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Abstract— We consider a problem of implementing dynamic
controllers over encrypted data for asymptotic stabilization
of closed-loop systems. Though a time-varying quantizer is
used and it can be infinitesimally fine with time, a major
issue is that the underlying space for encrypted messages is
unavoidably finite and the controller receives a limited amount
of quantized data. To resolve this issue, the proposed method
takes advantage of the state matrix consisting of integers, which
enables the controller to generate only lower bits of the same
output without computing the upper bits. Whenever a portion
of the upper bits of output has converged, the computation
scope can be moved further lower, receiving only lower bits of
the measurement. The quantization is scheduled and the size
of the message space is predetermined from the convergence
rate, so that the feedback input is restored from the outcome
of the lower bits, no matter how fine quantization is performed
in the end. As a consequence, asymptotic stabilization can be
achieved by encrypted operation, despite the limited controller
capacity.

I. INTRODUCTION

The notion of encrypted control has been introduced [1]–
[4] to protect all control data in the network layer, by
encryption. By the use of cryptosystems that allow arith-
metic operations without decryption, more and more control
schemes, such as optimization algorithms [5]–[8], distributed
protocols [9]–[15], and dynamic systems [16]–[24], are being
implemented with digital computers over encrypted signals
and parameters.

To implement and run the operation circuits solely based
on the homomorphic property of cryptosystem without any
concerns of eavesdropping attacks or collusion issues, only
the abilities of modular addition and multiplication have been
exploited for real-time operation in most cases, as the others
may require substantial amount of computing resource [25].
Then, a problem of implementing dynamic systems using
modular arithmetic was formulated, and the case of linear
systems was introduced as the first step [2]–[4].

The major issue when implementing linear systems is
that the state of the system is multiplied by non-integer
numbers for every iteration, in general; this is because, unless
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rounding operation is used for discarding least significant
figures, the significand increases exponentially fast so that it
causes an overflow and loses its value, in a few iterations
(see [21, Section II.D]). As a result, reset or re-encryption
for the state was considered in initial studies [2], [16].

Then, considering that the issue is due to the recursive
multiplication by a matrix of non-integers, a subclass of
linear systems, which has the state matrix consisting of
integers, has been studied [17]–[21]. It has been addressed
in [17] that systems having the state matrix as integers can
be implemented using only modular arithmetic, and it can
operate with the significand of the state bounded for an
infinite time horizon, under closed-loop stability. With this
motivation, stability of integer matrices is investigated in
[18], and then, it has been proposed in [19]–[21] that any
linear system can be implemented to operate with modular
arithmetic over encrypted data, by converting the (non-
integer) state matrix to integers while keeping (practically)
the same input-output relation.

As the class of systems having “integer state matrix”
were not of interest before the homomorphic encryption was
introduced, a further benefit of such systems has also been
investigated, regarding digital implementation aside from en-
cryption. In [21], it is suggested that systems having integer
state matrix, implemented with addition and multiplication
over integers, can generate only lower bits of the same output
without computing the upper bits, thanks to the modulo
operation compatible with addition and multiplication. And,
it proposes that the system can keep the same input-output
relation as long as the modulus (the size of the message
space) covers the range of the output, even if some higher bits
of the state are cut off and lost in the system. See Remark 6
and Fig. 3 in [21] for more details.

On the other hand, in terms of performance, the results
on encrypted implementation have coincided with that from
the existing results on quantized control, as in [26], [27].
Since the modulus of the cryptosystem is unavoidably finite
and the system is implemented with digital computers,
there must be performance error due to quantization. As a
result, most results considering a fixed level of quantization
suggest that the performance error is determined depending
on the quantization parameter. And, in order for asymptotic
stabilization, it has been considered as in [23] that time-
varying quantizer is required which can be infinitesimally
fine, and corresponding infinite amounts of controller storage
and modulus of cryptosystem are required as time goes by.

In this context, we propose a further benefit of the systems
having integer state matrix, in that they enable asymptotic
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stabilization with a limited amount of controller capacity.
More specifically, we propose a method for implementing
linear dynamic controllers based on homomorphic encryption
with a fixed modulus, which achieves asymptotic stabiliza-
tion of the closed-loop system with the use of time-varying
quantizer. Supposing that the state matrix has been converted
to integers using the methods in [21] or [20], we show how
to implement the given model of controller to operate with
modular arithmetic together with the time-varying quantizer,
which generates only a portion of lower bits of the same
controller output. Then, a parameter design for the modulus
of the cryptosystem and the time-varying quantization is
provided considering the convergence rate of the control
signals, which lets the scope of the quantization and the
computation move further lower only when the upper bits
have converged. As a consequence, it guarantees that the
upper bits of the controller output can be restored after
decryption, no matter how fine quantization is performed in
the end. And, asymptotic stabilization is guaranteed despite
the predetermined finite modulus, if the quantization level
can be infinitesimally fine as time goes by.

The organization of the rest of this paper is as fol-
lows. Section II begins with preliminaries on homomorphic
encryption and dynamic systems over modular arithmetic,
and formulates the problem. Section III presents the main
result, where Section III-A proposes implementation over
integers with consideration of time-varying quantizers, and
Section III-B proposes the implementation with modular
arithmetic and parameter design for asymptotic stabilization.
Finally, Section IV concludes the paper.

Notation: Let N, Z, Q, and R be the set of natural
numbers, integers, rational numbers, and real numbers, re-
spectively. The (component-wise) floor and round functions
are denoted by ⌊·⌋ and ⌈·⌋, respectively. For m ∈ N and
n ∈ N, let 0m×n ∈ Rm×n be the zero matrix, In ∈
Rn×n be the identity matrix, and let 1n denote the vector
[1, · · · , 1]⊤ ∈ Rn. The set of integers modulo q ∈ N is
denoted by Zq , and the (component-wise) modulo operation
is defined as v mod q := v−⌊v/q⌋q for v ∈ Zm. We further
define the “biased” modulo operation as

v mod (q, v0) := v −
⌊
v − v0 +

q
2 · 1m

q

⌋
q (1)

for v ∈ Zm and v0 ∈ Rm, so that each component of the
outcome is greater than or equal to that of v0 − q

2 , and less
than that of v0 + q

2 . The (induced) infinity norm of a vector
or a matrix is denoted as ∥ · ∥.

II. PRELIMINARIES AND PROBLEM FORMULATION

We first describe a sort of homomorphic cryptosystem with
which a class of dynamic system can be implemented to run
over encrypted data, based on the homomorphic property.

A. Dynamic System over Encrypted Data

The cryptosystem used throughout the paper is denoted
by (Zq, C,Enc,Dec), where Zq = {0, 1, · · · , q − 1} is the
plaintext (un-encrypted message) space, C is the ciphertext

(encrypted message) space, and Enc : Zn
q → Cn and Dec :

Cn → Zn
q , n ∈ N, are the (component-wise) encryption and

decryption algorithm for vectors of messages, respectively.
We omit the argument of key for encryption and decryption.

The cryptosystem is assumed to satisfy (at least) the ho-
momorphic properties of addition and integer multiplication
over ciphertexts, so that it satisfies the followings:
H1: For all m ∈ Zn

q with n ∈ N, Dec(Enc(m)) = m holds.
H2: There exists an operation Addn : Cn × Cn → Cn for

each n ∈ N, such that Dec(Addn(c1, c2)) = Dec(c1)+
Dec(c2) mod q, for all c1 ∈ Cn and c2 ∈ Cn.

H3: There exists IntMultm,n : Zm×n
q × Cn → Cm for each

m ∈ N and n ∈ N, such that Dec(IntMultm,n(K, c)) =
K · Dec(c) mod q, for all K ∈ Zm×n

q and c ∈ Cn.
The properties H2 and H3 refer to the ability of addition

and integer multiplication on ciphertexts, respectively, so we
abuse notion and use c1+c2 := Addn(c1, c2) and K ·c1 :=
IntMultm,n(K, c1), for c1 ∈ Cn, c2 ∈ Cn, and K ∈ Zm×n

q .
Thanks to the properties H1–H3, dynamic systems over the

set Zq operating with modular arithmetic can be implemented
to run over encrypted data. Consider a system over Zq , as

x(t+ 1) = F(t)x(t) + G(t)y(t) mod q, x(0) = x0, (2)
u(t) = H(t)x(t) + J(t)y(t) mod q, t = 0, 1, · · · ,

where x(t) ∈ Zne
q is the state with the initial value x0 ∈ Zne

q ,
y(t) ∈ Zpe

q is the input, u(t) ∈ Zme
q is the output, and

{F(t),G(t),H(t), J(t)} are (time-varying) matrices consist-
ing of elements in Zq , with respective dimensions.

Then, the following proposition shows that the operation
of (2) can be implemented directly over encrypted signals.

Proposition 1: Consider a dynamic system over C, as

x(t+ 1) = F(t) · x(t) + G(t) · Enc(y(t)), x(0) = Enc(x0),

u(t) = H(t) · x(t) + J(t) · Enc(y(t)), (3)

in which x(t) ∈ Cne and u(t) ∈ Cme . Then, it ensures that
Dec(x(t)) = x(t) and Dec(u(t)) = u(t) hold, ∀t ≥ 0. □

Proof: Take Dec(·) to both sides of (3). Then, by H1–H3,
it is obvious that Dec(x(t+1)) = x(t+1) and Dec(u(t)) =
u(t), ∀t ≥ 0, and Dec(x(0)) = x0. It completes the proof.■

B. Problem Formulation

We consider a discrete-time closed-loop system of plant
and controller. Let the plant be written as

xp(t+ 1) = Axp(t) +Bu(t), xp(0) = xp,0,

y(t) = Cxp(t),
(4)

where xp(t) ∈ Rnp , u(t) ∈ Rm, y(t) ∈ Rp, and xp,0 ∈ Rnp

are the state, input, output, and initial state, respectively. And,
let a feedback controller have been designed as

x(t+ 1) = Fx(t) +Gy(t) + Pr(t), x(0) = x0,

u(t) = Hx(t) + Jy(t) +Qr(t),
(5)

where x(t) ∈ Rn is the state with the initial value x0,
and r(t) ≡ r∞ ∈ Rq is the constant reference. For digital
implementation of the controller (5), we assume that the
elements of the matrices are designed to be rational numbers.
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The closed loop of (4) and (5) is assumed to be stable, as
the design of the controller (5) is supposed to stabilize the
plant (4); let the closed loop system be written at once, as[

xp(t+ 1)
x(t+ 1)

]
=

[
A+BJC BH

GC F

] [
xp(t)
x(t)

]
+

[
BQ
P

]
r(t)

=: Acl

[
xp(t)
x(t)

]
+

[
BQ
P

]
r(t), (6)

where the state matrix Acl is Schur stable, so that there exist
Mcl > 0 and λcl < 1 such that ∥At

cl∥ ≤ Mclλ
t
cl, ∀t ≥ 0.

Then, with r(t) ≡ r∞, the equilibrium of (6) is found as[
xp,∞
x∞

]
:= (Inp+n −Acl)

−1

[
BQ
P

]
r∞, (7)

so that the state asymptotically (exponentially) converges, as∥∥∥∥[xp(t)− xp,∞
x(t)− x∞

]∥∥∥∥ =

∥∥∥∥At
cl

[
xp,0 − xp,∞
x0 − x∞

]∥∥∥∥ ≤ 2M0Mclλ
t
cl,

where we let M0 > 0 be a constant such that

max{∥xp,0∥, ∥x0∥, ∥xp,∞∥, ∥x∞∥, ∥r∞∥} ≤ M0.

We also assume that the constants {Mcl, λcl,M0} are known.
Now, we state the problem of interest which we call

“asymptotic stabilization over encrypted data,” as follows.
Problem 1: Given the parameters of (5), construct a

controller of the form (3) over ciphertexts, which guarantees
that limt→∞ xp(t) = xp,∞. Especially, the modulus q ∈ N
of the cryptosystem should not be changed with time. □

Equivalently, the problem is to convert the controller (5)
to the form (2), to operate over Zq with modular arithmetic.

A major issue on this problem is “limited capacity” of
the controller of the form (2) over the space Zq; once (2)
starts operating and the modulus q ∈ N is fixed and is
not changed with time. The controller operation is limited
to deal with only a finite number of messages in Zq for
the whole time. The controller inputs y(t) and r(t) of real
signals should be quantized to the elements in Zq and there
must be a quantization error. Nonetheless, the effect of the
quantization error should vanish to zero as time goes by, and
the asymptotic stability should be preserved.

Finally, we add an assumption that the state matrix F
of (5) has been designed as integers, i.e., F ∈ Zn×n. This
is not to restrict the applicable class of controllers but to
omit the process of converting the state matrix of non-
integers to integers for simplicity, as a couple of state matrix
conversion methods have been presented1 for arbitrary linear
systems, as in [21] or [20]. In fact, this condition (or the state
matrix conversion) is required for implementing dynamic
controllers to operate over ciphertexts for an infinite time
horizon, leaving the issue of asymptotic stabilization aside.

1For example, given any system (5) with F ̸∈ Zn×n, a system of form

z(t+ 1) = F ′z(t) +G′y(t) + P ′r(t) +Ru′(t), z(t) ∈ Rn′ , n′ ≤ n,

u′(t) = H′z(t) + Jy(t) +Qr(t), u′(t) ∈ Rm,

can be found such that F ′ ∈ Zn′×n′ , u′(t) ≡ u(t), and z(t) ≡ Tx(t)

with some T ∈ Rn′×n. See [21, Section III.A] for more details.

III. MAIN RESULT

We first convert the given controller (5) to operate over in-
tegers in Section III-A, and propose the encrypted controller
over Zq together with a parameter design, in Section III-B.

A. Implementation over Z
We begin with quantization of input signals to integers. Let

the controller inputs y(t) ∈ Rp and r(t) ∈ Rq be quantized
with a parameter l(t) > 0 of quantization level, as

y(t) :=

⌈
y(t)

l(t)

⌋
∈ Zp, r(t) :=

⌈
r(t)

l(t)

⌋
∈ Zq. (8)

Furthermore, let the rational matrix elements in (5) (except
the state matrix F ∈ Zn×n) be stored as integers, as

G :=
G

s1
∈ Zn×p, P :=

P

s1
∈ Zn×q,

H :=
H

s2
∈ Zm×n, J :=

J

s1s2
∈ Zm×p, Q :=

Q

s1s2
∈ Zm×q,

with some positive rational numbers s1 ∈ Q and s2 ∈ Q.
Now, we propose the controller over Z be designed as

x(t+ 1) =
l(t)

l(t+ 1)
· (Fx(t) +Gy(t) + Pr(t)), (9)

u(t) = Hx(t) + Jy(t) +Qr(t), x(0) =

⌈
x0

s1l0

⌋
,

where the parameter l(t) for quantization is chosen such that

lr(t) :=
l(t)

l(t+ 1)
∈ N, (10)

with some l(0) = l0 > 0. We let a real-valued output that
corresponds to that of (5) be obtained as

uq(t) := s1s2l(t) · u(t) ∈ Rm. (11)
Clearly, the system (9) with (10) operates over Z using

addition and multiplication only, where l(t) is monotonically
decreasing. Note that the parameter l(t) determining the
quantization level is fixed as constant while lr(t) = 1, and
whenever lr(t) > 1, the quantization in (8) start keeping
further lower bits of signals with an increased scale factor,
and the factor lr(t) ∈ N is also multiplied to x(t) in (9) so
that its scale matches with the increased level of quantization.

The performance of the controller (9) with (11) is equiva-
lent to that of (5) with presence of quantization error. Define

xq(t) := s1l(t) · x(t) ∈ Rn. (12)

Then, it can be easily verified that xq(t) and uq(t) obey

xq(t+ 1) = Fxq(t) +G

⌈
y(t)

l(t)

⌋
l(t) + P

⌈
r(t)

l(t)

⌋
l(t)

=: Fxq(t) +Gy(t) + Pr(t) + ex(t),

uq(t) = Hxq(t) + J

⌈
y(t)

l(t)

⌋
l(t) +Q

⌈
r(t)

l(t)

⌋
l(t)

=: Hxq(t) + Jy(t) +Qr(t) + eu(t),

(13)

with xq(0) = s1l0⌈x0/(s1l0)⌋ =: x0 + e0, where the errors
{ex(t), eu(t)} are bounded by a linear function of l(t), as∥∥∥∥[ex(t)eu(t)

]∥∥∥∥ ≤ 1

2

∥∥∥∥[G P
J Q

]∥∥∥∥ l(t) =: Mel(t), (14)
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and e0 is such that ∥e0∥ ≤ (s1l0)/2.
As a result, as stability of linear systems implies stability

with respect to perturbations, the following lemma states
that the designed controller (9) can ensure convergence of
the closed-loop state to the equilibrium (7), as much as the
quantization parameter l(t) can be smaller, as time goes by.

Lemma 1: The controller (9) in the closed-loop ensures∥∥∥∥[xp(t)− xp,∞
xq(t)− x∞

]∥∥∥∥ ≤ Mexpλ
t
cl +Mconv

t−1∑
τ=0

λt−1−τ
cl l(τ)

=: δx(t) (15)

for all t ≥ 0, where

Mexp :=

(
2M0+

s1l0
2

)
Mcl, Mconv := MeMcl max{∥B∥,1}.

Furthermore, if limt→∞ l(t) = 0, then limt→∞ δx(t) = 0,
limt→∞ xp(t) = xp,∞, and limt→∞ xq(t) = x∞. □

Proof: Let the closed-loop of (4) and (13) be re-written as

ξ(t+ 1) :=

[
xp(t+ 1)− xp,∞
xq(t+ 1)− x∞

]
= Aclξ(t) +

[
0np×n B
In 0n×m

] [
ex(t)
eu(t)

]
=: Aclξ(t) +Bee(t),

using (6) and (7), where ∥ξ(0)∥ ≤ 2M0+(s1l0)/2. Note that

∥ξ(t)∥ =
∥∥∥At

clξ(0) +
∑t−1

τ=0 A
t−1−τ
cl Bee(τ)

∥∥∥
≤ ∥At

cl∥·∥ξ(0)∥+
∑t−1

τ=0 ∥A
t−1−τ
cl ∥·∥Be∥·∥e(τ)∥.

Then, from (14) and ∥At
cl∥ ≤ Mclλ

t
cl, we simply obtain (15).

Next, suppose limt→∞ l(t) = 0 and ϵ > 0 be given. Choose
t′ ≥ 0 such that l(t′) ≤ ϵ(1−λcl)/(2Mconv). Then, we have

δx(t) ≤ Mexpλ
t
cl +Mconv

∑t′−1
τ=0 λt−1−τ

cl l(τ) + ϵ
2

≤ Mexpλ
t
cl +Mconvt

′λt−t′

cl l(0) +
ϵ

2
, ∀t ≥ t′,

since l(t) is monotonically decreasing. Now, we can choose
t′′ ≥ 0 such that δx(t) ≤ ϵ, ∀t ≥ t′′. It ends the proof. ■

We have seen that asymptotic convergence is achieved for
ideal cases when limt→∞ l(t) = 0, i.e., the quantization at
(8) can be infinitesimally fine as time goes by. We note that
Lemma 1 also considers cases in practice; when l(t) stops
decreasing and is fixed from time t∗ as l(t) ≡ l∗, ∀t ≥ t∗,
then (15) implies “practical convergence” of the state, as

lim sup
t→∞

∥∥∥∥[xp(t)− xp,∞
xq(t)− x∞

]∥∥∥∥ ≤ Mconv

1− λcl
l∗, (16)

where the bound is linear to the eventual quantization level.

B. Implementation over Zq and Parameter Design

Now, for the sake of encrypted implementation, let us
again convert the controller (9) to the system of the form (2),
which operates over the message space Zq based on modular
arithmetic. In fact, as the controller (5) already operates over

integers with addition and multiplication only, the conversion
to the form (2) itself is straightforward, by simply defining

F(t) := lr(t)F mod q, H(t) := H mod q,

G(t) := lr(t)
[
G,P

]
mod q, J(t) :=

[
J,Q

]
mod q,

y(t) :=

[
y(t)
r(t)

]
mod q, x0 := x(0) mod q.

(17)
This is because the modulo operation simply projects the
integers to the set Zq and it is compatible with addition and
multiplication. Indeed, it can be easily shown that under the
relation (17), the state x(t) and the output u(t) of (2) keep
the remainders of x(t) and u(t) in (9) divided by q, as

x(t) = x(t) mod q,

u(t) = u(t) mod q,
∀t ≥ 0. (18)

But then, in order for the performance, the original output
u(t) ∈ Zm should be restored from the projected signal
u(t) ∈ Zm

q ; that is, the “upper bits” of u(t) cut off by the
modulo operation should be recovered from the “lower bits”
signal u(t). For this, the following lemma shows that, if the
“variation” of the output u(t) is bounded by the modulus as2

∥u(t+ 1)− lr(t)u(t)∥ <
q

2
, ∀t ≥ 0, (19)

then the signal u(t) can be recovered from the information
of {u(τ)}tτ=0 and u(0).

Lemma 2: Consider the systems (2) and (9), with (17).
Let a signal ur(t) be defined from {u(τ)}tτ=0 and u(0), as

ur(0) = u(0), (20)
ur(t) = u(t) mod (q, lr(t− 1)ur(t− 1)), for t ≥ 1.

If (19) holds, then it satisfies ur(t) = u(t), for all t ≥ 0. □
Proof: Suppose ur(τ) = u(τ) at some τ ≥ 0. From (19),

note that all the components of u(τ +1)− lr(τ)u(τ)+
q
2 ·1m

are positive and less than q. Since (18) implies that u(τ+1) =
qv + u(τ + 1) with some v ∈ Zm, (1) and (20) imply that

ur(τ+1) = u(τ+1)−
⌊
u(τ+1)−lr(τ)ur(τ)+

q
2 ·1m

q

⌋
q

= u(τ+1)−
⌊
u(τ+1)−lr(τ)ur(τ)+

q
2 ·1m

q

⌋
q

= u(τ+1).

Hence, ur(t) = u(t), ∀t, by induction. It ends the proof. ■
In (20), the value of u(t) = ur(t) is restored from u(t−

1) = ur(t − 1) and u(t), inductively. We also note that the
initial value u(0) can also be recovered from u(0), by

u(0) = u(0) mod (q, 0m×1) (21)

as long as ∥u(0)∥ < q
2 ; i.e., as long as q is chosen such that

∥u(0)∥ =
1

s1s2l(0)
∥Hxq(0) + JCxp(0) +Qr(0) + eu(0)∥

≤ ∥[H,JC,Q]∥M0

s1s2l0
+

∥H∥
2s2

+
Me

s1s2
<

q

2
. (22)

2The ratio lr(t) from (10) considers the relative scale difference between
the outputs u(t+ 1) and u(t), as in (9).
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So far, we have argued that the designed controller over
Zq can keep the same performance of (9) when the condition
(19) holds, which we re-write for real output using (11), as

∥uq(t+ 1)− uq(t)∥
l(t+ 1)

< s1s2
q

2
, ∀t ≥ 0. (23)

So, we provide a condition for the parameter {l(t)}∞t=0 under
which the left-hand-side of (23) is bounded, so that the
choice of q will guarantee that (19) holds. Let an upper bound
for the left-hand-side calculated from (13), (14), and (15), as

∥uq(t+ 1)− uq(t)∥
l(t+ 1)

=
1

l(t+1)

∥∥∥∥[JC H
] [xp(t+1)−xp(t)

xq(t+1)−xq(t)

]
+ eu(t+1)−eu(t)

∥∥∥∥
≤

∥∥[JC H
]∥∥ ·

(
δx(t+ 1) + δx(t)

l(t+ 1)

)
+Me(1 + lr(t))

≤
∥∥[JC H

]∥∥ ·
(

2δx(t)

l(t+ 1)
+Mconvlr(t)

)
+Me(1 + lr(t))

=: Mδ
δx(t)

l(t+ 1)
+Mllr(t) +Me. (24)

Next, let the ratio lr(t) in (24) from (10) be bounded as

lr(t) ≤ l′r, ∀t ≥ 0, with some l′r ∈ N, (25)

so that the remaining task is to have the term

δx(t)

l(t+ 1)
=

Mexpλ
t
cl +Mconv

∑t−1
τ=0 λ

t−1−τ
cl l(τ)

l(t+ 1)
(26)

in (24) bounded; considering the convergence rate λt
cl, we

propose that the parameter {l(t)}∞t=0 be chosen to satisfy

∃ τd ∈ N such that
l(t)

l(t+ τd)
≤

(
1

λd

)τd

, ∀t ≥ 0, (27)

with some λd such that λcl < λd < 1, which will limit the
increase of the factor 1/l(t) for each period of length τd.

As a result, the following lemma states that the constraint
(27) for quantization ensures that the term (26) in (24) be
bounded, so the condition (19) for Lemma 2 can be satisfied.

Lemma 3: If the parameter {l(t)}∞t=0 satisfies (27), then

δx(t)

l(t+ 1)
≤ 1

λ1+τd
d

(
Mexp

l0
+

Mconv

λd − λcl

)
. (28)

□
Proof: Note that (27) implies (l(t)/l(t+k)) ≤ 1/(λd)

k+τd ,
for all t ≥ 0 and k ≥ 0, so that it follows from (26) that

δx(t)

l(t+ 1)
≤ Mexpλ

t
cl

l0λ
t+1+τd
d

+
Mconv

λ2+τd
d

t−1∑
τ=0

λt−1−τ
cl

λt−1−τ
d

.

Since λcl/λd < 1, and
∑t−1

τ=0(λcl/λd)
t−1−τ ≤ (λd/(λd −

λcl)), for all t ≥ 0, it completes the proof. ■
Remark 1: An easy way to ensure the condition (27) is

to introduce “dwell-time” for the signal l(t); let l′r and λd be
first chosen such that (l(t)/l(t+ 1)) ≤ l′r and λcl < λd < 1,
and let the time constant τd ∈ N be chosen such that

τd ≥
log l′r
log 1

λd

, so that
(

1

λd

)τd

≥ l′r.

And, we use the constant τd for dwell-time of l(t), so that

if l(t+1) < l(t), then l(t+1) = l(t+2) = · · · = l(t+ τd)

holds. Then, it can be easily verified that (27) is satisfied. □
Finally, we choose the modulus q for the plaintext space

Zq , and state the main result of asymptotic stabilization over
encrypted data with fixed modulus. Let q be chosen such that

Mδ

s1s2λ
1+τd
d

(
Mexp

l0
+

Mconv

λd − λcl

)
+

Mll
′
r +Me

s1s2
<

q

2
(29)

and (22) hold, considering the arguments (23), (24), and (28).
And, through the proposed conversion of the given con-

troller (5) to the form (9) over Z, and to the form (2) over
Zq , the controller over the ciphertext space C is designed as[

x(t+ 1)
u(t)

]
=

[
F(t) G(t)
H J

]
·

x(t)y(t)
r(t)

 (30)

with (17), where x(t) ∈ Cn is the encrypted state with the
initial value x(0) = Enc(⌈x0/(s1l0)⌋ mod q), y(t) ∈ Cp and
r(t) ∈ Cq are the plant output and reference encrypted as

y(t)=Enc

(⌈
y(t)

l(t)

⌋
mod q

)
, r(t)=Enc

(⌈
r(t)

l(t)

⌋
mod q

)
,

respectively, u(t) ∈ Cm is the controller output, and the
operation · is defined over the space C. The plant input
u(t) ∈ Rm is restored from the decryption of u(t), as

u(0) = s1s2l0 · (Dec(u(0)) mod (q, 0m×1)) (31)

u(t) = s1s2l(t) ·
(
Dec(u(t)) mod

(
q,

u(t− 1)

s1s2l(t)

))
,

analogously to (21) and (20) with the relation (11) consid-
ered. We assume that the previous output u(t− 1) is stored
at the decryption device and used for the recovery of u(t).

Putting all together, the main theorem is stated as follows.
Theorem 1: Consider the closed-loop of the plant (4) and

the encrypted controller (30) with (31). The constraints (22),
(27), and (29) for the parameters l(t) and q guarantee that

∥xp(t)− xp,∞∥ ≤ Mexpλ
t
cl+Mconv

t−1∑
τ=0

λt−1−τ
cl l(τ) = δx(t),

∥u(t)− u∞∥ ≤ ∥[JC,H]∥δx(t) +Mel(t), ∀t ≥ 0,

hold, where u∞ := JCxp,∞ +Hx∞ +Qr∞. Furthermore,

lim
t→∞

xp(t) = xp,∞ and lim
t→∞

u(t) = u∞

are guaranteed, in case limt→∞ l(t) = 0 holds. □
Proof: Consider the closed-loop of (4) and (9) as an

auxiliary system with the plant input obtained as (11). From
(30), let x(t) :=Dec(x(t)) and u(t) :=Dec(u(t)). They obey

x(t+ 1) = lr(t) · (F x(t) +Gy(t) + Pr(t)) mod q

u(t) = Hx(t) + Jy(t) +Qr(t) mod q

with x(0) = ⌈x0/(s1l0)⌋ mod q, by Proposition 1. With the
auxiliary system, we claim that the output u(t) from (31)
satisfies u(t)/(s1s2l(t)) = u(t), ∀t ≥ 0. First, from (31), the
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constraint (22) ensures u(0)/(s1s2l0) = u(0). Then, accord-
ing to Lemma 2, the claim is true if the auxiliary system
satisfies the condition (19), since ur(t) := u(t)/(s1s2l(t))
obeys (20) with u(t−1)/(s1s2l(t)) = lr(t−1)ur(t−1). Thus,
we show that the condition (23) holds, which is equivalent
to (19). Note that (23) holds if (28) and (29) hold, according
to (24). Then, the constraints (27) and (29) ensure that
(23) holds, since (27) implies (28) by Lemma 3. Therefore,
u(t)/(s1s2l(t)) = u(t) and u(t) = uq(t), ∀t ≥ 0. Finally,
Lemma 1 with (13), (12), and (14) completes the proof, since
uq(t)−u∞ = JC(xp(t)−xp,∞)+H(xq(t)−x∞)+eu(t). ■

Note that, while Theorem 1 guarantees convergence of the
plant state xp(t) to the equilibrium, the proposed controller
computes only “lower bits” of the state without computing
the upper bits, because of the constraint that the modulus
q is fixed and finite. Indeed, the message Dec(x(t)) =
x(t) mod q of the state keeps only lower bits of the state
x(t) of the model (9). Nonetheless, the parameter l(t) is
scheduled such that, the controller moves the computation
scope further lower (i.e., the quantization level becomes finer
by l(t) > l(t + 1), with the same modulus q) only when
the corresponding upper bits have converged. Thus, the real
output u(t) converging to the u∞ can be restored by (31).

We also note that Theorem 1 considers cases in practice
just as in (16); if l(t) ≡ l∗ > 0 from some t ≥ t∗, then

lim sup
t→∞

∥xp(t)− xp,∞∥ ≤ Mconv

1− λcl
l∗.

IV. CONCLUSION

We have proposed an implementation method for linear
dynamic controllers over encrypted data, which maintains
asymptotic convergence of the controlled trajectories. The
controller state matrix consisting of integers ensures that
the dynamics for the lower bits of the controller state is
well defined with modular arithmetic, so that it can generate
the same lower bits of the output without computing the
upper bits. As a result, it not only allows the operation over
encrypted data to be continued for an infinite time horizon
using only addition and multiplication over integers, but also
achieves asymptotic convergence of the trajectories, as fine
as the time-varying quantization can be performed in the end.
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