
Reinforcement Learning Based Approach for Flip Attack Detection
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Abstract— This paper addresses the detection problem of flip
attacks to sensor network systems where the attacker flips the
distribution of manipulated sensor measurements of a binary
state. The detector decides to continue taking observations or
to stop based on the sensor measurements, and the goal is
to have the flip attack recognized as fast as possible while
trying to avoid terminating the measurements when no attack
is present. The detection problem can be modeled as a partially
observable Markov decision process (POMDP) by assuming an
attack probability, with the dynamics of the hidden states of
the POMDP characterized by a stochastic shortest path (SSP)
problem. The optimal policy of the SSP solely depends on
the transition costs and is independent of the assumed attack
possibility. By using a fixed-length window and suitable feature
function of the measurements, a Markov decision process
(MDP) is used to approximate the behavior of the POMDP. The
optimal solution of the approximated MDP can then be solved
by any standard reinforcement learning methods. Numerical
evaluations demonstrates the effectiveness of the method.

I. INTRODUCTION

Networked embedded sensors are widely used to monitor
plants and to detect anomaly. At the same time, due to
their vulnerability to malicious attacks, increasing impor-
tance has been attached to researches on the security of
those systems. There are many works focusing on efficient
detection frameworks in response to different kinds of attack
strategies. Mo et al. [1] proposed an active detection scheme,
physical watermarking, which introduces an authentication
signal to enable the detection of replay attacks. In [2],
centralized and distributed filters were designed to detect and
identify various attacks. Some other detection approaches
were studied in [3] with other attack approaches. Different
from the above context, [4], [5] employed game-theoretic
approaches to analyze the attacker’s behavior for detection
purpose. It is shown that the flip attack, where the attacker
flips the distribution of manipulated sensors’ measurements,
is optimal from the attackers’ perspective to a broad class
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of problems. Therefore, it is well-worth some attention to
design detectors for flip attacks.

While the above works study the problem with the per-
spective of system theory, some researchers attempted to
capture the properties of the detection problems by the
formalism of partially observable Markov decision process
(POMDP). This is achieved by assuming an attack possibility
[6], [7] in various forms. With such a modeling approach, the
much celebrated reinforcement learning (RL) methods [8],
[9] can be applied to solve the problem. Among available
options, a theoretically sound approach is to introduce the
belief states and to solve in turn the induced Markov decision
processes (MDPs) with the belief states as its states. How-
ever, there are two major drawbacks of this approach, one
of which is generally true for all POMDP problems, while
the other is particularly damaging to the problems studied
here. First, regardless of the size of the state space of the
POMDP, the belief state can take infinite number of possible
values, which makes the induced MDP infinite dimensional
and therefore challenging to solve [9]. Second, the detection
problems studied here involve extraneous inputs from attack-
ers, which cannot be captured by the POMDP framework. To
address the issue, a transition probability is assumed to model
the attack possibility, which is a major approximation, as
the true attack probability varies due to various reasons and
the transition probability used in POMDP may be different
from the true attack probability. When solving a POMDP
using belief states, a so-called state estimator is used to
compute its value online. It relies explicitly on the transition
probability, and makes the solution sensitive to the assumed
transition probability. To circumvent those challenges, Kurt
et al. [7] applied fixed-length window of observation as
the state for online detection in smart grids. Similar idea
also appeared in [10] for online learning and attack design.
However, unlike the success of RL reported for playing
games where the POMDP is given by some simulators with
transition probabilities and costs enclosed in the simulator
[11],they are here part of the design task. It is not clear from
those works how the POMDPs shall be designed.

The focus in our work is somewhat like the quickest
change detection (QCD) problem, as we aim to determine
if there is an attack at every time step as quickly as possi-
ble. However, unlike those problems where the probability
density functions (p.d.f.’s) before and after the change point
are known [12], [13], in our work, only a set of possible
p.d.f.’s are known, which is another challenge.

In this work, we focus on the detection problem of flip
attacks where a group of sensors are used to measure a binary



state. Attackers flip the sensors’ distribution to confuse the
fusion center. The contributions of our work are: 1) To the
best of our knowledge, this is the first work that studies the
detection problem of flip sensor attacks via RL approach. The
proposed approach can be extended to other Cyber-Physical
Systems. 2) Conditions for designing POMDP used to model
the flip attacks are given. It is shown that the optimal
behavior is independent of the assumed attack possibility.
3) It is shown that the obtained detector is robust to the
assumed attack probability via numerical evaluations.

Notations: R is the set of reals. Rm denotes the m-
dimensional Euclidean space. AT is the transpose of matrix
A. bac is the floored integer of the real number a. supp(v)
denotes the set of indices of non-zero elements in the vector
v. |S| is the cardinality of finite set S. N(ν, σ2) represents the
Gaussian distribution with mean ν and variance σ2. 1S(j)
is an indicator function of some subset S, which equals 1 if
j ∈ S and 0 otherwise.

II. PROBLEM FORMULATION

We consider a flip attack detection problem with the
system diagram shown in Fig. 1. A plant P possesses a binary
state θ ∈ {0, 1}, measured by sensors s1, · · · , sm, whose in-
dices form set S. Define the measurement from all m sensors
at time k as: y(k)

4
= [y1(k) y2(k) · · · ym(k)]

T ∈ Rm.
All sensors’ measurements {yi(k)}j∈S are independently
and identically distributed (i.i.d.) under normal operation.
For any Borel-measurable set B ⊂ R, the probability that
yi(k) ∈ B is κ0(B) when θ = 0 and equals κ1(B) when
θ = 1. Given the measurements of the sensors and the
knowledge of the distributions κ0 and κ1, a fusion center
FC is designed to infer the state θ. Naturally, it is assumed
that the induced measures κ0 and κ1 are different and are
absolutely continuous. However, due to the presence of a
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Fig. 1: The system diagram. Here P stands for the process, which
possesses the binary state θ. s1, · · · , sm stand for the m sensors,
which are subject to the flip attack. D and FC are the detector and
the fusion center, respectively.

malicious adversary that try to compromise the performance
of the fusion center by attacking some sensors, the fusion
center receives the following manipulated measurements at
time k:

y′(k) = y(k) + ya(k), (1)

where ya(k) ∈ Rm is the bias vector injected by the attacker
at time k. Therefore, a detection unit D forks the measure-
ments y′(k) and is designed to detect possible attack given

received measurements y′(k) and the distributions κ0 and κ1,
without knowing the true state θ. The detector can command
the FC to continue process the received measurements or to
stop via the switch signal uc (continue) and us (stop).

Regarding the attack type, we make following assump-
tions. The type of attack studied here is typical in the
hypothesis testing and can be found in [4], [5].

Assumption 1 (Attacker’s knowledge): The attacker has
the knowledge of the probability of measures κ0 and κ1 and
the true state θ.

Assumption 2 (l-sparse attack): There exists an index set
L ⊂ S 4= {1, 2, . . . ,m} with |L| ≤ l, where l ≤

⌊
m
2

⌋
, such

that ∪∞k=1 supp{ya(k)} = L. Besides, the system knows the
number l, but it does not know the set L.

Remark 1: When m is large, typically we have l� m
2 .

Assumption 3: The compromised sensors are fixed during
the whole attack period and the attack will not stop until it
is detected or the detector stops detection.

For the type of attacks specified by the assumptions above,
the attacker may design the injected signals via various
strategies and here we focus on the detection of the flip attack
where the attacker flips the distribution of the corrupted
sensors’ measurements to confuse the fusion center [5].
This strategy has been shown to be optimal from attacker’s
perspective when exactly l sensors are compromised. The
strategy is when θ = 0, the probability measure generated
by y′j(k)j∈L is κ1 and when θ = 1, it is κ0. Correspondingly,
the attacked signal yaj (k)j∈L is derived as follows:

yaj (k) =

{
y′j(k)− yj(k) if j ∈ L,
0 if j /∈ L. (2)

In this work, we focus on the design of flip attack detector
to protect a sensor system aimed to estimate a binary state.
Due to the existence of the attack, there are two operation
situations: “normal” and “abnormal”. When an adversarial
launches the attack, the distribution of the compromised
sensors’ measurements flips to the distribution under the
opposite binary state. The detector decides on whether to stop
and declare that there is an attack or to continue receiving the
observations based on the sensor measurements. The desired
behavior should command “continue” if state is “normal”
and “stop” if otherwise. The problem of interest is to design
the detector given the scope specified here.

III. MODELING OF THE FLIP ATTACK VIA POMDP

In this section, we introduce the POMDP applied to model
the flip attack. As opposed to many successful cases reported
via the RL methods where there are already simulators
available, here the POMDP needed to serve as the simulator
is part of the challenge. This includes crafting the transition
probabilities and the transition costs of the underlying MDP,
and the conditional observation probabilities of obtaining
various observations. The optimal policy of the designed
MDP shall give uc when the state is “normal” and us other-
wise. We will show that this solely depends on the transition



costs and is irrelevant to the assumed attack probability. In
addition, we will give some rationales on how the conditional
observation probabilities are defined. The POMDP derived
here will serve as the simulator used to train the detector.

A. Modeling the dynamics of hidden states as an SSP

The states of the underlying MDP shall include “normal”
state, “abnormal” state, and termination, where the termina-
tion is an absorbing state. This type of problems is widely
known as stochastic shortest path (SSP) problem. We will
use the semicontractive models introduced in [14] and show
that the optimal policy solely depends on the transition costs.

We denote by I the state space of the underlying SSP
problem and by U the control space. The state space has two
elements 1 and 2, standing for “normal” state and “abnormal”
state, respectively, and we will use i or i′ to represent the
unspecified states in I . The admissible control options are to
continue and to stop, denoted as uc and us, respectively,
the same for all i ∈ I , and we will use u to represent
the unspecified control. We denote by pii′(u) the transition
probability from i to i′ under control u and denote by
g(·, u, ·) a deterministic nonnegative function which returns
the transition cost. The transition graph is shown in Fig. 2.
It is clear that for the detection problem, we have

p1i(uc) > 0, p22(uc) = 1, pit(uc) = 0, pit(us) = 1, (3)

where t 6∈ I denotes the terminal state, and we require

ptt(u) = 1, g(t, u, t) = 0, ∀u ∈ U. (4)
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Fig. 2: The transition graph of the SSP model. There are 2 states, 
plus the termination state t.

A function µ : I → U is named as a policy and the set of all 
policies is denoted by M. It is easy to see that we have |M| = 
4. In the context of SSP, a policy is proper if under such a 
policy, the state is guaranteed to reach t regardless of the 
initial state; otherwise, it is improper. We denote by E(I)
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Fig. 2: The transition graph of the SSP model. There are 2 states,
plus the termination state t.

A function µ : I → U is named as a policy and the set of
all policies is denoted by M. It is easy to see that we have
|M| = 4. In the context of SSP, a policy is proper if under
such a policy, the state is guaranteed to reach t regardless of
the initial state; otherwise, it is improper. We denote by E(I)
the set of functions J : I → R∗ where R∗ = R∪{∞,−∞}.
We use the mapping H : I × U × E(I)→ R∗ to define the
SSP problem as

H(i, u, J)
4
= pit(u)g(i, u, t)+

∑

i′∈I
pii′(u) (g(i, u, i′) + J(i′)) .

Then the mappings Tµ : E(I) → E(I) for every µ ∈ M,
and T : E(I)→ E(I) can be defined in turn as

TµJ(i)
4
= H(i, µ(i), J), TJ(i)

4
= min
µ∈M

TµJ(i), ∀i ∈ I.

In addition, the superscript of the operators means compo-
sition, viz., (T 2J)(i)

4
=
(
T (TJ)

)
(i). Besides, we denote by

Jµ ∈ E(I) the cost function of µ defined pointwise by

Jµ(i)
4
= lim sup

k→∞
(T kµ J̄)(i), ∀i ∈ I,

where J̄(i) = 0 for all i.
Naturally, a desired policy µd would be that µd(1) = uc

and µd(2) = us. Then a plausible choice of stage costs is

g(1, uc, 1) = 0, g(1, uc, 2) > 0, g(2, uc, 2) > 0,

g(1, us, t) > 0, g(2, us, t) = 0. (5)

The costs of other situations need not be defined as they have
zero transition probability. With the specified problem data,
the fundamental questions required to be answered are: 1) is
there a fixed point of the corresponding Bellman equation; 2)
If so, is the fixed point a cost function of certain policy µ∗;
3) what are the conditions needed in order to have µd = µ∗.
We recall the following useful lemma for the answers.

Lemma 1 (Proposition 2, [15]): For any SSP problem de-
fined in the form of the mapping H(·, ·, ·) with both I
and U being finite, assume that there exists at least one
proper policy, and the cost functions of all improper policies
have value infinity for at least one state. Then there exists
J∗ : I → R such that

J∗(i) = (TJ∗)(i), J∗(i) = min
µ∈M

Jµ(i),∀i ∈ I, (6)

with the optimal policy that attains the value of J∗ denoted
as µ∗ ∈M. In addition, for every proper µ, it holds that

Jµ(i) = (TµJµ)(i), ∀i ∈ I, (7)

which needs not to be true for the improper ones.
Aided by the above result, we have the following theorem.
Theorem 1: The SSP problem defined by (3), (4), and

(5) has the following property: a) the corresponding Bell-
man equations fulfill (6), (7), independent of the choice of
p12(uc); b) the attained optimal policy µ∗ is the desired
policy µd if g(1, us, t) > g(1, uc, 2), regardless of the choice
of p12(uc).

Proof: For part a), one can verify that µ(i) = us is
a proper policy and that all improper policies have cost
function infinity for state 2. Therefore, a) follows from
Lemma 1, which does not rely on the specific value of
p12(uc). For b), since J∗ is the fixed point of T , we have

J∗(1) = min
{
g(1, us, t), p11(uc)

(
0 + J∗(1)

)

+ p12(uc)
(
g(1, uc, 2) + J∗(2)

)}
, (8)

J∗(2) = min
{

0, g(2, uc, 2) + J∗(2)
}
. (9)



From (9), we have J∗(2) = 0 and µ∗(2) = µd(2) = us. To
have µ∗(1) = µd(1) = uc, one can see that it is required to
have g(1, us, t) > g(1, uc, 2).

From Theorem 1, by setting g(1, us, t) > g(1, uc, 2), the
SSP can capture the assumed characteristics of the flip attack.

B. Design of the conditional observation probabilities

The SSP introduced in Section III-A is used to model the
dynamics of hidden states. However, the true state i = 1 or
2 is not accessible to the detector. Instead, a measurement
y′(k) ∈ Rm defined in (1) is available, which makes the
environment partially observable and in turn the problem a
POMDP. Needless to say, the measurement is conditioned
on the state and control of SSP, viz., i and u. However, it is
also conditioned on the binary state θ and the compromised
sensor index set L. If one fixes θ and L, then the conditional
observation probabilities are fully specified by the attack
type and strategy. Under Assumptions 2 and 3, one can
verify that there are in total |I| different POMDPs induced
by the same SSP where I is an index set defined as
I 4=

{
1, 2, . . . , 2

∑l
`=1

m!
(m−`)!

}
. For every ` ∈ I, the

remote state θ and compromised sensors L are fixed and
we will name its corresponding POMDP as `-POMDP. To
have all those cases covered by one POMDP, we introduce a
probability distribution η over I, viz., η(`) ≥ 0 ∀` ∈ I and∑
`∈I η(`) = 1. Such a distribution indicates how likely one

particular case ` occurs. For example, it is more likely to have
one sensor get attacked than to have two, and this is reflected
by η where the distribution on cases fewer sensors under
attack is higher than those with more. Given the distribution
η, when the hidden state is 2, the probability of certain
observation y′ is given by the sum of products between the
probability of any case ` specified by η, and the probability
that y′ is observed in `-POMDP.

IV. RL APPROACH TO THE DETECTION PROBLEM
In principle, the POMDP used to model the flip attack

can be solved by introducing the belief states and solving
in turn the induced MDP with belief states as its states.
However, such an approach relies explicitly on the specific
values of transition probabilities in the SSP and the assumed
case distribution η. To obtain a detector that is robust to the
change of those values, we apply a RL approach to solve
the problem. We will show here how the learning problem
is formulated, and sketch the procedure to train the detector.

A. The target MDP learned by RL

One major challenge of POMDPs is that the Markov
property is lost. Motivated by [16], it is common to apply as
an observation a sequence of past measurements and actions
to infer the hidden states. Here we use as an observation at
time k a stored measurement with length w > 1 given by

ok
4
=
[
yT(k − w + 1) · · · yT(k − 1) yT(k)

]T ∈ Rmw.

Here the control need not to be recorded as the only
reasonable control is uc.

Denote by O` the set of all possible observation o ∈ Rmw
when the POMDP index is ` and define O as ∪`∈IO`.
Assume that there exists a feature function φ : O → X

where |X| < ∞ and X ⊂ Rn, and denote X`
4
= φ(O`).

Here the fundamental assumption we use is that for every
` ∈ I, there is a MDP characterized by a mapping H̃` :
X` × U × E(X`)→ R∗ given by

H̃`(x, u, V`) =p̃`,xt(u)r`(x, u, t)+∑

z∈X`

p̃`,xz(u)
(
r`(x, u, z) + V`(z)

)
,

where p̃`,··(·), r`(·), and V`(·) are defined accordingly, such
that the mean cost of `-POMDP is close to the mean cost
of the MDP defined by the above operator after feature
transformation. Then the POMDP defining the flip attack
can be approximated by H̃ : X ×U ×E(X)→ R∗ given by

H̃(x, u, V ) =

∑
`∈Ix

(
η(`)H̃`(x, u, V|X`

)
)

∑
`∈Ix

η(`)
, (10)

where Ix
4
= {` ∈ I : 1X`

(x) = 1}, and V|X`
is the restriction

of V on X`. The MDP defined by H̃ is the target MDP to
be learned by the training algorithm.

B. Training the detector

With above formulation, we obtain a standard RL problem
with X as state space and U as control space. Such a
problem can be solved by many different RL methods and
we use Q-learning [17] as an example. The pseudocode
is given in Algorithm 1. To address the exploration and
exploitation trade-off, a distribution γ for initial states of SSP
is specified. In addition, we denote by i ∼ γ(I) a sample
from distribution γ defined on I , and similar notation is used
for ` ∼ η(I). We denote by j ∼ SSP(i, u) the sampled next
state of SSP given current state and control pair (i, u), and
o ∼ `-POMDP(i, u) the sampled observation of `-POMDP
given current state and control pair (i, u). With a slight abuse
of notation, we denote by u ∼ minv Qε(x, v) the sampled
control from a greedy exploration ε policy given the current
Q(·, ·), the current state x and exploration rate ε.

V. NUMERICAL EVALUATION

In this section, the numerical evaluation of the proposed
method is presented. For some given sets of probability
measures κθ, the parameters of SSP used for modeling the
attack, the fixed-length window, the feature functions, and
parameters used in Q-learning are given. Via tuning the cost
defined in the SSP model, the obtained detector exhibits
that there is a trade-off between detecting attack early and
giving false alarm. In addition, the detector, without knowing
the binary state θ, has a comparable performance with the
classical QCD algorithm that equips the true value θ.



Algorithm 1 Q-learning for detector training
Input: Problem data, the number of episodes N , and the learning

rate α ∈ (0, 1], the exploration rate ε ∈ (0, 1), initial state
distribution γ.

Output: The optimal state-action value function Q(x, u)
1: Initialize Q(x, u), ∀x ∈ X , u ∈ U . i ∼ γ(I), u← uc.
2: for each n ∈ N do
3: ` ∼ η(I), o ∼ `-POMDP(i, u).
4: while i 6= t do
5: x← φ(o), u ∼ minv Qε(x, v).
6: if u = us then
7: c← g(i, u, t), Q(x, u)← (1− α)Q(x, u) + αc
8: else
9: i′ ∼ SSP(i, u), o′ ∼ `-POMDP(i′, u).

10: x′ ← φ(o′), c← g(i, u, i′), u′ ∈ minuQ(x′, u),
11: Q(x, u)← (1− α)Q(x, u) + α [c+Q(x′, u′)],
12: i← i′, o← o′.
13: end if
14: end while
15: end for

A. Simulation setup and modelling parameters

The density functions under normal operation are given
by N(νθ, σ

2
θ) where θ = 0, 1, ν0 = −ν1, and σ0 = σ1 = 1.

Various values of νθ have been tested. The binary state
is measured by m = 5 sensors and by Assumption 2,
at most l = 2 sensors are attacked. Fig. 3 illustrates the
measurements of all the sensors in one trail where θ = 0,
ν0 = 0.7, and the attack occurred at k = 50 on sensor
1. The dynamics of the hidden states is modeled by SSP,
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Fig. 3: Sensor measurements in one trail where θ = 0, ν0 = 0.7,
and the attack occurs at k = 50 on sensor 1.

with transition probability given by (3) where p11(uc) =
0.95, p12(uc) = 0.05. The transition probability from i = 1
to 2 represents attack probability and are kept fixed through-
out the training process. It will be shown in the evaluation
results that the trained detector is robust to this assumed
transition probability. The cost per stage is given by (5), with
g(1, us, t) = 1, g(1, uc, 2) = g(2, uc, 2) ∈ (0, 1). Recall
that it is required to have g(1, uc, 2) < g(1, us, t) in order
to make µd, the desired policy, the only policy whose cost
function is the fixed point of the Bellman equation (6) and
at the same time an optimal policy. The specific value of
g(1, uc, 2) serves as the tuning parameter of and g(2, uc, 2)
is set to be the same value.

The size of the fixed-length window involves a trade-off
between encoding more information and demanding more

memory. In this example, window size between w = 2
to 6 are explored. This is by no means guaranteed to
be optimal and it may be tuned to get better results.
Designing the feature function of the observation is typi-
cally challenging and requires domain specific knowledge.
Here we use arithmetic means as features. With a better
crafted feature functions, a performance improvement may
be expected. The feature used here at time k is defined as
xk
4
= [x1(k) x2(k) · · · xm(k)]

T
, where for s ∈ S, and W =

{0, . . . , w−1}, xs(k) =
∑
`∈R

(
`×1R`

(∑
j∈W ys(k−j)

w

))
,

with {R`}`∈R as a finite partition of the R whose index set
is R. The partition serves as a tuning parameter.

In addition, the distribution η(I) is defined such that the
chance of one sensor under attack is 80% and of two as
20% while the chances of θ being 0 and 1 are equal. In
addition, the initial state i of SSP for each episode is given
by a Bernoulli distribution, with probability 0.3 that i = 1
at the beginning of each episode and 2 otherwise.
B. Training setup and performance criteria

Q-learning algorithm is applied to obtain a MDP in form
of (10) that approximates the behavior of POMDP introduced
in Section III. The learning rate α is set to be constant and
different values of α have also been explored. The learning
rates that fulfill the Robbins-Monro conditions, which is
required to have the convergent behaviors, have also been
tested. It results in no clear improvement and therefore is
not presented here. The number of training episodes N varies
between 300 thousands to 1 million depending on the size
of the state space. Once the training process is complete, a
table of Q values with data size less than 0.5 MB is obtained.

To test the obtained detector, Monte Carlo simulations
with 20 thousands trials are used, half of which are always in
normal operation, while the other half always under attack.
They corresponds to cases where the transition probability
p12(uc) of SSP is set to be 0 and 1 respectively. The
transition probabilities are significantly different from those
used to train the detector, in order to test its sensitivity
to the assumed attack probability. The false alarm rate
(FAR) and the average detection delay (ADD) are used
as performance criteria and computed as follows: FAR =(∑104

j=1 1Hj
(us)

)
/104, i = 1, ADD =

(∑104

j=1 min{` :

u(`) ∈ Uj ∧ u(`) = us}
)
/104, i = 2, where Hj =

{i, u, g, · · · } is the history of j-th evaluation episode where
i = 1 and Uj = {u(0), u(1), · · · } is the history of control in
j-th evaluation episode where i = 2.

C. Evaluation results

The detector has been tested with various νθ and some of
the evaluation results are summarized here. Table I shows
the effect of different window size w when ν0 = 1. The
number of training episodes N is set to be 300 thousands.
With the window size increases, the corresponding FAR
decreases, which is expected as a better mean estimate can
be obtained with w increasing. Table II lists the performance



under different costs with mean ν0 = 0.7. The number of
training episodes N is set to be 1 million. It is shown that
as the cost increases, the corresponding FAR increases. This
is expected since the increase of the cost g(1, uc, 2) signals
a bigger emphasis on minimizing detection delay during the
training phase. Therefore, the FAR and ADD increases and
decreases, respectively. In addition to the trade-off behavior

TABLE I: Performance under different window sizes with
learning rate α = 0.005 and cost g(1, uc, 2) = 0.001.

w
Type 1 sensor attacked 2 sensor attacked

FAR(%) ADD FAR(%) ADD
2 14.83 14.3542 15.33 5.4918
3 4.51 8.8770 4.63 5.4022
4 1.25 7.8350 1.43 5.4208
5 0.27 8.5059 0.32 6.3201

TABLE II: Performance under different costs with window size
w = 6 and learning rate α = 0.005.

Cost
Type 1 sensor attacked 2 sensors attacked

FAR(%) ADD FAR(%) ADD
0.001 4.95 15.5038 4.98 7.8317
0.002 6.98 11.3086 6.75 7.2053
0.005 9.03 9.8902 9.71 6.8299
0.010 18.01 9.1583 18.16 6.4030

between FAR and ADD discussed above, the performance
also varies with the number of sensors under attack. The FAR
of 1 sensor attacked is almost similar to the one of 2 sensors
attacked. The ADD of 1 sensor attacked is larger than the
one of 2 sensors attacked. In other words, the detector spends
longer time to judge whether there is an attack. In Fig. 4, we

0.40 0.45 0.50 0.55 0.60 0.65 0.70

20

40
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D

1 sensor attacked
2 sensors attacked
h = 6
h = 10
h = 15

Fig. 4: ADDs of CUSUM algorithm and the resulting detector.
Parameter h stands for the tuning parameter used in CUSUM.

compare the performance between our trained detector and
classical quickest change detection algorithm (CUSUM) with
different ν0 [18] and we focus on comparing ADD, while
all corresponding FAR are less than 5% in our methods. The
blue and green lines denote ADD of 1 sensor attacked and
2 sensors attacked when choosing appropriate window size
w, learning rate α and exploration parameters ε. The last
three lines denote corresponding ADD when the threshold h
is set as 6, 10, 15. Note that the CUSUM requires the true
value of θ, which is not needed in our detector. From this
figure, one can see that the resulting detector has comparable
performance with classical QCD algorithm.

VI. CONCLUSION

In this paper, a detection problem of flip attacks is formu-
lated as a POMDP by assuming an attack probability and
a MDP in the form of SSP is employed to approximate
the behavior of the POMDP by fixed-length window and
state aggregation of observations. Then a standard Q-learning
algorithm is applied to derive the optimal solution of the ap-
proximated MDP. Numerical results are provided to illustrate
that the resulting detector exhibits promising behavior.
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