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Abstract— The privacy aspect of state estimation algorithms
has been drawing high research attention due to the necessity
for a trustworthy private environment in cyber-physical sys-
tems. These systems usually engage cloud-computing platforms
to aggregate essential information from spatially distributed
nodes and produce desired estimates. The exchange of sensitive
data among semi-honest parties raises privacy concerns, espe-
cially when there are coalitions between parties. We propose two
privacy-preserving protocols using Kalman filter and partially
homomorphic encryption of the measurements and estimates
while exposing the covariances and other model parameters.
We prove that the proposed protocols achieve satisfying com-
putational privacy guarantees against various coalitions based
on formal cryptographic definitions of indistinguishability. We
evaluate the proposed protocols to demonstrate their efficiency
using data from a real testbed.

Index Terms— Kalman filter, estimation, computational pri-
vacy.

I. INTRODUCTION

Cyber-physical systems (CPSs) have emerged as the new
paradigm for the modern global technology industry, repre-
senting a highly interactive generation of intelligent systems
with tight integration between computer resources and physi-
cal processes [1]. Some states of these systems aren’t directly
perceptible by sensors; sensors may be unable to sense data
from the area of interest or can only sense physical variables
relevant to the variables of interest, or measurements may be
inaccurate or subject to noises [2]. To maintain robustness
against measurement noise and modeling uncertainty, opti-
mal state estimation algorithms that implement multisensor
data fusion [3] are employed to find the best estimates for
hidden states with minimal estimation error [4].

Typically, the estimator (aggregator) aggregates essential
information from spatially distributed sensors, applies an
estimation algorithm to produce the required estimates, and
then sends them to the interested party who initiated the
inquiry. Thus, estimators are usually outsourced to cloud-
computing platforms like in [5], [6] and can also be central-
ized or distributed among multiple nodes [7], [8]. Kalman
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filters [9] are widely-used optimal estimation algorithms that
can fuse measurements and estimates [10], [11] within cen-
tralized or distributed implementations [12], [13] and provide
accurate and precise estimates of hidden states considering
process and measurement uncertainties.

Because cloud-based estimations use open computation
and communication architectures, they might suffer from
adversarial physical faults or cyber-attacks. Therefore, re-
searchers proposed several approaches to perform computa-
tions on sensitive data while keeping the data confidential
from untrustworthy parties, such as differential privacy [14],
[15], obfuscation [16], [17], algebraic transformation [18],
[19] and homomorphic encryption [20], [21]. Paillier en-
cryption, which is partially homomorphic encryption (PHE),
was employed with several estimation algorithms to preserve
data privacy as in [5], [6], [22]. Kalman filters can operate
in an encrypted domain while retaining their natural effec-
tiveness. A secure state estimation using Kalman filter with
the adoption of a hybrid homomorphic encryption scheme
was proposed in [23]. Authors in [24] presented a multi-
party dynamic state estimation using the Kalman filter and
PHE, while [25] introduced a secure distributed Kalman
filter using PHE. However, no work to date has provided
a computational privacy investigation for estimation algo-
rithms that use Kalman filters along with PHE, considering
that other problems have undergone similar computational
privacy analysis, such as set-based estimation in [5] and
quadratic optimization in [21].

We focus on the privacy of multi-party cloud-based state
estimation of a linear discrete time-invariant (LTI) system
where the involved parties communicate over end-to-end
encrypted networks. We consider semi-honest parties that
follow protocols properly but keep a record of all their in-
termediate computations and may collude with other parties
to reveal private information of non-colluding ones. In short,
we make the following contributions:

• We propose two privacy-preserving estimation proto-
cols using Kalman filters and Paillier cryptosystem
by encrypting the measurements and estimates while
revealing their covariances and model parameters.

• We provide computational privacy guarantees for the
proposed protocols against various coalitions of semi-
honest parties using formal cryptographic definitions of
computational indistinguishability.

The remainder of this paper is organized as follows. We
demonstrate two problem setups in Section II and follow
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Fig. 1. Problem 1 setup where the bold arrows represent information
communication and the dashed arrows represent coalitions.

them with privacy definitions and preliminaries in Section III.
We propose two privacy-preserving protocols and summarize
their privacy guarantees in Sections IV and V. Then, we
discuss the protocols’ privacy guarantees in Section VI.
Finally, we evaluate the proposed protocols in Section VII
and conclude this paper in Section VIII.

II. PROBLEM SETUP

We consider two common problem setups similar to [5].
The first setup is in Fig. 1, and it involves:
• Plant T : A passive entity whose states need to be

estimated. We consider the state estimation of a plant
modeled as a linear discrete time-invariant (LTI) dy-
namic system whose state-space model of the form:

xk+1 = Fxk + nk, (1)
yi,k = Hixk + vi,k, (2)

where xk ∈ Rn is the system state at time step k ∈ N,
yi,k ∈ Rp the measurements of sensor i ∈ 1, . . . , I , F ∈
Rn×n the process matrix, H ∈ Rp×n the measurement
matrix, nk ∈ Rn the modeling noise and vi,k ∈ Rp the
measurement noise and both are independent zero-mean
Gaussian white noises with covariances Qk ∈ Rn×n

and Ri,k ∈ Rp×p respectively.
• Sensor Si: An entity with index i that provides mea-

surements containing sensitive information that should
not be revealed to other parties.

• Aggregator A (or Cloud): An untrusted party has
reasonable computational power that is needed to im-
plement the estimation protocols. It collects encrypted
data synchronously from other parties and operates in
an encrypted domain to provide the query node with
encrypted estimates of the plant T states.

• Query Node Q: An untrusted party inquires about
private states of plant T , which no other party has the
right to know. Besides, it owns the encryption keys and
shares the public key pk with others while keeping the
private key sk hidden. The query node can be any entity
other than the aggregator A, including the plant T .

Briefly, we seek to solve the following first problem:

Problem 1. How to ensure privacy is preserved while
estimating the plant T states by a remote aggregator A using
measurements of spatially distributed sensors? It is required
to ensure that measurements are private to the sensor nodes
S1, . . . , SI and the estimated states are private to the query
node Q, and to guarantee computational security during the
estimation process as well.

Fig. 2. Problem 2 setup where the bold arrows represent information
communication and the dashed arrows represent coalitions.

The second problem setup is in Fig. 2, which includes the
following entities in addition to the predefined entities:
• Manger Mj: An entity with index j produces local

estimates of plant T states using synchronously col-
lected measurements from sensors within the group and
handles communication with entities outside the group.

• Sensor Group Gj: An entity with index j includes
one manager Mj and Igj sensors, all owned by one
organization. All group members trust each other while
each group aims to keep its measurements and estimates
private from other groups/parties.

The problem statement of the second setup is:

Problem 2. How to ensure privacy is preserved in a multi-
party cloud-based estimation? It is required to ensure that
measurements and local estimates are private to sensor
groups G1, . . . , GJ and that global estimates are private
to query node Q and sensor groups, and to guarantee
computational security during the estimation process as well.

The global estimate is computed by the aggregator node
using local estimates provided by the sensor groups. We
should note that Problem 1 is not a special case of Problem
2 because of the existence of group managers [5]. In sections
IV and V, we present two protocols to provide private
solutions for the above problems, and the purpose of this
paper is to ensure that the proposed protocols preserve
privacy against the following coalitions [5]:

Definition 1 (Sensor coalition). A number of sensors/sensor
groups t collude together by exchanging their private mea-
surements to infer private information of the query node and
non-colluding sensors/sensor groups.

Definition 2 (Cloud coalition). Aggregator A colludes with
up to t sensors/sensor groups by exchanging private infor-
mation and intermediate results to infer private information
of the query node and non-colluding sensors/sensor groups.

Definition 3 (Query coalition). Query node Q colludes with
up to t sensors/sensor groups by exchanging their private
information, private cryptographic keys and the decrypted
results to infer private information of non-colluding sen-
sors/sensor groups.

These coalitions are visualized by dashed lines in Fig. 1
and Fig. 2. We assume that only one type of the above
coalitions can occur at a time, and there is always at least one
sensor/sensor group that does not participate in the coalition.
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In the next section, we outline the privacy goals we rely
on to demonstrate that our protocols preserve privacy against
the above coalitions.

III. PRIVACY GOALS AND PRELIMINARIES

We start by defining our privacy goals.
A. Privacy Goals

To preserve data privacy, our protocols must guarantee
computational security against predefined coalitions. In other
words, privacy is preserved if all that a coalition of par-
ties can obtain from keeping records of the intermediate
computations can essentially be obtained from these parties’
inputs and outputs only [26, p. 620]. Moreover, the coali-
tion’s inputs and outputs and recorded information cannot
be exploited to infer further private information [5]. These
privacy goals are based on the following definitions.

Let {0, 1}? be a sequence of bits with indefinite length.
Then, an ensemble X = {Xn}n∈N is a sequence of random
variables Xn that ranges over strings of bits with a length
polynomial in n.

Definition 4. ([27, p.105]) (Computationally Indistinguish-
able) The ensembles X = {Xn}n∈N and Y = {Yn}n∈N
are computationally indistinguishable, denoted as X

c≡ Y , if
for every probabilistic polynomial-time algorithm D, each
positive polynomial p(.) with all sufficiently large n’s, it
follows

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| < 1

p(n)
. (3)

Definition 5. ([26, p.620]) (Execution View) Let f(x̄) =
(f1(x̄), . . . , fn(x̄)) be a deterministic polynomial-time func-
tion and Π a multi-party protocol that computes f(x̄) with
the input x̄ = (x1, . . . , xn). The view of the ith party during
an execution of Π using x̄, is defined as

V Π
i (x̄) = (xi, coins,Mi), (4)

where coins are the outcome of the party’s internal coin toss,
and Mi is the set of messages it has received. For coalition
I = i1, . . . , it ⊆ {1, . . . , n} of parties, the coalition view
V Π
I (x̄) during an execution of Π is defined as [26, p.696]

V Π
I (x̄) =

(
V Π
i1 (x̄), . . . , V Π

it (x̄)
)
. (5)

Definition 6. ([5]) (Multi-Party Privacy w.r.t. Semi-
Honest Behavior) Considering the coalition of parties I =
{i1, . . . , it} ⊆ {1, . . . , n}, we have x̄I = (xi1 , . . . , xit) and
fI(x̄) =

(
fi1(x̄), . . . , fit(x̄)

)
, where f(x̄) is a deterministic

polynomial-time function. We say that the multi-party proto-
col Π computes f(x̄) privately if
• there exists a probabilistic polynomial time algorithm,

denoted by simulator S, such that for every I ⊆
{1, . . . , n} [26, p.696]:

S
(
x̄I , fI(x̄)

) c≡ V Π
I (x̄), (6)

• the inputs and outputs of the coalition cannot be ex-
ploited to infer further private information.

Thus, our proofs in Appendix A and B will consist of
proving these two points of Definition 6.

B. Paillier Homomorphic Cryptosystem
The homomorphic cryptosystem is a cryptographic prim-

itive that allows computation over encrypted data. Pro-
posed protocols use Paillier additive homomorphic cryp-
tosystems [28], which is a probabilistic public-key cryptog-
raphy scheme that provides two basic operations, namely (i)
addition and subtraction of two encrypted values denoted by
⊕ and 	, respectively, and (ii) multiplication of an encrypted
value by a plaintext value denoted by ⊗. That is, if we denote
the encryption of a using the public key pk by JaK, then the
Paillier cryptosystem supports

DECRYPTsk(JaK⊕ JbK) = a + b, (7)
DECRYPTsk(a⊗ JbK) = a× b, (8)

where sk is the private key associated with public key pk.
We will omit the symbol ⊗ when the type of multiplication
can be inferred from the context. The security guarantees of
the Paillier cryptosystem rely on the standard cryptographic
assumption named decisional composite residuosity assump-
tion (DCRA) [28]. We use the floats encoding mechanism
presented in [29] that represents float numbers by a positive
exponent and a mantissa, which are both integers and thus
can be used with the aforementioned cryptosystems [30].

In the next two sections, we present our privacy-preserving
state estimation protocols using synchronously collected
measurements. We consider that all parties communicate
over end-to-end encrypted channels. In our protocols, we
propose using the Paillier cryptosystem to implement further
encryption only for measurements and estimates, without
covariances and model parameters due to the nature of the
PHE. We don’t use the fully homomorphic encryption FHE
as PHE is more efficient and good enough since knowing
only covariances doesn’t reveal measurements or estimates.
For simplicity, we will denote only paillier encryption by JK.

IV. PRIVATE ESTIMATION AMONG DISTRIBUTED
SENSORS

We propose a protocol that solves Problem 1 to estimate
the states of a system within the first pre-stated setup in
Section II while preserving information privacy.

Initially, the query node generates the Paillier public key
pk and the private key sk and shares the public key with
other parties, then sends the initial estimates to the aggregator
after encrypting its state vector Jxq,0K while revealing its
covariance matrix Pq,0. At every time step k, each sensor
i also encrypts its measurement vector Jyi,kK and reveals
its covariance matrix Ri,k, and then sends them to the
aggregator. The aggregator, in turn, aggregates all received
measurements and applies the estimation algorithm steps [31,
p. 190]. During the time update, the Kalman filter produces
a predicted estimate for the system states in the current time
step. During the measurement update, the predicted estimate
is updated by processing all measurements in parallel. All
measurement vectors are combined to form a new measure-
ment vector JYkK ∈ RpI where I is the total number of
sensors. Similarly,H ∈ RpI×n is the new observation matrix,
and assuming that measurement noises are uncorrelated, the
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Protocol 1 Private Estimation Among Distributed Sensors
The query node Q encrypts the initial state Jxq,0K and
sends it with the initial error covariance Pq,0 (not en-
crypted) to the aggregator node A to have Jx̂a,0K = Jxq,0K
and Pa,0 = Pq,0,
At every time step k, every sensor node shares its en-
crypted measurements Jyi,kK and the measurement noise
covariance matrix Ri,k (not encrypted) with the aggrega-
tor.
In order to find the required estimates, the aggregator uses
Kalman filter estimation algorithm as following:
Step 1: Time update at the aggregator:

Jx̂−a,kK = FJx̂a,k−1K, (9)

P−a,k = FPa,k−1F
T + Qk. (10)

Step 2: Measurement update at the aggregator:

Pa,k =
(

(P−a,k)−1 +HT
kR
†
kHk

)−1

, (11)

Kk = Pa,kHT
kR
†
k, (12)

Jx̂a,kK = Jx̂−a,kK⊕Kk

(
JYkK	HkJx̂−a,kK

)
. (13)

where

JYkK =
[
JyT

1,kK, . . . , Jy
T
I,kK
]T

,

Hk = [HT
1 , . . . ,H

T
I ]T ,

Rk = diag {R1,k, . . . ,RI,k},
† represents the Moore–Penrose pseudoinverse,

Kk = [K1,k, . . . ,KI,k] and Ki,k = Pa,kH
T
i R
−1
i,k .

Step 3: The aggregator sends the outputs Jx̂a,kK and Pa,k

to the query node to have Jx̂q,kK = Jx̂a,kK and Pq,k =
Pa,k. In turn, query node decrypts Jx̂q,kK and gets the
desired estimate x̂q,k.

covariance of JYkK is the diagonal matrix Rk ∈ RpI×pI . A
new gain matrix Kk ∈ Rn×pI is computed and then used to
find the optimal estimate that the query node inquires. As the
query node has the private key sk, it decrypts the received
estimates and retrieves the desired state estimate xq,k for
each time step. All the computational steps are detailed
in Protocol 1. In the following theorem, we summarize
the privacy guarantees of the protocol against coalitions
predefined in Definitions 1, 2, and 3:

Theorem 1. Protocol 1 solves Problem 1 while preserving
computational privacy against

• Sensor coalitions,
• Cloud coalitions,
• Query coalitions if pmr > n, where p is the measure-

ment size, mr the number of non colluding sensors and
n the state size.

Proof of Theorem 1 is detailed in Appendix A.

V. PRIVATE ESTIMATION AMONG SENSOR GROUPS

In this section, we present a protocol to solve Problem 2
using a diffusion Kalman filter algorithm. Unlike Protocol
1, where both estimates and measurements are encrypted,
now only estimates are homomorphically encrypted. There
is no need to encrypt measurements within the same group
as each sensor trusts all other sensors within the same group.
Initially, the query node shares the initial estimates only with
sensor groups, while it shares the Paillier public key with all
parties after generating a pair of keys.

At every time step k, each sensor i within group j partici-
pates with its measurements yi,k. All measurements within-
group are collected and used along with the previously
estimated state x̂q,k−1 to compute a new prior estimate
x̂−gj ,k. Then, the owner of each sensor group encrypts its
prior estimate Jx̂−gj ,kK homomorphically and sends it to the
aggregator. The aggregator, in turn, performs the diffusion
update and computes a weighted average of all received
encrypted estimates based on their uncertainties assuming
that they are independent from each other which implies zero
cross-covariances [32]. Next, the aggregator calculates the
time update to find and submit the optimal estimate for the
current time step Jx̂a,kK. Finally, the query node decrypts the
received result to find the desired estimated state x̂q,k and
then sends it to all sensor groups for use in the next iteration.

Unlike Protocol 1, which performs both Kalman filter
steps (measurement update and time update) at the aggre-
gator in the encrypted domain, Protocol 2 performs the
measurement update at the sensor group level in the plaintext
domain and implements a diffusion update step along with
the time update step at the aggregator in the encrypted
domain. For the diffusion update, there are several methods
in the literature [13], and we chose the weighted average
method since it suits homomorphic computations. In the
following theorem, we summarize the privacy guarantees of
Protocol 2 against coalitions predefined in Definitions 1, 2,
and 3:

Theorem 2. Protocol 2 solves Problem 2 while preserving
computational privacy against

• Sensor coalitions,
• Cloud coalitions,
• Query coalitions if dr > 1, where dr is the number of

non-colluding groups.

Proof of Theorem 2 is detailed in Appendix B.
VI. PRIVACY DISCUSSION

This paper demonstrates that Protocol 1 solves Problem
1 with reasonable privacy guarantees summarized in Theo-
rem 1, which illustrates that the protocol preserves privacy
against all sensor and cloud coalitions. In the case of query
coalitions, it is necessary to constantly make sure that the
number of non-colluding sensors mr is greater than the ratio
of the state size to the measurement size n/p to preserve
privacy. Besides, we can suggest a minor change by keeping
the measurement matrix Hi or covariance Ri,k private to the
sensors and aggregator to overcome this information leakage.
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Protocol 2 Private Estimation among Sensor Groups
Query node Q sends the initial state to all sensor groups.
At every time instant k, following steps are executed:
Step 1: Measurement update at each sensor group j:

P−gj ,k =

(Pq,k−1)−1 +

Ij∑
i=1

HT
i R
−1
i,kHi

−1

, (14)

Ki,k = P−gj ,kH
T
i R
−1
i,k , (15)

x̂−gj ,k = x̂q,k−1 +

Ij∑
i=1

Ki,k(yi,k −Hix̂q,k−1). (16)

Step 2: Each sensor group j encrypts its estimate Jx̂−gj ,kK
and sends its encrypted state to the aggregator.
Step 3: Diffusion update at the aggregator:

P−a,k =

 J∑
j=1

(P−gj ,k)−1

−1

, (17)

Jx̂−a,kK = P−a,k

J∑
j=1

(P−gj ,k)−1Jx̂−gj ,kK. (18)

Step 4: Time update at the aggregator:

Jx̂a,kK = FJx̂−a,kK, (19)

Pa,k = FP−a,kF
T + Qk. (20)

Step 5: The aggregator sends the encrypted state Jx̂a,kK,
Pa,k to the query node which decrypts and sends the
results to the sensor groups.

Similarly, Protocol 2 solves Problem 2 while obtaining
satisfying privacy guarantees as summarized in Theorem 2,
which states that privacy is preserved against all coalitions
unless the query node succeeds in colluding with all but one
of the groups in an attempt to reveal the estimates of that
group. Therefore, we must ensure that the number of non-
colluding groups dr is always more than one. To overcome
the information leakage in the case of the query coalitions,
we propose a slight modification by keeping the process
matrix F or the modeling noise covariance Qk private to
the aggregator.

Remark 1. There is an analogy between our protocols
and two privacy-preserving set-based estimation protocols
proposed in [5] using Zonotopes. Zonotope Z = 〈c,G〉
is a centerally symmetric set representation, where c is its
center and G is its generator matrix. Assuming that the
modeling and measurement noises are unknown but bounded
by zonotopes: nk ∈ ZQ,k = 〈0,Qz

k〉 and vi,k ∈ ZR,k =
〈0,Rz

k〉 respectively, and having x̂k ≡ ĉk, Pk ≡ ĜkĜ
T
k ,

Ri,k ≡ Rz
i,kR

zT
i,k [33], we found that our first protocol

achieves privacy guarantees similar to the privacy guaran-
tees of the set-based estimation protocol among distributed
sensors [5, Theorem 6.2], while privacy guarantees of our
second protocol are similar to their peers of the set-based
estimation among sensor groups [5, Theorem 7.2].
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Fig. 3. True and estimated positions of the two proposed protocols.
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Fig. 4. Estimation error of the two proposed protocols.

VII. EVALUATION

To evaluate the proposed protocols, we use measurements
collected from the real testbed used in [34], [35], which
includes a motion capture system that provides 3D rigid
body position measurements. We apply our protocols to
estimate the location of a quadrotor while preserving our
previously mentioned privacy goals. Fig. 3 shows the true
and estimated values of the 3D positions for each protocol.
The estimation error of the two protocols is presented in
Fig. 4. A comparison between the average execution time of
each party is presented in Table I. The cloud time in Protocol
2 is shorter and depends on the diffusion method, and the
encryption time is longer in sensor groups based on the sizes
of state and measurement.

VIII. CONCLUSIONS

This paper presented two privacy-preserving estimation
protocols for both a typical sensor setup and another setup
in which trustworthy sensors are grouped into sensor groups.
We proved the privacy guarantees of each protocol using the
computational indistinguishability concept. We demonstrated
the possibility of encrypting only sensitive information rather
than all while maintaining an acceptable level of privacy.
Finally, we evaluated our protocols using actual data from
a physical testbed and verified that they offer satisfying re-
sults while guaranteeing privacy. Our protocols have several
practical applications, which we leave as future work.
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APPENDIX

A. Theorem 1 Proof
The proof is along similar lines of [5]. To prove that the

privacy is preserved, we need to show that the coalitions
views and simulators are computationally indistinguishable
and that the coalition inputs and outputs do not leak extra
private information according to Definition 6. The quantities
denoted by (̃) are those obtained by the simulator and
they differ from the quantities of the views but follow
the same distribution. "Coins" are random numbers used
for the encryption process and key generation. JΓXK for
coalition X represents any information that is transferred
between other parties over an encrypted channel that may use
double encryption with different keys from the homomorphic
encryption keys.

Proof. In the following proof, we investigate the privacy of
Protocol 1 against the following three coalitions:
1) Coalition of sensors s

If we consider a set of sensors s = {s1, . . . , st} partic-
ipating in the coalition s, then V Π

s represents the coalition
view that can be defined as a combination of every sensor
view and given by

V Π
s =

(
V Π
s1 , . . . , V

Π
st

)
=
(
Hs,k,ys,k,Rs,k, Jys,kK, pk, coinss, JΓsK

)
, (21)

and the coalition simulator Ss can be obtained by generating
J̃ΓsK, J̃ys,kK and c̃oinss, i.e.,

Ss =
(
Hs,k,ys,k,Rs,k, J̃ys,kK, pk, c̃oinss, J̃ΓsK

)
, (22)

where c̃oinss are generated according to the same distribution
of coinss and are independent from other parameters, where
the same is true for J̃ys,kK and Jys,kK as well as J̃ΓsK and
JΓsK. Therefore, we find that Ss

c≡ V Π
s . Furthermore, each
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measurement information is independent of all others, which
makes the coalition unable to infer new information about the
measurements of non-colluding sensors. For this coalition,
we consider a single step in our proof since the information
in each iteration differs from the other iterations.

For the next two coalitions, we will prove that each
coalition view after K ∈ N+ iterations of the protocol
is computationally indistinguishable from the view of a
simulator that runs the same K iterations.
2) Coalition of sensors and aggregator sa

Considering V Π
a is the view of the aggregator, the view

of a coalition consisting of a set of sensors s = {s1, . . . , st}
and the aggregator can be indicated by V Π

sa where

V Π
sa =

(
V Π
s , V Π

a

)
=
(
V Π,K
s , V Π,K

a

)
, (23)

where V Π,K
s and V Π,K

a are the views of the coalition of
sensors and the aggregator respectively after executing K
iterations, and

V Π,k+1
s = (V Π,k

s , Ik+1
s ),

V Π,k+1
a = (V Π,k

a , Ik+1
a ), k = 0, 1, . . . ,K − 1, (24)

where Iks and Ika are the new data added at the k-th iteration
for the sensors coalition V Π,0

s = I0
s and the aggregator

V Π,0
a = I0

a . The view of the aggregator includes the sensors
encrypted measurements and the initial estimates from the
query node. The measurements at the k-th iteration from
sensors that are not part of the coalition are marked by
subscript r (i.e., Hr,k, Jyr,kK,Rr,k, k = 0, 1, . . . ,K − 1).
Then, assuming that Hr,k,Rr,k are public, Iks and Ika are

Iks =
(
Hs,k,ys,k,Rs,k, pk, Jys,kK, coinss, JΓsK

)
, (25)

Ika =
(
Hs,k, Jys,kK,Rs,k,Hr,k, Jyr,kK,Rr,k, Jx̂q,0K,
Pq,0, Jx̂a,kK,Pa,k,F,Qk, pk, coinsa

)
, (26)

where Jx̂q,0K,Pq,0 is the initial estimates from the query
node and Jx̂a,kK,Pa,k is the k estimates on the aggregator
side. The view of the coalition V Π

sa is constructed from (23)-
(25). The simulator of the coalition can be denoted by Ssa =
SK
sa, where SK

sa is the simulator after executing K iterations.
The simulator Ssa can be formed using

Sk+1
sa = (Sk

sa, I
S,k+1
sa ), k = 0, 1, . . . ,K − 1, (27)

where IS,k+1 is the simulator portion generated at iteration
k + 1, that is given by

IS,ksa =
(
Hs,k, J̃ys,kK,Rs,k,Hr,k, J̃yr,kK,Rr,k, J̃x̂q,0K,pq,0,

J̃x̂a,kK,Pa,k,F,Qk,ys,k, pk, c̃oinssa, J̃ΓsK
)
, (28)

where its terms are generated or computed as follows:

• Generate J̃ys,kK, J̃yr,kK, J̃x̂q,0K, J̃x̂a,kK and J̃ΓsK, ac-
cording to the same distribution of Jys,kK, Jyr,kK,
Jx̂q,0K, Jx̂a,kK and JΓsK, respectively.

• Compute Pa,k according to (11).
• Suppose both coins are combined as coinssa =

(coinsa, coinss), then generate c̃oinssa according to the
same distribution.

Then, all the J̃K and JK values are indistinguishable and
all other variables in IS,k+1

sa are either public or attainable
through the protocol steps. Hence, After all iteration steps,
we end up with a simulator that achieves Ssa

c≡ V Π
sa. Now

we need to ensure the coalition cannot infer further private
information. The coalition’s target is to find the private
measurements of the non-colluding sensors yr,k. The relation
between Jys,kK and Jyr,kK can be derived from (13) as∑
i∈Nr

Ki,kJyi,kK =
∑
i∈NI

(Ki,kHi,k − 1)Jx̂a,k−1K⊕ Jx̂a,kK

	
∑

i∈N/r

Ki,kJyi,kK︸ ︷︷ ︸
known to the coalition in plaintext

, (29)

where Nr is the remaining sensors set. Since the coalition
does not have the private key and the query node sends
the initial encrypted estimate Jx̂a,0K,As a result, we have
a system that is undermined in (29).
3) Coalition of sensors and query node sq

Let V Π
q be the view of the query node, then, the view of a

coalition consisting of a set of sensors and the query is V Π
sq

that defined by

V Π
sq =

(
V Π
s , V Π

q

)
=
(
V Π,K
s , V Π,K

q

)
, (30)

where

V Π,k+1
s = (V Π,k

s , Ik+1
s ),

V Π,k+1
q = (V Π,k

q , Ik+1
q ), k = 0, 1, . . . ,K − 1, (31)

where Iks is given in (25), and Ikq are the new data added
from the k-th iteration for the query node with V Π,0

q = I0
q

such that

Ikq =
(
x̂q,0,Pq,0, Jx̂a,kK,Pa,k, x̂a,k, pk, sk, coinsq, JΓsqK

)
.

(32)

The coalition view V Π
sq can be formed using (25), (31) and

(32), where the simulator can be constructed as

Sk
sq =

(
Hs,k,ys,k,Rs,k, x̂q,0, Pq,0, x̂a,k,Pa,k,

J̃x̂a,kK, c̃oinssq, J̃ΓsqK, pk, sk, Sk−1
sq

)
, (33)

where
(
J̃x̂a,kK, c̃oinssq, J̃ΓsqK

)
are generated according to

the same distribution of (Jx̂a,kK, coinssq, JΓsqK) and are in-
dependent from other parameters. Therefore, Sk

sq

c≡ (Iks , I
k
q ),

which proves that Ssq
c≡ V Π

sq . To complete our proof and
similar to [5], it is important to examine whether the coalition
can reveal the private information of the non-colluding mr

sensors. Since the query has the Paillier private key sk, we
can rewrite (29) after decryption

Kr,kYr,k = zs,k, (34)

where

zs,k =
∑
i∈NI

(Ki,kHi,k)x̂a,k−1 + x̂a,k −
∑

i∈N/r

Ki,kyi,k,

(35)
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Kr,k = [Ki1,k,Ki2,k, . . . ,Kimr ,k
] ∈ Rn×pmr ,

Yr,k = [yT
i1,k,y

T
i2,k, . . . ,y

T
imr ,k

]T ∈ Rpmr ,

where zs,k is known to the coalition since each Ki,k can be
calculated using (12). We need to examine whether there is
no unique retrieval for Yr,k to preserve its privacy, which
means that (34) has multiple solutions. According to [36,
Theorem 6.4], Ỹr,k is a solution of (34) for any Xr ∈ RpIr

with

Ỹr,k = K–
r,kzs,k + (Ipmr

−K–
r,kKr,k)Xr, (36)

where K–
r,k is any generalized inverse of Kr,k. In order to

ensure that (36) has multiple solutions, we need to keep
(Ipmr

− K–
r,kKr,k) 6= 0. Having K–

r,kKr,k 6= Ipmr
implies

that rank(Kr,k) < pmr, which is always true while n <
pmr according to [36, Theorem 5.23, Theorem 2.6] . Then,
under the condition pmr > n, system (36) has infinity
solutions, which preserves the privacy of Yr,k.

B. Theorem 2 Proof
Proof. Along the same line of the previous proof, we con-
sider the view and simulator for one step (i.e., k-th step).The
proof for K ∈ N+ steps is the same as previous proof. We
prove again the privacy against the following three coalitions:
1) Coalition of sensor groups g

Let V Π
g denote the view of a coalition includes a set of

sensor groups g = {g1, . . . , gt} and defined by

V Π
g =

(
V Π
g1 , . . . , V

Π
gt

)
(37)

=
(
Hg,k,Yg,k,Rg,k,Pq,k−1, x̂q,k−1,P

−
g,k,

x̂−g,k, pk, Jx̂−g,kK, coinsg, JΓgK
)
, (38)

where the subscript g denotes items owned by the coalition.
Each sensor group submit only its encrypted prior estimate
to the aggregator. Hence, the simulator Sg is defined by

Sg =
(
Hg,k,Yg,k,Rg,k,Pq,k−1, x̂q,k−1,P

−
g,k,

x̂−g,k, pk, J̃x̂−g,kK, c̃oing, J̃ΓgK
)
, (39)

and J̃x̂−g,kK, c̃oinsg and J̃ΓgK are generated with the same
distribution of Jx̂−g,kK, coinsg, JΓgK and are independent from
other parameters. Therefore, we find that Sg

c≡ V Π
g . Also,

the coalition cannot infer any further information about other
estimates of the non-colluding groups.
2) Coalition of sensor groups and the aggregator ga

The coalition view is defined by

V Π
ga =

(
V Π
g , V Π

a

)
, (40)

where

V Π
a =

(
Jx̂−g,kK,P

−
g,k, Jx̂

−
r,kK,P

−
r,k, Jx̂a,kK,Pa,k,F,

Qk, coinsa, pk
)
. (41)

The simulator Sga can be constructed by calculating P−g,k
and P−r,k using (14), P−a,k using (17), and generating

J̃x̂−g,kK, J̃x̂
−
r,kK, J̃x̂a,kK, and J̃ΓgK as before.

Sga =
(
Hr,k,Rr,k,Hg,k,Yg,k,Rg,k,Pq,k−1, x̂q,k−1,

P−g,k, x̂
−
g,k, P

−
r,k, J̃x̂

−
r,kK, J̃x̂

−
g,kK, J̃x̂a,kK,Pa,k,

F,Qk, pk, c̃oinsga, J̃ΓgK
)
. (42)

Thus, we find that Sga
c≡ V Π

ga. To ensure that the coalition
cannot find the remaining groups estimates, we use (18) to
describe the relation between group estimates as∑
j∈Nr

(P−gj ,k)−1Jx̂−gj ,kK =(P−a,k)−1Jx̂−a,kK

	
∑

j∈N/r

(P−gj ,k)−1Jx̂−gj ,kK︸ ︷︷ ︸
known to the coalition in plaintext

, (43)

where Nr is the set of non-colluding groups with size
dr. However, since the coalition does not know the private
key, the privacy of the remaining groups’ estimates can be
guaranteed.
3) Coalition of sensor groups and the query node gq

The coalition view V Π
gq is defined as V Π

gq =
(
V Π
g , V Π

q

)
where

V Π
q =

(
Jx̂a,kK, x̂a,k,Pa,k, pk, sk, coinsq, JΓqK

)
. (44)

And the simulator Sgq can be constructed as before

Sgq =
(
Hg,k,Yg,k,Rg,k,P

−
g,k, x̂

−
g,k,

J̃x̂a,kK, x̂a,k,Pa,k, pk, sk, c̃oinsgq, J̃ΓqK
)
. (45)

Thus we conclude that Sgq
c≡ V Π

gq . Similar to [5] and to in-
vestigate the privacy of the non-colluding groups’ estimates,
we use (43) after decryption as the query has the private key
sk.

Pr,kXr,k = zg,k, (46)

with

zg,k = (P−a,k)−1x̂−a,k −
∑

j∈N/r

(P−gj ,k)−1x̂−gj ,k, (47)

Pr,k = [(P−j1,k)−1, (P−j2,k)−1, . . . , (P−jdr ,k
)−1] ∈ Rn×ndr ,

Xr,k = [xT
j1,k,x

T
j2,k, . . . ,x

T
jdr ,k

]T ∈ Rndr ,

where zg,k is known to the coalition as x̂−a,k and P−a,k can
be calculated using (19) and (20) assuming that F and Qk

are public and F is invertible. If F isn’t invertible, then the
privacy of the remaining groups will be guaranteed against
all coalitions. Similarly to proof A and according to [36,
Theorem 6.4], X̃r,k is a solution of (46) for any Xr ∈ Rndr

where

X̃r,k = P–
r,kzg,k + (Indr − P–

r,kPr,k)Xr, (48)

with P–
r,k is any generalized inverse of Pr,k.We aim to find

conditions at which Indr − P–
r,kPr,k 6= 0 to ensure privacy.

Having P–
r,kPr,k 6= Indr implies that rank(Pr,k) < ndr,

which is always true while n < ndr according to [36,
Theorem 5.23, Theorem 2.6] . Thus, under the condition
dr > 1, the privacy of Xr,k is guaranteed.
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