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Abstract— This paper considers the problem of designing
physical watermark signals to protect a control system against
replay attacks. We first introduce the replay attack model,
where an adversary replays the previous sensory data in order
to fool the controller to believe the system is still operating
normally. The physical watermarking scheme, which leverages a
random control input as a watermark to detect the replay attack
is introduced. The optimal watermark signal design problem
is then proposed as an optimization problem, which achieves
the optimal trade-off between the control performance and
attack detection performance. For the system with unknown
parameters, we provide a procedure to asymptotically derive the
optimal watermarking signal. Numerical examples are provided
to illustrate the effectiveness of the proposed strategy.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are defined as the system
where “physical and software components are deeply in-
tertwined, each operating on different spatial and temporal
scales, exhibiting multiple and distinct behavioral modalities,
and interacting with each other in a myriad of ways that
change with context” [1]. It plays a vital role in a large variety
of fields, such as manufacturing, health care, transportation,
military and infrastructure construction. Due to the wide
applications and critical functions of the CPS, increasing
importance has been attached to the security of CPS [2], [3].
A successful attack can jeopardize critical infrastructure and
people’s lives and properties, even threaten national security.
Therefore, the design of secure CPS and defense mechanisms
becomes crucial to ensuring proper operation of CPS [4].

However, CPS security faces a wide variety of challenges.
Cardenas et al. [5] discuss three main challenges and identify
the unique properties of CPS security when compared with
traditional IT security. Taylor and Sharif [6] review the
difficulties of guaranteeing the critical infrastructure systems
and industrial control systems. The research community has
made significant efforts in false data injection, failure and
anomaly detection to enhance CPS security in recent years.
Manandhar and Cao [7] propose a robust security framework
for the smart-grid system using the χ2 detector and Euclidean
detector. The fault detection problem for linear time-invariant
discrete-time systems with disturbance is analyzed in [8].

In this paper, we consider the problem of detecting replay
attack, which is motivated by the Stuxnet malware. In [9],
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[10], [11], a replay attack model is defined and its effect
on a steady-state control system is analyzed. An algebraic
condition is provided on the detectability of the replay attack.
For those systems that cannot detect replay attack efficiently,
a physical watermarking scheme is proposed to enable the
detection of the presence of the attack, by injecting a random
control signal, namely watermark signal, into the control
system. However, the watermark signal will deteriorate the
control performance, and therefore it is important to find
the optimal trade-off between the control performance loss
and the detection performance, which can be casted as an
optimization problem. Similar “watermarking” schemes are
also proposed in the literature [12], [13], [14].

It is worth noticing that in the majority of the afore-
mentioned researches, the precise knowledge of the system
parameters is assumed in order to design the watermarking
signal. However, acquiring the parameters may be trouble-
some and costly. Hence, it is beneficial for the system to
“learn” the parameters during its operation and automatically
design the watermarking signal in real-time. Motivated by
this idea, in this paper, we propose a “on-line learning
mechanism” to infer the system parameters. The physical
watermark that asymptotically converges to the optimal one
is further developed.

The rest of paper is organized as follows. Section II
formulates the problem by introducing the system as well
as the attack model. The physical watermarking scheme is
introduced in Section III. In Section IV, we present an on-
line “learning” scheme based on the input and output data to
infer the parameters of the system and design the watermark
signal based on the estimated parameters. We further prove
the almost sure convergence of the watermarking signal to
the optimal one. In Section V, numerical example is pro-
vided to verify the effectiveness of the proposed technique.
Concluding remarks are given in Section VI.

Notations: ‖A‖F is the Frobenius norm of an m×n matrix
A defined as ‖A‖F =

√∑m
i=1

∑n
j=1A

2
i,j , where Ai,j is the

ith row, jth column element of the matrix A. A⊗ B is the
Kronecker product of matrix A and B. A > 0 denotes that
the matrix A is positive definite. AT denotes the transpose
of matrix A.

II. PROBLEM FORMULATION

In this section, we introduce the system as well as the
attack model, which will be used for the remaining of the
paper.

We consider a linear time-invariant system described by
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the following equations:

xk+1 = Axk + wk, (1)
yk = Cxk + vk, (2)

where xk ∈ Rn and yk ∈ Rm are the state vector and the
sensor’s measurement, respectively; wk ∈ Rn is the zero
mean Gaussian process noise with covariance Q > 0, and
vk ∈ Rn is the zero mean Gaussian measurement noise with
covariance R > 0. We suppose that w0, w1, . . . and v0, v1, . . .
are independent of each other. We further assume that x0

is a zero mean Gaussian random vector independent of the
process noise and the measurement noise, with covariance
Σ.

We further make the following assumptions regarding the
system:

Assumption 1: The A matrix is strictly stable. Further-
more, (A,C) is observable.

Notice that the observability assumption is without loss of
generality as we can perform a Kalman decomposition and
only work with the observable subspace.

Since CPS usually operates for an extended period of time,
we assume that the system is already in the steady state, i.e.,
Σ satisfies:

Σ = AΣAT +Q. (3)

Next we introduce the replay attack model. The adversary
is assumed to have the following capabilities:

1) The attacker has access to all the real-time sensory data.
In other words, it knows y0, . . . , yk at time k.

2) The attacker can modify the true sensor signals yk to
arbitrary sensor signals y′k.

Given these capabilities, the adversary can employ the fol-
lowing replay attack strategy:

1) The attacker records a sequence of sensor measurements
yks from time k1 to k1 + Tp, where Tp is large enough
to guarantee that the attacker can replay the sequence
for an extended period of time during the attack.

2) The attacker manipulates the sensor measurements yk
starting from time k2 to the recorded signals, i.e.,

y′k = yk−∆k,∀ k2 ≤ k ≤ (k2 + Tp),

where ∆k = k2 − k1.
It is worth noticing that since the system is already in the

steady state, the statistics of replayed y′k will be exactly as
the same as that of the real data yk. As a result, for a large
class of linear systems, the replayed signal and the real one
become indistinguishable after a short transient time period.
For more detailed discussion, please refer to [9].

III. PHYSICAL WATERMARKING SCHEME

This section is devoted to the detection of replay attack
via physical watermarking. The main idea of physical wa-
termarking is to inject a random noise φk, which is called
the watermark signal, to excite the system and check if the
system responds to the watermark signal in accordance to the

dynamical model of the system. To be specific, we assume
that the system equation (1) is modified to be

xk+1 = Axk +Bφk + wk, (4)

where φk ∈ Rp is the watermark signal applied to the
system at time k, which is usually assumed to be independent
and identically distributed (i.i.d.) zero mean Gaussian with
variance U . We further assume that (A,B) is controllable.

In the absence of attack, yk can be represented as:

yk =

k−1∑
t=0

CAtBφk−1−t +

k−1∑
t=0

CAtwk−1−t + vk + CAkx0.

For simplicity, we define

γk ,
k∑
t=0

CAtBφk−t,

ϑk ,
k∑
t=0

CAtwk−t + vk+1 + CAk+1x0.

Hence, yk can be rewritten in the following form:

yk = γk−1 + ϑk−1. (5)

We further define

Hτ , CAτB.

One can check that γk−1 is a zero mean Gaussian whose
covariance converges to U , where

U =

∞∑
τ=0

HτUH
T
τ .

Similarly, ϑk is a zero mean Gaussian noise with covariance
W = CΣCT + R, where Σ is defined in (3). As a
result, given φ0, . . . , φk−1, the conditional distribution of yk
converges to a Gaussian distribution with mean γk−1 and
covariance W .

For the scenario where replay attack is present, the re-
played y′k can be written as

y′k = yk−∆k

= γk−1−∆k + ϑk−1−∆k.

Since ∆k is unknown to the system operator, it is safe to
assume that given φ0, . . . , φk−1, y′k is zero mean Gaussian
with covariance U +W .

As a result, we can design a detector to differentiate the
distribution of yk under the following two hypotheses:
H0: yk follows a Gaussian distribution N0 = N (γk−1,W).
H1: yk follows a Gaussian distribution N1 = N (0,U +W).

By the Neyman-Pearson lemma [15], the Neyman-Pearson
detector for hypothesis H0 versus hypothesis H1 takes the
following form:

Theorem 1: The Neyman-Pearson detector rejects H0 in
favor of H1 if

g(yk, φk−1, φk−2, · · · )

=
(
yk − γk−1

)T
W−1

(
yk − γk−1

)
− yTk (W + U)

−1
yk

≥η,
(6)
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where η is a predetermined threshold depending on the de-
sired false alarm rate. Otherwise, hypothesis H0 is accepted.

Similar to [10], the quantity tr(UW−1) can be used
to characterize the detection performance. In other words,
increasing tr(UW−1) will usually results in better detection
performance. For more details, please refer to [10].

Note that although the watermark signal can enable the
detection of replay attack, it also deteriorates the perfor-
mance of the system. As a result, it is important to find
the optimal trade-off between the control performance loss
and the detection performance. In this paper, to quantify the
performance loss, we use the following LQG metric:

J = lim
T→+∞

E

(
1

T

T−1∑
k=0

[
yk
φk

]T
X

[
yk
φk

])
, (7)

where

X =

[
Xyy Xyφ

Xφy Xφφ

]
> 0.

Since yk and φk converge to a stationary process, J can
be written in analytical form as

J = lim
k→

tr

(
X Cov

([
yk
φk

]))
= tr

(
X

[
W + U H0U
UHT

0 U

])
.

Therefore, J is an affine function of U , which can be
written as

J = J0 + ∆J = tr(XyyW) + tr(XS),

with S being a following linear function of U ,

S =

[
U H0U

UHT
0 U

]
.

As a result, in order the achieve the optimal trade-off
between the control performance and detection performance,
we can formulate the following optimization problem:

U = arg max
U≥0

tr(UW−1)

subject to tr(XS) ≤ δ, (8)

where δ is a design parameter depending on how much
control performance loss is tolerable.

An important property of the optimization problem (8) is
that the optimal solution is usually a rank-1 matrix, which
is formalized by the following theorem:

Theorem 2: The optimization problem (8) is equivalent to

U = arg max
U≥0

tr(UP)

subject to tr(UX ) ≤ δ, (9)

where

P ,
∞∑
τ=0

HT
τ W−1Hτ , (10)

X ,

( ∞∑
τ=0

HT
τ XyyHτ

)
+HT

0 Xyφ +XφyH0 +Xφφ.

(11)

The optimal solution (not necessarily unique) to (9) is

U = zzT ,

where z is the eigenvector corresponding to the maximum
eigenvalue of the matrix X−1P and zTX z = δ. Furthermore,
the solution is unique if X−1P has only one maximum
eigenvalue.

Proof: From the definition of U , we know that

tr(UW−1) =

∞∑
k=0

tr
(
HτUH

T
τ W−1

)
=

∞∑
τ=0

tr
(
UHT

τ W−1Hτ

)
= tr (UP)

Following similar steps as in the above proof, we have
that tr(XS) = tr(UX ). Moreover, since X > 0, we have
that X > 0.

The proof of the second part is similar to the proof of
Theorem 7 in [11] and is omitted here due to space limit.

It is worth noticing that in order to design the optimal
watermarking signal, precise knowledge of the system pa-
rameters is needed. However, acquiring the parameters may
be troublesome and costly. Therefore, it is beneficial for the
system to “learn” the parameters during its operation and
design the watermarking signal in real time, which will be
our focus in the next section.

IV. ON-LINE “LEARNING” SCHEME

This section is devoted to developing an on-line “learning”
procedure to find the optimal watermarking signals. Through-
out the section, we make the following assumptions:

1) A is diagonalizable and has distinct eigenvalues.
2) The maximum eigenvalue of X−1P is unique.
3) The system is not under attack during the “learning”

phase.
4) The system output yk, the dimension of the A matrix n

is known, the matrix X and δ are known.
For the sake of legibility, we first introduce how to infer

the necessary parameters of the system. Then we move
to the design of watermark signal based on the estimated
parameters. The proofs of Theorem 3, 4 and 5 are reported
at the end of this section.

A. Inference on the Parameters

In this subsection, we describe our “learning” procedure.
At each time k, the watermarking signal is chosen to be
φk = U

1/2
k ζk, where ζks are i.i.d. Gaussian random vectors

with covariance I . The matrix Uk is computed as a function
of y0, . . . , yk, φ0, . . . , φk−1, the procedure of which will be
described in details in the next subsection.

Define Yk and Hk,τ (0 ≤ τ ≤ 3n− 2) as

Yk ,
1

k + 1

k∑
t=0

yty
T
t , Hk,τ ,

1

k + 1

k∑
t=0

ytφ
T
t−τ−1U

−1
t−τ−1.

We shall assume that φt−τ−1 = 0 if t− τ − 1 < 0.
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One can think Hk,τ is an estimate of Hτ and Yk is an
estimate of W + U . We first prove a theorem regarding the
convergence Hk,τ to Hτ .

Theorem 3: Suppose that there exists positive definite
matrices M and M , such that the following inequality surely
holds:

M > Uk >
1

(k + 1)β
M, (12)

where 0 ≤ β < 1, then Hk,τ converges to Hτ almost surely.

It is worth noticing that we can only keep a record of
finitely many Hk,τ s. However, to infer matrices U ,W,P and
X , we need to estimate Hτ for all τ ≥ 0. The following
lemma provides a method to obtain Hτ from only finite
parameters and its proof can be found in [16].

Lemma 1: Suppose that the matrix A has distinct eigen-
values λ1, . . . , λn, then there exists unique Ω1, . . . ,Ωn, such
that

Hτ =

n∑
i=1

λτi Ωi. (13)

By Lemma 1, we could use finitely many H0, . . . ,H3n−2 to
estimate both λis and Ωis and thus Hτ for any τ . To this
end, let us consider the following optimization problem:

min
αk,0,...,αk,n−1

∥∥∥∥∥∥∥∥Hk


αk,0
αk,1
. . .

αk,n−1

⊗ I
+


Hk,n

Hk,n+1

. . .
Hk,3n−2


∥∥∥∥∥∥∥∥
F

,

(14)

where Hk is a Hankel matrix defined as

Hk ,


Hk,0 Hk,1 . . . Hk,n−1

Hk,1 Hk,2 . . . Hk,n

...
...

. . .
...

Hk,2n−2 Hk,2n−1 . . . Hk,3n−3

 .
Let us denote the roots of the polynomial pk(x) = xn +

αk,n−1x
n−1 + . . . + αk,0 to be λk,1, . . . , λk,n. Define a

Vandermonde like matrix Vk to be

Vk ,


1 1 · · · 1
λk,1 λk,2 · · · λk,n

...
...

. . .
...

λ3n−2
k,1 λ3n−2

k,2 · · · λ3n−2
k,n

 ,
andΩk,1

...
Ωk,n

 = arg max
Ωk,i

∥∥∥∥∥∥∥(Vk ⊗ Im)

Ωk,1
...

Ωk,n

−
 Hk,0

. . .
Hk,3n−2


∥∥∥∥∥∥∥ .

The following theorem further establishes the convergence
of λk,i (and Ωk,i) to λi (and Ωi):

Theorem 4: Suppose that A has distinct eigenvalues. If
Hk,τ converges to Hτ for 0 ≤ τ ≤ 3n − 2, then λk,i
converges λi and Ωk,i converges to Ωi.

Then let us define Uk,ij , which satisfies the following
recursive equation:

Uk+1,ij = λk,iλk,jUk,ij + ΩiUkΩTj ,

and

Uk ,
n∑
i=1

n∑
j=1

Uk,ij .

Furthermore, define

Wk = Yk −
1

k + 1

k∑
t=0

Ut.

The following theorem establishes the convergence ofWk:
Theorem 5: Suppose that (12) holds, then Wk converges

to W almost surely.
Let us further define

Pk =
n∑
i=1

n∑
j=1

1

1− λk,iλk,j
ΩTk,iW−1

k Ωk,j ,

and

Xk =

n∑
i=1

n∑
j=1

1

1− λk,iλk,j
ΩTk,iXyyΩk,j

+

n∑
i=1

ΩTi Xyφ +Xφy

n∑
i=1

Ωi +Xφφ.

By the convergence of Hk,τ , Wk, λk,i and Ωk,i, it is easy
to prove that Pk and Xk converges to P and X almost surely.
As a result, we have successfully estimated all the parameters
necessary to design the watermarking signal, with the only
assumption being (12).

B. Watermarking Signal Design

Uk is updated as

Uk+1 = Uk,∗ +
δ

(k + 1)β
I, (15)

where δ is defined in (8) and Uk,∗ is the solution of the
following optimization problem

Uk,∗ = arg max
U≥0

tr(UPk)

subject to tr(UXk) ≤ δ.

0 ≤ β < 1. The following theorem establishes the bounded-
ness and convergence of Uk.

Theorem 6: Uk is bounded by

δ(Xφφ −XφyX
−1
yy Xyφ)−1 ≥ Uk ≥ δ(k + 1)−βI (16)

Furthermore, if Pk converges to P and Xk converges to X ,
then

lim
k→∞

Uk = U,

where U is the solution of (14).
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Proof: Notice that

Xk ≥

(
n∑
i=1

Ωi

)T
Xyy

(
n∑
i=1

Ωi

)

+

n∑
i=1

ΩTi Xyφ +Xφy

n∑
i=1

Ωi +Xφφ.

Hence, Xk ≥ Xφφ −XφyX
−1
yy Xyφ, which implies that

tr(Uk,∗
(
Xφφ −XφyX

−1
yy Xyφ

)
) ≤ δ. (17)

Notice that if for a positive semidefinite X with tr(X) ≤
δ, then X ≤ δI . Hence, (17) implies that

Uk,∗ ≤ δ
(
Xφφ −XφyX

−1
yy Xyφ

)−1
,

which proves the first inequality in (16). The second inequal-
ity can be easily proved by (15).

The convergence can be proved by noticing that Uk,∗ is a
continuous function of Pk, Xk at a neighborhood of P,X .
The detailed proof is omitted due to space limit.

Now we can establish that Uk converges to the optimal
U . Notice that there is no circular logic in our proof, as
(16) holds regardless of the inferred value Yk and Hk,τ .
Therefore, the convergence of Xk and Pk is guaranteed by
Theorem 3, 4 and 5, which further implies the convergence
of Uk.

C. Proofs of Theorem 3, 4 and 5
1) Proof of Theorem 3: We only prove for the case

where τ = 0. The τ > 0 case can be proved following
similar arguments and the details are omitted due to space
constraints. Before proving theorem 3, the following lemmas
are needed and their proofs can be found in [16].

Lemma 2: Suppose that ω, υ, ς, ξ are four jointly Gaussian
random vectors with zero mean and proper dimensions. The
following equations are true:

E
[
ωυT ςξT

]
=E

[
ωξT

]
E
[
υT ς

]
+ E

[
ωςT

]
E
[
υξT

]
+ E

[
ωυT

]
E
[
ςξT
]
,

E
[
υT ςξT

]
= 0.

Lemma 3: If Υn = Π0 + · · · + Πn be a martingale such
that

∞∑
k=0

E ‖Πk‖2F
(k + 1)2

<∞,

where Πk(k = 0, · · · , n) and Υn are all m× l matrices, then

lim
n→∞

Υn
n+ 1

= 0 almost surely.
Proof: [Proof of Theorem 3] We only provide an

outline of the proof. The detailed proof can be found
in [16]. Define the filtration Fk to be the σ-algebra
which is generated by the following random variables
{x0, φ0, . . . , φk−1, w0, . . . , wk−1, v0, . . . , vk}. It is easy to
see that both Uk and yk are measurable in the σ-algebra
Fk. Let us further define

Sk =

k∑
t=0

(ytφ
T
t−1U

−1
t−1 −H0),

where φk−1 = 0 if k < 1. The proof is divided into steps.
First, one can prove that Sk is a martingale with respect

to the filtration {Fk}, i.e.,

E(Sk+1|Fk) = Sk, (18)

or in other words,

E(yk+1φ
T
k U
−1
k |Fk) = H0.

Next we need to prove that

∞∑
k=0

E
∥∥yk+1φ

T
k U
−1
k −H0

∥∥2

F

(k + 1)2
<∞. (19)

Let us consider[
yk+1φ

T
k U
−1
k −H0

] [
yk+1φ

T
k U
−1
k −H0

]T
=yk+1φ

T
k U
−2
k φky

T
k+1 −H0U

−1
k φky

T
k+1

− yk+1φ
T
k U
−2
k HT

0 +H0H
T
0 ,

Now by Lemma 2, we can prove that

E
([
yk+1φ

T
k U
−1
k −H0

] [
yk+1φ

T
k U
−1
k −H0

]T |Fk)
=H0UkH

T
0 tr(U−1

k ) + tr(U−1
k )ψk+1ψ

T
k+1 + tr(U−1

k )R

+H0H
T
0 .

Now if M ≥ Uk ≥M/(k + 1)β , we can conclude that

E
(∥∥yk+1φ

T
k U
−1
k −H0

∥∥2

F

)
= tr

(
E
([
yk+1φ

T
k U
−1
k −H0

] [
yk+1φ

T
k U
−1
k −H0

]T))
=O

(
(k + 1)β

)
.

Since β < 1, according to the convergence condition of
infinite series, we know that the infinite sum on LHS of
(19) is bounded.

Therefore, by Lemma 3,

lim
k→∞

Sk
k + 1

= 0 almost surely,

which proves that Hk,0 converges to H0 almost surely.
2) Proof of Theorem 4: Before proving Theorem 4, we

need the following lemma, whose proof can be found in [16].
Lemma 4: Suppose that the vector ϕ is the solution of the

optimization problem

ϕ = arg min
ϕ

‖A(θ)ϕ− b(θ)‖2,

where A(θ) and b(θ) are continuous functions of θ. If
A(θ0) is of full column rank at θ0, then ϕ is unique and
a continuous function of θ in a neighborhood of θ0.

The proof of Theorem 4 can be proved by Lemma 1 and
Lemma 4. The details can be found in [16].
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3) Proof of Theorem 5: Before proving the theorem, we
need the following lemma, whose proof can be found in [16].

Lemma 5: Suppose that ρk converges to ρ, where |ρ| < 1.
Furthermore, assume that limk→∞ a′k−ak = 0, where ak is
a bounded sequence. Then we have

lim
k→∞

b′k − bk = 0,

where bk and b′k satisfy the following recursive equation:

bk+1 = ρbk + ak, b
′
k+1 = ρkb

′
k + a′k,

with initial condition b−1 = b′−1 = 0.
The proof of Theorem 5 can be proved by Lemma 1,
Lemma 5 and Theorem 6 in [17]. The detailed proof can
be found in [16].

V. SIMULATION RESULT

In this section, the performance of the proposed learning
procedure is evaluated. We choose n = m = p = 2 and
A, B, C are all randomly generated, with A stable.

Without loss of generality, it is assumed that X in (7), the
covariance matrices Q and R are equal to the identity matrix
with proper dimensions. We assume that δ in (9) is equal to
5 and β = 1/3. Figure 1 shows ‖Uk − U‖F /‖U‖ v.s. time
k, where U is the solution of the optimization problem of
(8), and Uk, generated through updating equation (15), is the
estimation of U .

100 101 102 103

10−0.5

100

k

‖U
k
−
U
‖ F
/‖
U
‖

Fig. 1: ‖Uk − U‖F /‖U‖ versus k.

From Figure 1, it can be seen that Uk converges to
the optimal U as time goes to infinity. Furthermore, the
convergence follows a power law, i.e., ‖Uk−U‖F = O(k−ε).
We plan to investigate the rate of the convergence in our
future work.

VI. CONCLUSION

In this paper, the detection problem of replay attack
via “physical watermarking” with known system parameters
is proposed to achieve the desired trade-off between the
detection performance and control performance loss. Then
we provide an on-line “learning” technique for determining
the optimal watermarking signals without the knowledge of
system parameters. The simulation is carried out to verify
the effectiveness of the proposed technique.
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