a,k , ˆ A a,k , ̂

 b a,k , q, F , 

Q k , coins q , pk , sk , � �q � 
)

(A. 33) = 

(
H r,k , R r,k , H g,k , y g,k , R g,k , ̄c g,k , Ḡ g,k , � ̄c g,k � , Ā g,k , ̄b g,k , � ̄b g,k � , 

� ̂  c a,k � , � ̂ b a,k � , ̂  c a,k , ˆ G a,k , ˆ A a,k , ̂
 b a,k , q, F , Q k , coins gq , pk , sk , 

� �gq � 
)
. (A.37) 
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Constructing the simulator S gq from the inputs and outputs of 

he coalition is done as before 

 gq = 

(
H r,k , R r,k , H g,k , y g,k , R g,k , ̄c g,k , Ḡ g,k , 

˜ � ̄c g,k � , Ā g,k , ̄b g,k , 
˜ 

� ̄b g,k � , 

˜ � ̂  c a,k � , 
˜ 

� ̂ b a,k � , ̃
 ˆ c a,k , ˆ G a,k , ˆ A a,k , ̂

 b a,k , q, F , Q k , coins gq , pk , sk , 

˜ � �gq � 
)
, (A.38) 

hich in turn implies that S gq 
c ≡ V �gq . The target of this coalition 

s to get the constrained zonotopes of the remaining groups. As 

hown in (33) , any center and generator of the coalition can deter- 

ine the containing zonotope of the constrained zonotope. How- 

ver, the remaining rows of the � ̀b a,k � in (34) , which belongs to the

on-colluding sensor group, can not be inferred from the coalition. 
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