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The set-based estimation has gained a lot of attention due to its ability to guarantee state enclosures for
safety-critical systems. However, collecting measurements from distributed sensors often requires out-
sourcing the set-based operations to an aggregator node, raising many privacy concerns. To address this
problem, we present set-based estimation protocols using partially homomorphic encryption that pre-
serve the privacy of the measurements and sets bounding the estimates. We consider a linear discrete-
time dynamical system with bounded modeling and measurement uncertainties. Sets are represented by
zonotopes and constrained zonotopes as they can compactly represent high-dimensional sets and are
closed under linear maps and Minkowski addition. By selectively encrypting parameters of the set repre-
sentations, we establish the notion of encrypted sets and intersect sets in the encrypted domain, which
enables guaranteed state estimation while ensuring privacy. In particular, we show that our protocols
achieve computational privacy using the cryptographic notion of computational indistinguishability. We
demonstrate the efficiency of our approach by localizing a real mobile quadcopter using ultra-wideband

wireless devices.

© 2023 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

State estimation from noisy measurements is of great impor-
tance in many areas, such as navigation, communication, and
remote sensing. Many of these applications are based on prior
knowledge of noise distributions. However, assumed noise distri-
butions are not always sufficiently accurate or even unknown. Fur-
thermore, safety-critical applications require guaranteed state in-
clusion in a bounded set to provably avoid unsafe sets. This moti-
vates the need for set-based estimation, which estimates the set of
all possible system states when input disturbances and observation
errors are unknown but belong to given bounded sets [12]. Set-
based estimators are used in many applications, such as underwa-
ter robotics [34], fault detection [19,46], leader-follower problems
[27], and localization [16]. We refer the reader to [9] and refer-
ences therein for more related work on set-based estimation.
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Some state estimation algorithms require measurements ma-
de by a set of spatially distributed sensors. For instance, cellu-
lar signals from distributed mobile devices can be measured by
base stations to estimate the targeted device location [4]. Situ-
ational awareness in safe autonomous driving requires collecting
measurements from distributed vehicles and infrastructure nodes
[43]. These computations require cloud-based services that aggre-
gate and process gathered information to provide estimates with
guarantees. However, this often requires that clients disclose sen-
sitive information to the cloud to receive appropriate control deci-
sions. This causes security vulnerabilities [18,31], especially when
sensors do not belong to the same trust zone in which members
of the same organization trust each other. For this reason, we focus
on set-based estimation in the cloud with estimation and privacy
guarantees.

1.1. Related work

There exist three types of set-based observers: strip-based ob-
servers, set-propagation observers, and interval observers [9]. Since
we will use strip-based observers in this work, we focus our liter-
ature review on this observer type and refer the interested reader
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to [9] for the other observer types. Strip-based observers intersect
the propagated set of states with the set of states consistent with
the next measurement to obtain the next set of possible states. The
set representation is essential to obtain a good computational com-
plexity ratio and the estimated sets’ achieved tightness. Ellipsoids
are explored in [12,41,51], where the computations are generally
efficient but not exact for the Minkowski sums. A new geomet-
ric method based on the Minkowski sum is proposed in [51] to
produce a distributed ellipsoidal estimation. Zonotopes [38] are
a special class of polytopes for which one can efficiently com-
pute linear maps and Minkowski sums - both are important op-
erations for set-based observers. Set-membership using zonotopes
is explored in [26]. A novel zonotope intersection method and a
new distributed set-based estimator were proposed in [2]. A dis-
tributed zonotopic and Gaussian Kalman filter is proposed in [21],
where each network node implements a local state estimator using
zonotopes and Gaussian noise mergers. Polytopes [13] and ortho-
topes [11,32] were explored as well.

Related work on set-based estimation does not provide privacy
guarantees. Homomorphic encryption allows processing over en-
crypted data and has been used as a countermeasure for cloud-
side information leakage, enabling useful tasks to be accomplished
while keeping the data confidential from untrusted parties. Over
the past few years, a significant effort in the form of a homo-
morphic library [28] has been made to make fully homomorphic
encryption practical. Homomorphic encryption has been used for
computationally expensive tasks over genome data [39] and clas-
sification over encrypted data [15]. However, fully homomorphic
encryption remains impractical for real-time estimation [1, Sec-
tion 2.10.1]. That said, partial homomorphic encryption methods
are more promising and have been used for encrypted control
[6,37], image processing [53], estimation [4,44], deep learning [10],
optimization [50], and ride-sharing [25].

A related technique to our work is differential privacy [33,52],
which relies on the addition of structured noise to the data before
sharing it, which preserves privacy. Variants of this scheme, such
as local differential privacy [22,23] and geo-indistinguishability
[14], have been designed to ensure differential privacy for location
data. However, the privacy guarantees of these methods are often
achieved at the expense of accuracy [17]. In other words, the added
structured noise results in a loss of estimation accuracy, making it
unsuitable for use in safety-critical systems. To overcome the ad-
dition of excessive noise, a combination of homomorphic encryp-
tion with distributed noise has been proposed in [49], where each
estimator generated its share of the aggregated noise required for
differential privacy [24] and sent encrypted and obfuscated data to
the aggregator.

1.2. Contributions

To the best of our knowledge, for the first time, we leverage
a partially homomorphic cryptosystem to calculate encrypted sets
that enclose states based on encrypted measurements and esti-
mates from sensors or sensor groups. This work introduces two
protocols providing state inclusion and privacy guarantees. In par-
ticular, we show that our protocols achieve computational privacy
using computational indistinguishability against different coalitions
of participated entities. We leverage state-of-art state estimation
techniques in combination with homomorphic encryption to pro-
vide privacy-preserving set-based estimation protocols with secu-
rity guarantees. Our entire code and data are available online.!

More specifically, we make the following contributions:

1 https://github.com/aalanwar/Encrypted- set-based-estimation.
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« We encrypt a set of states using a partially homomorphic
cryptosystem with different levels of privacy based on se-
lective encryption and geometric features of the chosen set
representation.

+ We present two set-based estimation protocols which pre-
serve privacy between sensor and sensor groups.

« We prove security guarantees of the two protocols against
different coalitions, using formal cryptographic definitions
of computational indistinguishability for protecting the es-
timated set position (Theorems 1 and 3) and protecting the
estimated set position and shape (Theorems 2 and 4).

1.3. Outline

The paper is organized as follows: In Section 2, we provide the
necessary preliminaries. We formulate the problem and set our
privacy goals in Section 3. After proposing the notion of encrypted
sets in Section 4, we introduce protocols to privately bound the
state among distributed sensors in Section 5 and then among sen-
sor groups in Section 6. Finally, we evaluate the proposed protocols
in Section 7 and conclude this paper with Section 8.

1.4. Notation

Vectors and scalars are denoted by lowercase letters, matrices
are denoted by uppercase letters, the real and natural numbers
are denoted by R and N. We denote the set of positive real and
positive natural numbers by R™ and N*, respectively, and all other
continuous sets are denoted by calligraphic letters. For a given ma-

trix M e Rk, its Frobenius norm is given by M|z = ,/tr(MTM).

For two sets My € RY, and M, € RY, the Minkowski sum and the
intersection are denoted by M; B M, and Mj N M,, respectively.
For a set M C RY, its linear map is denoted by LM, where L € RV*4,
For a given matrix M (can also be a vector or scalar), we denote
with [M] the encrypted value of M. For given vectors a; and a, of
same dimension, we denote with [a{] & [a;] and [a{] & [az] the
sum and difference over the encrypted values of a; and a,, re-
spectively. For two real scalars a and b, we denote with a ® [b]
the multiplication of the encrypted scalar b with the unencrypted
scalar a. We denote probability of an event E by Pr[E]. The cardi-
nality of a set M is denoted by |M]|. For a given vector x € RP, the
ith component of x is denoted by x;; € R. We denote the reduce
operator returning an over-approximative zonotope with q genera-
tors by |q.

2. Preliminaries
In this section, we review the required preliminaries.
2.1. Set representations and set-based estimation

We define the following set representations:

Definition 1 (Zonotope) [38]. An n-dimensional zonotope Z is de-
fined as

Z:{XGR”

X=c+GB. ||,3||Do§1}, (1)

where c € R" is the center, G € R"*€ is the generator matrix of the
zonotope, and B € R¢ is the vector of zonotope factors. For later
use, we represent the zonotope by Z = (c, G). Note that G consists
of e generators g e R", i=1,...,e, such that G =[g1), ... g®].

This definition can be interpreted as the Minkowski sum of
|Bil < 1}, where

a finite set of line segments [ = {g(i),BieR"
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Fig. 1. Construction of a zonotope.

iefl,..., e} (see Fig. 1). For a zonotope Z = (c,G), we de-
note its F-radius as |G|z. Given two zonotopes Z; = {(cy,Gq)
and 2, = (cy, Gy), the Minkowski sum is computed as Z; B 2, =
(c1 + 2. [Gq, G3]), whereas the linear map is computed as LZ; =
{Ley, LGy) [7].

Definition 2 (Constrained Zonotope) [48, Prop.
dimensional constrained zonotope is defined as

X=c+GB, AB =b, ||ﬁ||m§1}, )

where ¢ € R" is the center, G € R"™"™ is the generator matrix, 8 €
R, and A € R"*"s and b € R™ constitute the constraints. In short,
we write C = (c, G, A, b).

1]. An n-

C={XGR”

2.2. Paillier homomorphic cryptosystem and privacy eefinitions

A homomorphic cryptosystem supports computation over en-
crypted data. Our protocols heavily rely on Paillier additive ho-
momorphic cryptosystems [45], which is a probabilistic public key
cryptography scheme. The Paillier cryptosystem supports

DECRYPT ([a] & [b]) = a + b, (3)

DECRYPTg (a® [b]) = a- b, (4)

where sk is the private key associated with the public key pk used
for encryption. We will omit the symbol ® when the type of multi-
plication can be inferred from the context. Our proposed protocols
can utilize different homomorphic encryption schemes instead of
the Paillier cryptosystem as long as it supports the same function-
ality.

Homomorphic encryption does not support float numbers. The
naive solution is multiplying the float number by 10/ where f is
the number of floating digits [5,35,42]. However, the recursive ex-
ecution of the estimator or the controller generally requires recur-
sive multiplication with fractional numbers. This approach requires
truncating the significance of the state from time to time to avoid
overflow. Such truncation might lead to computation errors and
fast overflow. We can not use a solution that introduces compu-
tation errors because we provide safety and set containment guar-
antees. To overcome this limitation, we represent float numbers by
a positive integer exponent and an integer mantissa, as we did in
our previous work [53]. This representation provides exact compu-
tations. However, it still suffers from overflows after some itera-
tions.

We define {0, 1}* as a sequence of bits of unspecified length. An
ensemble X = {Xo}oen is a sequence of random variables X, ranging
over strings of bits of polynomial length in 0. We need the follow-
ing definitions in our privacy proofs.

Definition 3 (Computationally Indistinguishable) [30, p.105]. The
ensembles X = {Xo}oen and Y = {Yp}oen are computationally indis-

tinguishable, denoted X <Y, if for every probabilistic polynomial-

time algorithm D, every positive polynomial p : N* — R*, and all
sufficiently large o, it holds that

1
p(o)’

In other words, given an algorithm D, we consider the proba-
bility that D outputs 1 given an ensemble taken from the two ran-
dom variables X, and Y, as input. Then, we say X <Y if no efficient
algorithm can tell the difference between them except with small
probability

Pr{D(X,) = 1] - Pr[D(Y,) = 1]| < (5)

1

p(o)”

Definition 4 (Execution View). Let f:R°+ R° be a deterministic
polynomial-time function and IT a multi-party protocol comput-
ing f(X), where X € R°. The view of the it" party during an ex-
ecution of IT on X, denoted by V,.“, is (x;, coins, M;), where coins
represents the outcome of the ith party’s internal coin toss, and
M; represents the set of messages it has received. For coalition

I={i1,....it} € {1,...,0} of parties, the view V,l_I (X) of the coali-
tion during an execution of IT is defined as
Vi@ = (LvI®,.... v ®). (6)

This means that the view of the party is all its accessible infor-
mation and the view Vll_l (%) of the coalition I is the union of all the
views of coalition parties.

Definition 5 (Multi-party Privacy w.r.t. Semi-honest Behavior). Let
f:R%+ RO be a deterministic polynomial-time function and IT a
multi-party protocol computing f(X), where x € R°. For a coalition
I={i,....it} < {1,..., 0} of parties, we have x; = (x; ,....x;) and
fi® = (£, ®),.... f,(®). We say that TT computes f(%) privately
if
- there exists a probabilistic polynomial time algorithm, de-
noted by simulator S, such that for every I C {1,...,0} [30,
p.696]

S(x, fi®) =y @), (7)

- the input and output of the coalition cannot be used to infer
extra private information.

Put differently, a protocol privately computes f(x) if whatever
can be obtained from a party’s view of a (semi-honest) execution
could be essentially obtained from the input and output available
to that party [30, p. 620]. Also, the inputs and outputs of the coali-
tion cannot be used to infer extra private information. Thus, our
privacy proofs will always consist of the two parts of Definition 5.

3. Problem setup

Next, let us introduce some entities for our problem setups vi-
sualized in Figs. 2 and 3.
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Fig. 2. Diagram for the considered setup in Problem
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Fig. 3. Diagram for the considered setup in Problem 2.
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« Plant T: A passive entity whose set of possible states needs
to be estimated. We consider discrete-time linear systems
with bounded noise, specifically

Xip1 = Fxp +mny
Yik = HiXi + Vi,

(8)

where x, € R" is the state at time k € N, y;, € RP denotes
the measurement observed at sensor i, F is the process
matrix, H;j stands for the measurement matrix, n, € Q; is
the process noise bounded by process noise zonotope Q; =
(0, Qy), and v;, € Ry, is the measurement noise bounded by
measurement noise zonotope Ry = (0, diag([ry k. ..., Tmil))-
All vectors and matrices are real-valued and have proper di-
mensions.

Sensor S;: An Entity with index i that provides private mea-
surements. Its owner does not trust other active entities.
Aggregator A (or Cloud): An untrusted party which has rea-
sonable computational power. It executes the proposed pri-
vate set-based estimation protocols over encrypted sensor
information.

Query Node Q: An untrusted party that has a known public
key pk and a hidden private key sk. The query node is the
only node that is entitled to know the set of states of the
plant T. It might be the plant T, but can also be any other
entity other than the aggregator A (in order to preserve pri-
vacy).

Manager M(): An Entity with index j which estimates the
state for a group of sensors and handles communication
with other entities.

Sensor Group GU): An Entity with index j which consists
of m; sensors Sl.(”, ie{l,....m;}, and one manager M)
owned by one organization. All sensors within a group trust
each other and do not trust other entities. Each sensor group
aims to keep its measurements and estimates private from
other groups and parties.

We provide the following definitions which are essential for
set-based estimation:

Definition 6 (Set-based Estimator). Given system (8) with initial
state xg € (g, Gp), the set-based estimator aims to find the cor-
rected state set S;, with state containment guarantees at each
time step k, i.e., Vk:x, € 5.

European Journal of Control 71 (2023) 100786

With xg € (co, Go), the predicted state set S, i.e., the set of all
possible state values, is, according to (8), given by

Sik=FSix 18 9)

For a given measurement y; ,, the measurement state set P; , is the
set of all possible state values satisfying the strip equation, i.e.,

Pik = {x‘lHi.kX —Yikl = ri,k}- (10)

Where convenient, we will use the shorthand P;; = (y; . Hix. i)
for a strip. The corrected state set S; is then the over-approxima-
tion of the intersection between 3,-,,( and P;, specifically

Sik 2 (Sik NPik)- (11)
We aim to find solutions for the following two problems:

Problem 1. We want to estimate the set of possible state values of
the plant T while ensuring that measurements are private to the
sensor nodes Si,...,Sm, m e N*, and the estimated set is private
to the query node Q.

Problem 2. We want to estimate the set of all possible state values
of the plant T while ensuring that measurements and internally
estimated sets are private to the sensor groups Gy, ..., Gy, d € N*,
and the estimated set is private to the query node Q.

To illustrate the practical relevance of Problems 1 and 2, con-
sider the following scenario:

Example 1. To avoid collisions between traffic participants in a
typical highway scenario (see Fig. 4), each participant aims to per-
ceive and comprehend a traffic situation by predicting the intent
of vehicles and road users. This can be done by computing and
sharing the reachable sets of all other traffic participants, known
as shared situation awareness [43]. However, computing these sets
is not always possible due to computational constraints or having a
participant in an occluded area from the perspective of others (see
the pedestrian in Fig. 4). The different entities are the following:
The plant is the combination of different car dynamics commu-
nicated in an initial phase, the sensors measure the distance be-
tween the traffic participants, the cloud is the aggregator, and the
street management unit that guarantees participants’ safety is the
query node, which aims to compute the estimated set of the po-
sition of each participant. A possible solution hereby is to let the
cloud compute reachable sets (and possible intersections thereof)
while preserving the privacy of each participant (Problem 1). Spe-
cific future scenarios may contain a car platoon trusting its partic-
ipants but not other platoons (Problem 2).

For both problems it is required to guarantee computational se-
curity during the estimation process. The query node Q is inter-
ested in finding the set of all possible state values of plant T in
both problems. We should note that the group manager locally es-
timates over unencrypted data in Problem 2, which is not the case
for Problem 1 (no group manager). If we consider the group of one
sensor, there is still a need for a group manager to perform the lo-
cal estimation over unencrypted data, so that Problem 1 is not a
special case of Problem 2.

To set our privacy goals, we must first define the following
coalitions that the attacker can perform for Problem 1:

Definition 7 (Sensor Coalition). A sensor colludes with up to t —
1 other sensors in Problem 1 by exchanging their private mea-
surements and cryptographic private keys, constituting the sensor
coalition. The coalition aims to retrieve the private information of
the non-participating sensors and the query node.

Definition 8 (Cloud Coalition). The aggregator A colludes with up
to t sensors in Problem 1 by exchanging their private values, cryp-
tographic private keys, and intermediate results, constituting the
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Fig. 4. Highway scenario with construction work as possible application for Problems 1 and 2. Reachable sets for each car are shown in their respective, transparent color

[36, adapted].

aggregator coalition. The coalition aims to retrieve the private in-
formation of the non-participating sensors and query node.

Definition 9 (Query Coalition). The query node Q colludes with
up to t sensors in Problem 1 by exchanging their private values,
cryptographic private keys, and the final decrypted outcome of the
estimation protocol, constituting the query coalition. The coalition
aims to retrieve the private information of the non-participating
Sensors.

The same definitions hold for Problem 2 by considering sensor
groups instead of sensors. We consider semi-honest parties [4] fol-
lowing the protocol properly, with the exception that they keep
a record of all its intermediate computations to infer extra infor-
mation. This paper aims to solve Problems 1 and 2 by proposing
multiple secure multi-party computation protocols. These proto-
cols should guarantee computational privacy against the aforemen-
tioned coalitions. The privacy goals are based on the concept of
computational indistinguishability, which is presented next, along
with the formal definition of multi-party privacy with respect to
semi-honest behavior while considering coalitions.

We state and summarize the assumptions of this work subse-
quently:

Assumption 1. We assume that both process noise n;, and mea-
surement noise v;; are bounded by a zonotope, ie., n; e Q=

(0, Qx), and v; € Ry = (0, diag([ry g, - -, T i]))-

Furthermore, we make the following assumption for the at-
tacker’s ability:

Assumption 2. The attacker can form sensor, aggregator, or query
coalitions (see Definitions 7-9).

It is worth mentioning that we exclude an aggregator-query
coalition, which is a common assumption in homomorphic encryp-
tion; see [5].

4. Encrypted set of states

The aforementioned set representations are deliberately chosen
such that they can be used with the Paillier cryptosystem and do
not reveal critical information about the measurements and esti-
mates. More specifically, we propose using zonotopes, constrained
zonotopes, and strips as set representations in privacy-preserving
set-based estimation:

1. Zonotopes: We homomorphically encrypt the center and
reveal the generator matrix, thus hiding the position of
the zonotope and only revealing the estimation uncertainty
(zonotope shape) described by the generator matrix.

2. Constrained zonotopes: To protect the estimation uncer-
tainty (more privacy) while introducing extra computation
overhead, we use constrained zonotopes instead of zono-
topes. Changing b of a constrained zonotope (c, G, A, b) (see
Definition 2) changes both its position and shape as shown
in Fig. 5(a). We propose to encrypt the vectors ¢ and b and
thus encrypt both position and shape of the set.

3. Strips: For a strip given by (10), we encrypt y;, and re-
veal H;, and r;;. Encrypting y;, preserves the privacy of
the strip position as shown in Fig. 5(b) for two strips with
Hi‘k = [7125, 1], ri,k = 1, and yi,k € {35, 95}

The chosen selective encryption will allow us to decouple the
computation of public information from private information, as we
will show later. We propose two protocols to solve Problems 1 and
2 while preserving the mentioned privacy goals. Two variants of
the proposed protocols solve the problems using zonotopes while
revealing the estimation uncertainty. The other two variants solve
the problems using constrained zonotopes while preserving the
uncertainty around the estimates. We start by discussing the pro-
tocol solving Problem 1.

5. Private estimation using distributed sensors

In this section, we introduce a protocol for estimating the set of
possible states using zonotopes and constrained zonotopes while
achieving our privacy goals. We first describe both protocols using
a general set representation and then specify the required opera-
tions for zonotopes and constrained zonotopes. The query node Q
generates the Paillier public key pk and private key sk and shares
the public key with other parties. It then chooses a large enough
initial set of possible states, enclosing the true state according to
the public information. The initial set SAq,O is encrypted by the
query node. We add the subscript g to the set notation to indicate
that the set computation is done at the query node. The initial en-
crypted set [[SAq’O]] is sent to the aggregator.

Our proposed privacy-preserving approach consists of three
steps: the measurement update, the time update, and sharing of
the results in a continuous loop, as presented in Protocol 1. More
specifically, during the measurement update, the aggregator col-
lects an encrypted strip [P; ] from each sensor node i at step k, as
shown in Fig. 6. The family of encrypted strips (measurements) is
intersected in the encrypted domain with the predicted reachable
set at the aggregator (indicated by subscript a) - initially, it is the
initial encrypted set [[§q,0]] sent by the query node - to obtain the
encrypted corrected set [S, ], shown in Fig. 6. Finally, the aggre-
gator performs the time update and sends the encrypted corrected
set [S, ], after decreasing its order, to the query node, which de-
crypts the result for each time step k.



A. Alanwar, V. Gafgmann, X. He et al.

10

21

(a) Two constrained zonotopes with different b values.
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(b) Two strips with different y;; values.

Fig. 5. Changing the effective parameter of constrained zonotope and strips.

Intersection

5D
S

Aggregator A

Sensor Node S1 Sensor Node S2

Fig. 6. Overview of Protocol 1 where every sensor shares an encrypted strip with
the aggregator, which then privately intersects these encrypted strips with an en-
crypted zonotope.

Protocol 1 Private estimation using distributed sensors.

The query node Q encrypts the initial set [[quo]] and sends it to
the aggregator node to have [S;0] = [S50]. At every time in-
stant k, every sensor node shares an encrypted strip [P;;] =
(Wikl. Hy, 1i k) with the aggregator which executes the following
steps:

Step 1: Measurement update at the aggregator:

[Said = [Sak-1] NPT N - .. 0 [Pri] (12)
Step 2: Time update at the aggregator:

Hga,k]] = F[[Sa,k]] & Qk (13)
Hga.k]] = »Lq Hga,k]] (14)

Step 3: The aggregator sends the encrypted set [[5a,kﬂ to the
query node which decrypts the result for each time step k.

We start by describing the required operations for the zono-
topic case. The intersection between zonotopes and a family of
strips can be performed according to [40] and is summarized in
the following lemma.

Lemma 1 [40, Prop.1]. The intersection Z_y NPy N...NPpy Of
a zonotope 2, y = (€_1.G,_1) and the family of m strips Pjy =
(Vik Hig 1ig) in (10), Yje N, |N|=m, is overapproximated by a

zonotope Z, = (¢ G;), where Ajk € R™P is the design parameter,
and

G =Cq + Z A Wik —HjxCe-1). (15)
JjeN

Gy = [(1 - Z)»j.kHj,k)qu, A1l ks ~~-7)‘m,krm.ki|~ (16)
JjeN

The factor Aj, € R**P is a degree of freedom in Lemma 1 which
we use to maximize the tightness of the intersection over-
approximation. Thus, we want to find Ay =[A..... Apy] that
decreases the uncertainty around the estimates. We achieve this by
computing the A, that decreases the Frobenius norm of the gen-
erator matrix Gy, in (16) [20].

During the time update step, the aggregator computes the time
evolution of the estimated encrypted zonotope according to (13)
and (14), i.e.,

6a,l< :FEa,kv (17)

Ca,k :[Féa,ka Qk]7 6a,k Z»Lq Ca.k~

Decreasing the order of the generator matrix, denoted by | ¢, is
done according to [29], which can be done over encrypted set as
the generator matrix is revealed.

The generators do not participate in determining the position of
the zonotope. Thus, it is sufficient to process over encrypted zono-
tope centers, as clarified in Section 4. Given the nature of the in-
tersection between the strips and a zonotope in Lemma 1, the op-
erations in the encrypted domain are decoupled from the plaintext
domain computations. Note that the Paillier properties in (3) and
(4) allow one to process (15) over the encrypted center [¢;] and
measurement [y; ;] in Protocol 1. This protocol computes (15) in
the encrypted domain and (16) in the unencrypted domain, where
we also compute A,. More specifically, we operate over encrypted
centers and measurements as follows:

(18)

6] =[6-1] @ > Ajk(yjxd © HjxlEknaD).

JjeN
[[Ea.k]] =F [[Ea,k}]v

The generators are in the unencrypted domain in all our algo-
rithms. The Minkowski sum in (13) is computed over encrypted
centers and unencrypted generators.

The next theorem summarizes the privacy of Protocol 1 against
different coalitions in Definitions 7-8 when we use zonotopes and
strips as sets.

(19)

(20)
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Theorem 1. Protocol 1 solves Problem 1 using encrypted zonotopes
while revealing the shape of the estimated zonotope and achieving
privacy against

- sensor coalitions,

« cloud coalitions,

« query coalitions if m.p > n, where m; is the number of non-
colluding sensors, p the measurement size, n the size of the
state.

The proof is detailed in the Appendix. To overcome the infor-
mation leakage in case of query coalitions when m;p < n, we pro-
pose a slight modification by keeping the strip parameter r; pri-
vate to the sensor and aggregator. Then, the aggregator swaps the
columns of the generator matrix ka before sending it to the query
node. Swapping the generator columns produces the same esti-
mated zonotope, but preserves privacy by preventing the coalition
from computing A, and thus also prevents the extraction of the
center [¢, ]

Next, we present the required operations using constrained
zonotopes. The following theorem shows the intersection in the
unencrypted domain.

Lemma 2. The intersection C,NPy N ...N Py of a constrained
zonotope Cp = (&, Gy, Ay, Bk) and the family of m strips Pj; =
Vjk Hjp rjr) in (10), Yje N, [N| =m, is a constrained zonotope
Cy = (€. Gy, Ay. by) where ;) € R™P is a degree of freedom and

Ge=Ch+ ) AWk — Hixb). (21)
JjeN
Ge=| U= AjeHj )G Ay g e - - )\m,krm,k]v (22)
SN
m Ay 0 o ... 0
H],qu 7T1,k 0 . 0
Ak — szka 0 —TIk ... 0 , (23)
_Hm,ka 0 0 —Tmk
by
Yik— Hl,k?k
b= | Y2k —Hl | (24)
_ym,k - Hm,kek

Proof. The results can be obtained by applying an intersection
from [48, Prop. 1] and then adding a degree of freedom from [48,
Prop. 5]. O

During the measurement update in Protocol 1 when using
constrained zonotopes, the aggregator performs the proposed in-
tersection over the encrypted center [¢,,_;] and the encrypted
constraint shift [[Ba,kfﬂ]. Note that various combinations of zono-
topes and constraints can represent the same constrained zono-
tope. Here, we exploit the additional degree of freedom in Aj and
choose it at random in our protocol, which improves privacy, as
discussed in the Appendix. Next, the aggregator propagates the
sets forward in time according to (8), and then reduces the order
of the given set [48], i.e.,

6a,k = FEa.kv Gu,k = [Fc_;a,k: Qk]s Ba,k = Ba.kv (25)

{Ga.k»Aa,k} :»Lq {6u,l<s/'_\a,k}~ (26)
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Fig. 7. Overview of Protocol 2 where every sensor group computes the intersection
between a zonotope and its strips. The aggregator then computes the intersection
over the encrypted zonotopes.

The privacy of Protocol 1 against different coalitions in
Definitions 7-9 is summarized in the following theorem.

Theorem 2. Protocol 1 solves Problem 1 using encrypted constrained
zonotopes while protecting the shape of the estimated set and achieves
privacy against

« sensor coalitions,
« cloud coalitions,
« query coalitions.

The proof is detailed in the Appendix. After presenting our con-
strained zonotopic privacy-preserving protocol for Problem 1, we
move on to the privacy-preserving protocol for Problem 2.

6. Private estimation using sensor groups

We provide a privacy-preserving protocol for Problem 2 in
Protocol 2, which is represented graphically in Fig. 7 for the zono-

Protocol 2 Private estimation using sensor groups.
The query node Q sends the initial set to each sensor group i e

{1,....d}, and the aggregator node A. For each sensor group i,
m; strips [[P;",:}] = ([[y;',){}], Hy, rj',)() je{1,...,m;}, are available. At

every time instant k, the following steps are executed:
Step 1: Measurement update at each sensor group i:

8P =81 nPin..n Pr(nii),k (29)
Step 2: Diffusion update at the aggregator:
[Saxl = ISM1N...n [8P] (30)
Step 3: Time update at the aggregator:
[[‘i],k}] = F[[Sa.k]] B O (31)
Hga,lcﬂ = \Lq Hga,k]] (32)

Step 4: The aggregator sends the encrypted set [[Sa,k]] to the
query node which decrypts and sends the results to the sensor
groups.

topic case. Each sensor j within group i is participating with a strip
(measurement) set 73;',2 at each time step k. All strips are collected
within the group i and are then intersected with the previously es-
timated set §u,k,1 in (29) in the unencrypted domain, as the group
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Fig. 10. CrazyFlie 2.0 quadrotor helicopter with UWB expansion.

participants trust each other and the plaintext execution is faster
than the encrypted domain execution. The owner of each sensor
group encrypts the resulting set S‘IE') and sends it to the aggregator,
which in turn computes the intersection of all received encrypted
sets in the encrypted domain in (30). Next, the aggregator per-
forms the time update. Finally, the aggregator submits [[S‘a,k]] to the
query node, which decrypts the result and sends it to each sensor
group.

We first describe the required operations for zonotopes and
then proceed with constrained zonotopes. In the measurement up-
date step, the intersection between a zonotope and a family of
strips is performed as described in Lemma 1. Unlike Protocol 1,
where we perform the aforementioned intersection at the aggre-
gator in the encrypted domain, we now intersect at the sensor
group level in the unencrypted domain since each sensor trusts all
other sensors from the same group. Different methods exist in the
literature for the zonotope intersection required during the diffu-
sion update. Here, we picked our previously proposed intersection

European Journal of Control 71 (2023) 100786

method described in [2], which fits the homomorphic computa-
tions, as summarized in the following lemma.

Lemma 3 [2, Th2]. The intersection Z;;N...NZy, between d

zonotopes Z;j, = (Ciy. Gix), 1€ {1,...,d}, can be over-approximated
using the zonotope 2 = (¢, G,) given by

d
R 1 ;
Ck = —57— ) _WirCik (27)
ZL] Wik ;
N 1 = ~
Gk = d—[WLkGl,k’ ceey Wd,kGd.k]’ (28)
i1 Wik

where the weights w;, are chosen such that Zle Wiy #0.

Let wy =[Wqy,...,Wq,], where d is the number of sensor
groups. Ideally, w is chosen such that the size of the zonotope
2, = (¢, G) is minimized. The size of the zonotope appears in the
unencrypted generator matrix due to the selective encryption, and
can be replaced by the Frobenius norm of the generator matrix.
The next theorem summarizes the privacy features of the protocol
against different coalitions in Definitions 7-8.

Theorem 3. Protocol 2 solves Problem 2 using encrypted zonotopes
while revealing the shape of the estimated set and achieving privacy
against

- sensor coalitions,

+ cloud coalitions,

« query coalitions if (dr > 1), where d, is the number of non-
colluding sensor groups.

The proof is detailed in the Appendix. In order to solve
Problem 2 without revealing the shape of the estimated set as in
Theorem 3, we again use constrained zonotopes. The intersection
between the constrained zonotopes and strips during the measure-
ment update of Protocol 1 is done according to Lemma 2 in the un-
encrypted domain. Then, the intersection between the constrained
zonotopes is performed, which we describe next.

Lemma 4. The intersection Cy,N...NCy) between d constrained
zonotopes C; = (Cjy. Gj . Ajx bjy) is a constrained zonotope 2 =
(ékv Gk, Ak’ bk>' where

Go=Ge Gi= [@Lk, 0. o] (33)
Ay 0 ... 0 ] " by ]
0 Ay ... 0 b 1
Ak = 0 0 e Ad,k s Bk = Bd,k . (34)
Gk =Gy Cok—Crk
| Gik 0 G | Ca.k — Crk_|

Proof. The lemma is the multi-strip intersection of [48, Prop.
1. O

Unlike for zonotopes, Lemma 4 computes the intersection ex-
actly. Then, the time update is done according to (25) and (26). The
privacy of the protocol against different coalitions in Definitions 7,
9, and 8 is summarized in the following theorem.
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Fig. 11. Ground truth, upper and lower bounds on the position components of the three-dimensional estimated states in meters of Protocol 1.

o992
=T NN No'e
L

0 1,000 2,000

Time Step

3,000

oo
=IO NoNe'
—

0 1,000 2,000

Time Step

3,000

Fig. 12. Estimation error for Protocol 1 using zonotopes and constrained zonotopes.

Theorem 4. Protocol 2 solves Problem 2 using encrypted constrained
zonotopes while protecting the shape of the estimated set and achieves
privacy against

« sensor coalitions,
« cloud coalitions,
- query codalitions.

The proof is detailed in the Appendix. In the next section, we
will evaluate the presented protocols.

7. Evaluation

In this section, we evaluate the proposed protocols using data
from a real-world testbed. We first describe our testbed in detail
and then evaluate the proposed protocols. The protocols are eval-
uated on a custom ultra-wideband (UWB) RF testbed based on the
DecaWave DW1000 IR-UWB radio.? The overall setup is the same
as in [3]. The main components of the considered testbed can be
summarized as follows:

1. The motion capture system consists of eight cameras capable
of performing 3D rigid body position measurements with an
accuracy of less than 0.5 mm.

2. The fixed nodes each consist of a custom-built circuit board
equipped with a ARM Cortex M4 processor with 196 MHz
(Fig. 8), powered over Ethernet and communicating via a De-
cawave DW1000 ultra-wideband radio (Fig. 9).

3. The battery-powered mobile node is a modified CrazyFlie 2.0
helicopter® (Fig. 10) and is equipped with the same DW1000
radio and ARM Cortex M4 processor.

For the sake of a fair evaluation between the four variants of
our two protocols, we used a collected data from the testbed and
ran the four variants on the same set of measurements. We aim to
estimate the set that encloses the location of the quadrotor while

2 Decawave DW1000: http://www.decawave.com/products/dw1000.
3 Bitcraze CrazyFlie 2.0: https://www.bitcraze.io/.

preserving our aforementioned privacy goals. We start with an ini-
tial set of size (8 x 8 m?) covering the whole localization area
at the initial point (time step k = 0). This set is then iteratively
shrunk by using the received measurements and performing geo-
metric intersections to correct the estimated set. Figure 11 shows
the true values, upper bounds, and lower bounds of the three-
dimensional estimated location of the four variants of Protocol 1.
We omit the results of Protocol 2 as they are close to the results
of Protocol 1. The upper bounds and lower bounds are obtained
by converting the zonotopes and constrained zonotopes to inter-
vals. It is worth mentioning that the result using the zonotopic
case of Protocol 1 is tighter than the result using the zonotopic
case of Protocol 2. This is because Protocol 2 requires two over-
approximations, namely, the intersection between every zonotope
and the family of strips and the intersection of the family of zono-
topes.

We consider the center of the estimated set to be the single-
point estimate in the zonotopic case. Thus, we report the local-
ization error with respect to the center of the zonotope. For con-
strained zonotopes, the reported center in the representation is the
center of the original zonotope without constraints and hence can
be outside of the constrained zonotope. Therefore, we compute the
Chebychev center of the polytope in the constrained zonotope fac-
tor space [8]. The estimation error of the four variants is presented
in Fig. 12.

There is a trade-off between the provided privacy, the compu-
tation overhead, and the exactness of set operations. Constrained
zonotopes provide more privacy, more computation overhead, and
less conservatism due to the exact set operations. On the other
hand, zonotopes provide less privacy due to revealing the shape
of the sets, less computation overhead, and more conservative sets.
The trade-off between the provided privacy and the execution time
is presented in Table 1. Keeping the shape of the estimated set pri-
vate by using constrained zonotopes instead of zonotopes increases
the required execution time. All computations were run on a sin-
gle thread of an Intel(R) Core(TM) i7-8750 with 16 GB RAM with
1024 key size. The comparison between the size of the reachable
sets appears in Fig. 11.
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Table 1
Execution time in ms.
Entities
Sensor/sensor group  Aggregator  Query
Protocol 1 using zonotopes 2371 3.195 0.550
Protocol 1 using constrained zonotopes 2371 6.632 14.529
Protocol 2 using zonotopes 8.389 5.968 0.550
Protocol 2 using constrained zonotopes 81.426 9.787 14.529

8. Conclusions

We proposed the first privacy-preserving, set-based observers
using homomorphic encryption. Both a traditional sensor setup as
well as a scenario where trusting sensors are grouped into sen-
sor groups are presented. We showed that by choosing zonotopes
and constrained zonotopes to represent our sets, it is possible to
selectively encrypt only the critical set parameters while achieving
the desired level of privacy. To prove that privacy for each protocol,
the concept of computational indistinguishability was used. Finally,
we evaluated our algorithms on real data from a physical test bed,
which showed that the proposed protocols achieve satisfactory re-
sults while guaranteeing privacy.

One main drawback of guaranteeing privacy using homomor-
phic encryption is the overflow problem after a sequence of op-
erations in the encrypted domain. To overcome the overflow lim-
itation, we send the encrypted set to the query node each time,
which decrypts the estimated set and sends the re-encrypted set
back to the aggregator. This solves the overflow problem at the
cost of computation and communication overhead. However, af-
ter the encrypted estimated set is sent from the aggregator to the
query node, decrypting said set is not regarded as overhead since
the query node is interested in the estimated set after each time
step by assumption, and thus decryption is required anyway. That
said, solving the overflow problem in a more efficient way is an
open research problem that we leave for future work.
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Appendix A. Theorems’ proofs

We need to show in the following proofs that the views and
simulators of the coalitions are computationally indistinguishable
and that the input and output of the coalition do not leak extra
private information according to Definition 5. This will be done for
each type of coalition. Showing the computational indistinguisha-
bility is done by building the views of each coalition then proving
that there is an equivalent simulator that could be obtained from
the input and output available to the coalition.

10

Remark 1. The view V and simulator S are computationally indis-
tinguishable V = S, if they have the same list of values or have val-
ues that are generated according to the same distribution and in-
dependent from other parameters [5].

We denote the quantities obtained by the simulator by (~)
which follow the same distribution but are otherwise different
from the quantities of the views. We may omit the time index k
from the views and simulators for simplicity. Here, the coins are
random numbers that are used for the encryption process and key
generation. Further information that is exchanged between other
parties over an encrypted channel is denoted by [I'x] for coalition
X. Note that the encrypted channel uses extra keys different from
the homomorphic encryption keys and uses double encryption to
protect privacy.

Al. Proof of Theorem 1

The proof consists of three types of coalitions as described bel-
low.

Al.1. Coalition of sensors s

The strip information is considered as the input to the sensor
and appears as part of the view and the simulator of the coalition.
We denote the view of coalition s consisting of the set of sensors
s={s1,...,s:} by V{1, which is defined as the combination of every
sensor view and given by

V= (vl )

< Vg,

(Hs.kaS,k’ sk [Vs.k]. coinss, pk, [[rsﬂ)s (A1)

where the subscript s on Hgy, ys . I's , denotes an array of strip in-
formation of the coalition. The sensors only submit their encrypted
data to the aggregator. Hence, a simulator, denoted by Ss, consists
of the input and output and by generating [I's], [ys,] and coinss,
ie.

Ss

(A2)

(pk’ Hs.kv.Vs,ks Tsk mv COinSs, [[F;]])

The coins; are generated according to the same distribution of
coinss and are independent from other parameters, where the

same is true for [[T“Vs]] and [I's] as well as m and [y; x]. Therefore,

we conclude that S; = V1.

Moreover, the information contained in each strip is indepen-
dent from all others. Thus, the coalition strips cannot be used to
infer new information about other strips. The information in each
iteration is different from other iterations. That is why we con-
sidered only a single step in the previous proof. In the following
two subsections, we will prove that the view of each coalition after
K e N7 iterations of the protocol is computationally indistinguish-
able from the view of a simulator that executes K iterations.

A1.2. Coalition of sensors s and aggregator

The view of the aggregator is denoted by VM. We denote the
view of a coalition consisting of a set of sensors by s = {sq,..., st}
and the aggregator by VI which is defined by

Vsl;[ — (VSH’ Val'l) — (VSH’K, Val'I,K)’ (A3)
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where Vsr“( and Van*’( are the views of the aggregator and coalition
of sensors, after executing K iterations, respectively, and are given
by

VH k+1

(Vl'[ k Ik+1) Val'[,k+1

= (VM I (A4)

Vk=0,1,...,K—1, where I¥ and I¥ are the newly added data
points at the kth iteration for the coalition of sensors V-0 =
9 and aggregator V10 =19, The view of the aggregator con-
tains encrypted strips (Hy. [Vs]. rsx) from the sensors, initial
set (ﬂfq,oﬂ,éq,o) from the query node, and the estimated set
([€akl. Ca,k> at k' jteration. Let us denote the strip information of
the sensors at the kt iteration, which are not part of the coalition
by subscript r, i.e., (Hyk. [Vril. k), k=0,1,..., K — 1. Then, I¥ and
I¥ are

Ig = (Hs,k’ [D/s,k]]s Ts ks Hr,ks Hyr.k]]’ Tk ﬂfq.Oﬂw

Gg.0. [€ax]. Ga. coinsa, pk. q. F. Q). (A.5)

If = (Hs,kv}/s,k, Tske> skl coinss,pk, [[Fsﬂ), (A.6)

where Z;o = (5q,o,éq_o) is the initial zonotope at the query node
and Zg ) = (€1 Ga) is the estimated zonotope on the aggregator
side at time step k. The view of the coalition VI is constructed
from (A.3) to (A.G). Let the simulator of the coalition be denoted
by Ssq = Sfa, where Sfa is the simulator after executing K iterations.
The simulator Sgq can be iteratively constructed by combining the
values obtained at each time step k as follows:

Skel — (kIS k=0,1,...,K—1,

sar “sa

(A7)

where 51 is the portion of the simulator generated at iteration
k + 1, which is given by

Sk —~— —~— /A—\/ A
Isa = (Hs,k’ [D/s,k]]s Ts ks Hr.kv [[yr,k]]’ Tk [[Cq,O]]w Gq.Os

[Iéa.k]]’ Cak’ COinSSﬂ? q, F’ Qk’ .ys,lw pk7 [[’1:;]])

and where the values are computed or generated as follows:

1. Generate [[T‘Vs]], m, [Carls m and m according to the
same distribution of [I's], [Cqol. [€qkl, [Vrk] and [y ], re-
spectively.

2. Compute Ca_k according to (16).

3. Let the combination of all coins of the parties be coinsgg =

——

(coinsg, coinsg). Generate coinss, according to the distribu-
tion of coinsg,.

Based on this generation scheme, the values [ﬁ] and []] are indis-
tinguishable and all remaining variables in Ifb"“ are either public
or feasible through the protocol steps. After all iteration steps, we
end up with a simulator that satisfies Sg, < VSE[.

The second part of the proof is about inferring extra private in-
formation from the input and output. The coalition’s target is to
determine the private measurement of the remaining sensors y, .
Note that the relation between [y; ;] and [y, ] is characterized by
(A.8).

> hiklyikd = hjkHjx = DCak-1] & [Caxl

JeN; JjeN
Z AjklYikl ,

JjeNr

o (A.8)

known to the coalition in plaintext

where A is the set of the remaining sensors. Since the coalition
does not have the private key and the query node sends the ini-
tial encrypted center [, o], we end up with an underdetermined
system in (A.8).

1
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A1.3. Coalition of sensors s and query node
We denote the view of a coalition consisting of a set of sensors

by s = {sy,...,s:} and define the query as
I m y/10 MK /0,
Vig = (Vv = (VTR VK, (A9)
where
Vsl'[,k+1 — (Vsl'l,k I£<+l) Vl'[ k+1 (Vl'l k Ik+1) (AlO)

Vk=0,1,....K -1, where I is given in (A.6), and I} are the newly

added data points from the k" iteration for the query node with
V10 =19 such that

Ik = (Eq,O’ Cq 0 Ea.kv Ca.kv [[ga.k}]v COinqu Hrsq]v pk, Sk)~ (A-]l)

The view of the coalition VI;[ is constructed from (A.6),

(A.10) and (A.11). The construction of the simulator is similar to
Appendix A.1.2. Thus, we focus on the values added in the kth it-
eration to the simulator. Let the combination of all coins of the
parties be denoted by coinssg = (coinsg, coinss). The inputs and
outputs to the coalition are (pk, sk, Hs . ¥s ks Ts.» Cae> Gak> €4.0- Gg.0)-
Thus, the simulator qu can be easily generated by

—

(pk’ Sk, Hsk»ys.k» rs,lo Cq,Ov Gt;{.Os Ca,k, Ga,lm [[Ca.k]]’

coinssg, [['sql, S§q*1).

Sk =
(A12)

The tuples ([¢, ], coinssg, [I'sg]) and (m C/(;};I/SSq,m) are
generated according to the same distribution and are independent
from other parameters. Therefore, S 5 = ( I"), which leads to

(A13)

In case of a coalition between s sensors and the query node, the
aim would be to find the measurements of the remaining group,
denoted by N; with size m;,. Rewriting (A.8) after decryption - as
the query has the Paillier private key sk - results in

Ar.kYr,k = Zs,k? (A14)
where
Zoe=Y_ M)kt + Cak = Y ik

JjeN jeNr

nxpm
Ar.k = [)‘J'Lk’)‘jz.k’"")‘jm,,k] e R™ P

_ T T T T pm,
Yr,k_[yjlyk,yjz,k,...,yjmpk] e RPM™

where z is known to the coalition given that A;; is computed
based on the generator matrix. To find the conditions at which the
privacy of Y, is ensured, we show that there is no unique retrieval
for Y, ;. This non-unique retrieval requires that (A.14) has multi-
ple solutions. According to [47, Theorem 6.4], Vr.k is a solution of
(A.14) for any X; € RP™ with

Y= Ar_kzs,k + (Ipmr -A Ank)xrs

where Ark is any generalized inverse of A, ;. For every solution

V., of (A14) there is an X.. For Ipm, — A Ak =0, the system
is consistent and thus has one solution [47 Theorem 6.1]. There-
fore, we aim to find conditions at which Ipm, — A Apy # 0 to en-
sure privacy. We have rank(A;kAr,k) < min{pm, n} according to
[47, Theorem 2.8]. Thus, under the condition pm; > n, we have
A7 Ar g # 0 which ensures the privacy of Y, ;.0

(A15)

Ipm,— -
A2. Proof of Theorem 2

In the following proof, we consider the view and simulation for
one step (i.e., k™ step) for notational convenience. The proof for
K € NT steps is similar to the proof of Theorem 1. We are going to
prove the privacy against the three coalitions as follows:
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A2.1. Coalition of sensors s

The strips information is considered to be an input to the sen-
sor and appears as part of the view and the simulator of the coali-
tion. The strips information is exactly the same as for zonotopes.
Thus, the proof is similar to Appendix A.1.1 and is therefore omit-
ted.

A2.2. Coalition of sensors s and aggregator

The aggregator has encrypted strips
(Hg - [Vs.kl. Rs k- Hy o [Vr k] Rrx) from  the sensors, the initial
constrained zonotope ([&; o]. Cq_o, [[Bq_o}],/iqyo) from the query
node, and estimated constrained zonotope ([ég]. Gg . [bg . Agi)
at each k-iteration. The view of the coalition is defined as
Va = (V)

= (Vsn’ Hs‘kv [[ys,k]]! Rs,k’ Hr,ks Hyr.k]]’ Rr,kv [[Eq.o]]’ Gq,Ov [[bq,O]]s

Aq,07 Heg,kﬂs Gg,ks [[Bg.k]]?‘qg,k? COiHSsa, Pk, q, F, Qk)

Al R A
= (Hs,ks)’s,k’ R i, Vs k] Hr o [Yrills Rr ks [€g,0]. G0 [[bq.Oﬂv

Aq.0, [6g4]s Garo [hg il Ag i, coinssq, pk, q, F, Q)- (A.16)

The simulation is the same as in Appendix A.1.2, except for the
additional information contained in a constrained zonotope, i.e.,
the constraints. This results in

SSG = (Hs.k’.VS,k’ Rskv Ms Hr,ks m’ Rr‘k’ [[éq,o]]’ Gq,O»

—~

[[Bq.o}]’ Aq.Os [[Eg,k]]’ Cg,ks [[Bg,k]]’ Ag,k’ Coinsgq, pk, q. F, Qk)
(A7)

—~

We arrive at a simulator that satisfies Sgq = VII. Thus, similarly to
Appendix A.1.2, the coalition cannot infer extra information from
the input and the output.

A2.3. Codlition of sensors s and query node

The view of the coalition consists of the view of the sensors
V{1 and the view of the query node VT which consist of the initial
estimated constrained zonotope (& . GAq,o,Aq,o,Bq,o) and resultant
estimated set (¢, , Gqx Aqx: Da) at each k™ iteration as follows:
ngl = (Vsn’ an)

A -~ ~

= (Vsl-[7 Eq,07 quo, A\qyo, quo, fa.kv Ga.kv Aa,ks ba,kv COiIlSS, [[Fsﬂ,
pk, sk)

~ ~

Al A A
(:)(Hs,kﬂ Vsl Rs,ks [[ys,k]]s Hr,ks [[yr,kﬂa Rr,k? €Cq,0, Gq,Os Aq,07 bq.Oa
(A18)

The simulator will be again similar to Appendix A.1.3 af-
ter adding and generating the constrained zonotope information,
specifically

Eak Gater Aq . Do . coinssg. [Tsq], Pk, sk).

Ssq = (HS«k’yS,k’ Rk Ws.kls Hrges Vil Rekes 6q.0y Gq.0.Aqo. bq,O,

Caie- Gak: Aqk: ba . coinssg. [Tsq]. pk. sk). (A19)
As before, the generated values m m coinssg and m
are generated according to the distribution of the original values
and are independent from other parameters. Therefore Ssq = vl
The coalition aims to find the measurements of the remaining
group, denoted by N; with size m,. Note that A, is chosen by
the aggregator and not known to the query; additionally, it is also
chosen at random and not dependant on publicly shared gener-
ator matrix. Thus, computing the measurement y,, according to
(A.14) is not valid anymore. In contrast to Theorem 1, privacy can
be guaranteed in all cases. O
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A3. Proof of Theorem 3

In the following proof, we consider the view and simulation for
one step (i.e., k™ step) for notational convenience. The proof for
K € N*T steps is similar to the proof of Theorem 1. We prove again
the privacy against the following three coalitions:

A3.1. Coalition of sensors groups g
We define the view of a coalition consisting of a of set of sensor

groups g = {g1...., &} by Vg! by

Vgn = (Vgl;[""*vgl?)

= (Pk, Hg k. Y s Re ks Gg ks Ca ke [Ca k] [Tel. Coing), (A.20)
where the subscript g denotes the variables owned by the coali-
tion. The sensor groups only submit their encrypted data to the
aggregator. Hence, a simulator Sg, defined by

Sg =(pk, Hg,k’yg,k’ Rg,k’ Gg,ks Eg,kv m, [[Fg/]], C’Jng), (A21)

is obtained by generating [[/c';,j, m and EEEg according to the
distribution of ([ ], [I'g], coing) and are independent from other

parameters. Therefore, we conclude that Sy = vl
Moreover, the resulting zonotopes from the sensor groups are
independent. As a result, the coalition zonotopes cannot be used

to infer new information about other zonotopes.

A3.2. Coalition of sensor groups g and the aggregator
The view of the coalition is defined by

Vg =(V'. V") (A.22)

with
v :([[Eg,k]]s Cg,ks [€r4]> Gro [Cail, Ga,k’ q. F, Q. coinsg, pk) (A.23)

where [c; ] and Cr,k represents the encrypted center and the gen-
erators of the remaining sensor groups which are not part of the
coalition. The simulator, denoted by Sge, can be constructed from
the input and output (Hgy, Rg k. F, Pk, q. Qy, Y ). Specifically:

. Add H, and R, as they are public information.
. Compute Gg and G, according to (16).
. Compute G, according to (18).

—

AW N -

. Generate [Cg ], m m, and [&, ] according to the distri-

butions of the original values.

5. Let the combination of coins of all parties be coinsg =
(coinsg, coinsg). Generate coinsgg according to the distribu-
tion of coinsgg.

6. Compute ¢, according to (15).

We end up with the simulator

Sga = (pk, Hr.kv Rr,kv Hg,k’yg.kv Rg,kv C_;g,kv Eg,ka [[Eg.k]]a [[Er.k]]a [[Fg]L

Cr,ks [[Ea,k]]s Cu,ks q, F’ ka COinSga, pk)~ (A-24)

Thus, we find that Sgq < ng}. The target of this coalition is to get
the zonotopes of the remaining groups, denoted by N; with size d;.
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The centers of the zonotopes are related by

Z Wa kﬂCg] k]] 52 [[Ca k]] Zwa k= Z Wé.k[[fgpk]y

JeNr JjeN jeNr

(A.25)

The right hand side of (A.25) is known to the coalition. How-
ever, since the coalition does not have the private key, the privacy
of the centers of the remaining group can be guaranteed.

A3.3. Codalition of sensor groups g and the query
The view of the coalition is defined as V] where Vj] =

(Ve vJ1) with VT given by
=([Cai]: €ar Gak- q. F. Q. coinsg, pk. sk, [T'q]). (A.26)

Constructing the simulator Sgg from the inputs and outputs of
the coalition as done before results in

(pk. sk. H,

kag,ks Rg.k’ C_;g‘k’ Eg,ks [[FqMéa.k]]v éa‘k’ CA;a‘k’ COinqu),
(A27)

qu

which implies that Sgq £ Vgg. The target of this coalition is to get
the zonotopes of the remaining group, denoted as before by N
with size dr. Rewriting (A.25) after decryption - as the query has
the Paillier private key sk - results in

Wr.kCr.k = Zg k» (A.ZS)
with
Zgi= ) Wik~ Cak ) Wiy (A29)
JjeNr jeN
W, = [wa (Jn. W2 s W ,(1,1] € Rxndr, (A.30)
G =] o€l oo o, T e R (A.31)

where zg) is known to the coalition. Similarly to the proof of
Theorem 1 and according to [47, Theorem 6.4], G, is a solution
of (A.28) for any X; € R"r where

Wr, k)er

and where W2 is any generalized inverse of W, . For every so-
lution C,yk of (A14) there is a X;. If Ly —W W, =0, we end
up with a consistent system with one solution [47, Theorem 6.1].
Thus, we aim to find conditions at which Iy —W_ W, #0 to
ensure privacy. We have rank(erkWr,k) < min{ndy, n} according to
[47, Theorem 2.8]. Thus, under the condition d; > 1, it follows that
Ipg, = W W,k # 0 which ensures privacy of G .

Ck=W Zg+ (g, — W, (A32)

A4. Proof of Theorem 4

In the following proof, we consider the view and simulation for
one step (i.e., kth step) for notational convenience. The proof for
K e NT steps is similar to the proof of Theorem 1. We are going to
prove the privacy against the three coalitions as follows:

A4.1. Coalition of sensor groups g
The view of the coalition can be defined by

V = (Vgl:[, e, gl ) (pk gk Yg k> Rg,ky C_;g‘k’ Eg,k’ [[Eg,k]]’
Agk-bgy. [bgl. [Tg]. coing). (A33)

Again, sensors only submit their encrypted data to the aggregator.
Hence, a simulator Sg given by

Sg = (pk.

Hg,ks .Vg,kv Rg.ks C_;g,kv Eg,k, [[Eg,k]]’ Ag.k, Bg.k7 [[Bg.k]]v HF;H’ Cf(;i/ng)’
(A34)
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is obtained by generating m, m, [[Bg,,(}] and coinsg. The gener-
ated and the original values are generated according to the same
distribution and are independent from other parameters. Therefore,
we conclude that Sg < V1.

Moreover, the resulting constrained zonotopes from the sensor
groups are independent. Thus, the coalition zonotopes cannot be
used to infer new information about other zonotopes.

A4.2. Coalition of sensor groups g and the aggregator
The view of the coalition, denoted by V, ga,

(V" va')

= ( g [[Cg,k]]: Gg‘k’Ag.k: [[Bg,k]]s [[Er,kﬂv G_r,ks;‘r,kv [[Br‘k]]v [[Ea.k]]s
Ga k- Aq - Dol q. F. Q. coins, pk)

A33 = _ - - -

¢ )(Hr k> Rr kv kv.Vg k> Rg k> Cg k> ng [[Cg kﬂ Ag k> bg k> [[bg k}]’

[[Crk]] Grk’ [[brk]] [[Cakﬂ GakvAak [[buk]] q, F, Qk
comsga,pk)

Vl_[

(A.35)

where ([, ], Cr,k,i\nk, [[B,,k]]), represents the encrypted constrained
zonotopes of the sensor groups which are not part of the coalition.
The simulator, denoted by Sgq, can be constructed given the input
and output (Hgk, Rg . F, pk, 4, Q. Yg k- l_)gyk, Cq 1) as follows:

. Add Hyy, R, as they are public information.

. Compute Gg and Grk according to (22).

. Compute Ag,k and Ar,k according to (23).

. Compute Ca_k according to (28) and reduction operation sim-
ilar to (26).

5. Compute Aa_k according to (34) and reduction operation sim-

ilar to (26). o
6. Generate [[/cm m and [C,,] according to the distribu-
tions of the original values.

AW N -

—

7. Generate [[l-)g‘k]], [[Er,k]], and [[Bu‘kl] according to the distribu-
tions of the original values.
8. Let the combination of the coins of all parties be coinsgs =

(coinsg, coinsg, , ..., coinsg, ). Generate coinsg, according to
the distribution and of coinsgg.

We end up with the following simulator

Sga = (Hr,kv Rr.ks Hg,ks Ya ko Rg,ks Eg.k: Gg.kv [[Eg,k]]: Ag.kv Bg.kr [[bg.k]]s

—

[[Er,k]]v (_;r,ks Ar,kv [[Br,k]], [[Ea,kﬂ’ Ga,k’ Aa.k, [[Ba,k]]s q, F, ka

P

C0insgg, pk). (A.36)

Thus, we find that Sgq évgl;[. Similarly to Appendix A.3.2, the
coalition is not be able to infer information about the constrained
zonotopes of the remaining group.

A4.3. Coalition of sensor groups g and the query
The view of the coalition is defined by

Vag =(Vd1. V) = (V. [aidl. [bail. Cak Gak Aaie Dar. a. F.
Qy, coinsg, pk, sk, [[Fq]])

A3 R Re ks Eo s Go s [0 k] Ag s Do s [P
( r.k> Rrk> g,kqu.ks g,k’Cg,ka Gg,ks [[Cg,k]]v g k> g,kv[[ g.k]]v

[[Ca,k]]s Hba,lcﬂv 6a,k’ Ga,k’ Aa.k’ ba,k’ q, F, Qka COinSng pk, Sl(,

[[ng]])- (A.37)
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Constructing the simulator Sgg from the inputs and outputs of
the coalition is done as before

Sgq = (Hr,kr Rei. Hykeo Vg i Rgke Coes Gk [€a k]l Ages B [Dg ]l
[[Ea,k]]: [[Ba,k]]s Ea,k: CA;a,k’ Aa,k! Ba,k: q, F, Qk’ COiIngq, pk’ Sk,
[Tgl), (A38)

which in turn implies that Sgq évglg. The target of this coalition
is to get the constrained zonotopes of the remaining groups. As
shown in (33), any center and generator of the coalition can deter-
mine the containing zonotope of the constrained zonotope. How-
ever, the remaining rows of the [b, ] in (34), which belongs to the
non-colluding sensor group, can not be inferred from the coalition.
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