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Abstract— In this paper we address the problem of designing
a robust stealthy attack for adversaries to compromise an
uncertain cyber-physical system without being detected. We first
re-interpret the zero-dynamics attack based on the normal form
representation. Then, a new alternative zero dynamics attack
is presented for uncertain systems. This alternative employs
a disturbance observer and does not require exact system
knowledge in order to remain stealthy. The proposed robust
zero-dynamics attack needs a nominal model of the system and,
in addition, utilizes the input and output signals of the system.
The proposed attack illustrates how the adversary is able to
use disclosure resources instead of exact model knowledge.
A simulation result with a hydro-turbine power system is
presented to verify the attack performance.

I. INTRODUCTION

Nowadays modern control systems integrate computing
devices, physical plants, and communication networks. Such
a cyber-physical system (CPS) is a promising framework
for cost efficiency and high productivity. The cyber-physical
approach has gone beyond the fundamental limitations of the
conventional methodologies and has achieved a great success
in numerous industrial fields [1], [2].

At the same time, CPSs are more threatened by attacks,
as their network connections are easier to be accessed
for anonymous users. Serious outbreaks of malicious cyber
threats already have been reported in recent years. Some
remarkable instances include the attacks on the U.S. electric
grid [3] and the Stuxnet malware [4]. As a natural conse-
quence, the security of CPS has attracted widespread atten-
tion with emerging resilient control and secure estimation
schemes [5]–[8].

With such increased interest on the cyber-security, a va-
riety of attack scenarios, such as denial-of-service (DoS)
attack, replay attack [9], zero-dynamics attack [5], [6], [10],
bias injection attack [5], and so on, have been studied from
a control-theoretic perspective. As highlighted in most of
these works, stealthiness is of utter importance for success
of the adversary; that is, when an attack signal enters a CPS,
its impact should not be captured by sensor and anomaly
detector. The zero-dynamics attack is a systematic strategy
to be undetected and simultaneously to inject a large amount
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of false data into the plant. Its stealthy property mainly
comes from that the adversary duplicates the real unstable
zero dynamics of non-minimum phase physical plants, so the
attack signal conceals itself in the so-called output-nulling
space [5], [10]. However, the attack design heavily relies on
model knowledge. Lack of system information thus leaves
the attack revealed, which means that it becomes not stealthy
anymore for such uncertain plants [10]. If so, can we be safe
from those stealthy attacks simply because model uncertainty
commonly exists for most physical systems?

Interestingly, we find in this paper that it may not be
the case when the attacker employs robust control tech-
niques in their attacks. Specifically, we solve the problem
of constructing robust zero-dynamics attack that is stealthy
for uncertain non-minimum phase plants. Moving away from
the traditional methods, the underlying idea is to construct an
auxiliary zero dynamics which will replace the role of real
zero-dynamics, so that the real zero-dynamics is left alone.
Then, the state components corresponding to its unstable
mode will diverge, which is not observed by the output. This
idea is implemented by representing the influence of model
uncertainty and the real zero-dynamics into a (so-called)
lumped disturbance, and by constructing the robust controller
which estimates and compensates the lumped disturbance.
All this is actually done by the disturbance observer [12],
[13]. The price to pay for less model knowledge is the neces-
sity of the control input and the plant’s output information,

Model knowledge
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Fig. 1. Cyber-physical attack space [8] with model knowledge, disruption,
and disclosure resources: The robust zero-dynamics attack is at entirely new
location.
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and so the proposed robust zero-dynamics attack requires
more disclosure resources [8], as depicted in Fig. 1.

Notation: For column vectors a and b, we write [a; b] for
col(a, b) = [aᵀ, bᵀ]ᵀ.

II. RE-INTERPRETATION OF ZERO-DYNAMICS ATTACK
WITH NORMAL FORM

Zero-dynamics attack is a systematic methodology for
attacking a class of cyber-physical systems (CPSs) having
unstable zeros [5], [6], [10]. The basic concept is that, as
its name implies, the attack generator maliciously disguises
as the unstable zero-dynamics of the plant and injects its
diverging output through the actuator channel. This conse-
quently leads to the feature that the actual (zero-dynamics)
state grows as time goes by, while being close to the output-
nulling space (so the corresponding output is almost zero,
by which we call it a stealthy attack).

Although geometric control framework has been employed
as a tool for its analysis [5], we present in this section another
way to interpret the zero-dynamics attack for the purpose
of gaining further insight. The new interpretation is based
on the Byrnes-Isidori normal form, in which a single-input
single-output (SISO) physical system is represented as1

ż = Sz +GCνx, (1a)

ẋ = Aνx+Bν
(
ψᵀz + φᵀx+ g(uc + a)

)
, (1b)

y = Cνx (1c)

where uc ∈ R is the control input, y ∈ R is the measurement
output, z ∈ Rn−ν and x ∈ Rν are the states, and a ∈ R is
the attack signal. For an integer i, the matrices Ai, Bi, and
Ci are defined by

Ai :=

[
0i−1 Ii−1

0 0ᵀi−1

]
, Bi :=

[
0i−1

1

]
, Ci :=

[
1 0ᵀi−1

]
where 0i ∈ Ri is a zero vector, and S, G, ψ, φ, and g are
constant matrices of appropriate size. The control input uc
in (1) is supposed to be generated by a priori given output
feedback controller

ċ = Ec+H(yr − y), uc = Jc+K(yr − y) (2)

where c ∈ Rnc is the controller state, and yr ∈ R is the
reference signal. The reference yr : R → R is assumed to
be sufficiently smooth and bounded, and their derivatives are
also bounded.

In what follows, we pay our attention to a class of non-
minimum phase systems with hyperbolic2 zero-dynamics.
Then, we may assume the following without loss of gen-
erality (by applying a suitable coordinate change for z).

1Any SISO linear system can be expressed as the Byrnes-Isidori normal
form (1) [11, Chapter 13]. In this form, the zeros of the transfer function of
the SISO linear system coincide with the eigenvalues of S. Hence, ż = Sz
is called the zero-dynamics.

2By hyperbolic zero-dynamics, we mean there is no zero on the imaginary
axis of the complex plane. This is requested because the role of the attack
to be presented is (as we shall explain precisely) to leave the zero-dynamics
alone, and those marginal modes of the zero-dynamics are not enough to
destabilize the system.

Assumption 1: The z-dynamics (1a) has the form of[
żu
żs

]
=

[
Su 0
0 Ss

] [
zu
zs

]
+

[
Gu
Gs

]
Cνx (3)

where Su ∈ Rnu×nu and Ss ∈ Rns×ns are anti-Hurwitz and
Hurwitz, respectively, nu ≥ 1, and z = [zu; zs] ∈ Rnu+ns .

�
Under Assumption 1, the (non-robust) zero-dynamics at-

tack is commonly constructed as

ża = Sza, aza = −1

g
ψᵀza (4)

where za =: [zau; zas] ∈ Rnu+ns . (The superscript ‘a’ is used
to indicate signals that are generated by the adversary.)

For the analysis, we introduce the attack-free closed-loop
system

ż0 = Sz0 +GCνx0,

ẋ0 = Aνx0 +Bν
(
ψᵀz0 + φᵀx0 + guc,0

)
, (5)

ċ0 = Ec0 +H
(
yr − Cνx0

)
, uc,0 = Jc0 +K

(
yr − Cνx0

)
(which is derived by putting a(t) ≡ 0 into (1)). The
nature of the zero-dynamics attack (4) is then reinterpreted
in the following proposition. (Hereinafter, without loss of
generality let t = 0 be the time when the attack a(t) enters
the system.)

Proposition 1: Suppose that Assumption 1 holds and the
attack-free closed-loop system (5) is asymptotically stable.
Then the closed-loop system (1)–(4) under the zero-dynamics
attack a = aza satisfies the following:
(a) If zau(0) 6= 0, then

‖zu(t)‖ → ∞ as t→∞. (6)

(b) There are k > 0 and λ > 0 such that∥∥[x(t); c(t)]− [x0(t); c0(t)]
∥∥ ≤ ke−λt‖za(0)‖ (7)

with [z0(0);x0(0); c0(0)] = [z(0);x(0); c(0)]. �
Proposition 1 indicates that, with non-zero zau(0) but

small ‖za(0)‖, the plant’s (partial) state diverges while the
(attacked) real output y(t) = Cνx(t) remains close to the
attack-free output y0(t) = Cνx0(t) (by (7)). It implies that
stealthy attack is achieved.

Proof: Consider z̃a := z − za which transforms the
closed-loop system (1)–(4) into

˙̃za = Sz̃a +GCνx,

ẋ = Aνx+Bν
(
ψᵀz̃a + φᵀx+ guc

)
, (8)

ċ = Ec+H
(
yr − Cνx

)
, uc = Jc+K

(
yr − Cνx

)
.

Notice that (8) is nothing but the very attack-free closed-
loop system (5) whose initial condition is slightly perturbed
by z̃a(0) = z(0) − za(0). Since (8) is asymptotically stable
by the assumption, we have∥∥[z̃a(t);x(t); c(t)]− [z0(t);x0(t); c0(t)]

∥∥ ≤ ke−λt‖za(0)‖

with positive constants k and λ, which implies the item (b).
On the other hand, whenever zau(0) 6= 0, the solution za(t)
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of the unstable system (4) must diverge as time goes on. The
actual state z(t) = za(t)+ z̃a(t) also does, while z̃a(t) being
bounded.

Remark 1: From the analysis, it is clear that lower order
dynamics żau = Suz

a
u and aza = −(1/g)ψᵀ

uz
a
u (where ψu is

a suitable partition of ψ) is enough to construct the zero-
dynamics attack. �

We emphasize that full model knowledge on the plant
(1) is necessary for the zero-dynamics attack. In practice,
it is not always possible for the attacker (as well as for
the defender) to obtain the exact information on the plant.
Even small model uncertainty can make the zero-dynamics
attack detectable, so the attack is not stealthy anymore (as
studied in [10]). This finding raises a question about how to
construct robustly stealthy attack for uncertain plants, which
is the main topic of the next section.

III. ROBUST ZERO-DYNAMICS ATTACK
FOR UNCERTAIN SYSTEMS

A. Problem Formulation

In what follows, it is assumed that the plant (1) has the
following model uncertainty.

Assumption 2: All the parameters S, G, ψ, φ, and g are
uncertain, but belong to known3 finite parameter intervals.
In particular, 0 < g ≤ g ≤ g with g and g known. �

As mentioned above, we are interested in the problem
of constructing a robust zero-dynamics attack against un-
certain physical plants. Without full model knowledge, the
adversaries may have to build their attack strategy with the
following (attack-free) nominal plant of (1):

żn = Snzn +GnCνxn, (9a)

ẋn = Aνxn +Bν
(
ψᵀ
n zn + φᵀnxn + gnun

)
, (9b)

yn = Cνxn (9c)

where zn ∈ Rn−ν and xn ∈ Rν are the states, and un ∈ R
is the control input generated by the existing controller (2)

ċn =Ecn +H(yr − yn), un = Jcn +K(yr − yn). (9d)

The scalar gn and the matrices Sn, Gn, ψn, and φn stand
for nominal components of g, S, G, ψ, and φ, respectively.
We suppose that the nominal closed-loop system (9) is
asymptotically stable.

Now, motivated by Proposition 1, we formulate the prob-
lem as follows.

Problem Statement: For given zu > 0 and ε > 0,
construct an attack generator

q̇ = F(q, uc, y, t), a = G(q, uc, y, t) (10)

that achieves the following properties simultaneously:
(a) ‖zu(t)‖ becomes larger than zu > 0 within a finite time

t = T ,
(b) the difference ‖y(t)−yn(t)‖ is smaller than a threshold

ε > 0 until the attack succeeds (that is, ∀t ∈ [0, T ]). �

3They are ‘known to attackers.’ The interval can be conservative so that
the attacker can overestimate those intervals.

The item (a) indicates the ability of the attack to com-
promise the plant’s internal state (where zu is the attacker’s
choice), while the item (b) means stealthiness of the attack. It
is noted that, compared with the traditional structure (4), the
attack generator (10) makes use of the signals uc and y. This
is in fact the price to pay for the robustness against model
uncertainty; that is, instead of using less model knowledge,
the attacker relies more on the input and output information
of the plant to adjust to uncertain environment on-line.

Assumption 3: The measurement output y(t) and the
control input uc(t) are available to attackers. �

Remark 2: It is noticed that the item (b) in Problem
Statement measures the difference between the output y(t)
under attack and, not the attack-free output y0(t) of the
(actual) uncertain system (1) as in Proposition 1, but yn(t) of
its nominal counterpart (9). At a first glance, recalling that
the perfect stealthiness is achieved when y(t) ≡ y0(t) (not
y(t) ≡ yn(t)), the attack (10) with this alternative definition
seems easily revealed if the model uncertainty is too large
to neglect the difference of the actual and nominal plants’
dynamics. Even for such large uncertainty, however, this is
often not the case as long as the existing controller (2) is
also robust against parametric uncertainties. Indeed, when a
tracking or regulating problem is (robustly) solved by (2)
for both actual and nominal systems (with no attack), their
outputs yn(t) and y0(t) reach the same reference yr(t) in
the end. It means that yn(t) ≈ y0(t) during the steady-
state operation of the system, within which the attack is
usually initiated. In summary, we claim in this paper that
the proposed attack tends to be stealthy if the uncertainty
is not large or if the attack enters the system in the steady
state, whereas for the same situations the conventional zero-
dynamics attack (4) is not stealthy (as aforementioned). We
will come to this point in the simulation of Section IV again.

�
For convenience, let us denote the nominal state of (9) as

χn := [zn;xn; cn]. Then (9) is rewritten by

χ̇n = Anχn + Bnyr, yn = Cnχn (11)

where

An :=

 Sn GnCν 0
Bνψ

ᵀ
n Aν+Bνφ

ᵀ
n−gnBνKCν gnBνJ

0 −HCν E

,
Bn :=

[
0n−ν ; gnBνK;H

]
, Cn :=

[
0ᵀn−ν Cν 0ᵀnc

]
.

This system will play the role of a reference system for the
analysis of attack performance, and so, its initial condition
[zn(0);xn(0); cn(0)](= χn(0)) will be regarded as the same
as [z(0);x(0); c(0)]. Finally, we assume that the initial con-
dition [z(0);x(0); c(0)] of the system is bounded:

Assumption 4: There is a compact set X0 such that
[z(0);x(0); c(0)] ∈ X0. �

We note that this assumption is not unrealistic because the
size of X0 can be arbitrarily large.

B. Idea for Robust Zero-dynamics Attack
We introduce an attack policy to robustly compromise the

internal z-dynamics. We note in advance that the method
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to be presented here is not realizable yet, but we will
shortly make it feasible in the next subsection. A rough
attack scenario is that an artificial nominal zero-dynamics is
constructed to substitute for the real zero-dynamics, while the
real one becomes stand-alone detached from the closed-loop
system. Then the state of the unstable (real) zero-dynamics
without any control may diverge.

To see this, let us duplicate the nominal zero-dynamics
(9a) using the output y of (1) as

żan = Snz
a
n +Gny (12)

zan(0) = z(0) ∈ Z0 (13)

where Z0 is the projection of X0 into the z-plane. Then, one
can rewrite x-dynamics in (1b) using zan and the nominal
components ψn, φn, and gn as in

ẋ = Aνx+Bν

(
ψᵀz + φᵀx+ g(uc + a)

)
= Aνx+Bν

(
ψᵀ
n z

a
n + φᵀnx+ gnuc − g(a? − a)

)
(14)

with a new symbol

a? :=
1

g

(
−ψᵀz+ψᵀ

n z
a
n + (φᵀn −φᵀ)x+ (gn− g)uc

)
. (15)

We now look at a composite full state χ := [zan;x; c], which
can be viewed as the state of the closed-loop system (1) and
(2) with zan participating in instead of z. That is, the systems
(1), (2), (12), (14), and (15) are compactly represented asżużs

χ̇

=

Su 0 A12,u

0 Ss A12,s

0 0 An

zuzs
χ

+

 0
0
Bn

yr+

 0
0
Ba

 ã (16)

where ã := a?−a with some matrices A12,u, A12,s, and Ba.
For now, we suppose that a?(t) is available to the attacker,

who then takes its attack policy as

a(t) = a?(t), ∀t ≥ 0. (17)

Then, the χ-dynamics under the attack (17) becomes the
same as that of the nominal closed-loop system (11) (i.e.,
the χn-dynamics). Moreover, because the zu-subsystem in
(16) becomes unobservable from the output y and it is
anti-stable, the state zu(t) diverges in most cases while its
divergence never influences the output y. The discussion so
far is summarized in the following proposition.

Proposition 2: With the attack (17), the solution of the
closed-loop system (16) satisfies the following:
(a) For every [zu(0); zs(0);χ(0)] ∈ (Z0 ×X0) \L?0 where
L?0 ⊂ R(n−ν)+n+nc is a Lebesgue measure zero set,

‖zu(t)‖ → ∞ as t→∞.

(b) For the solution χn(t) of (11) initiated at χn(0) = χ(0),

χ(t) = χn(t), ∀t ≥ 0.

In particular, there are compact sets Zs ⊂ Rns and
X ⊂ Rn such that [zs(t);χ(t)] ∈ Zs ×X , ∀t ≥ 0. �

We omit the proof due to the page limit.
Remark 3: The first item of the proposition says that

success of the attack (17) depends on the initial condition

[zu(0); zs(0);χ(0)]. The reason for this is the fact that, even
for anti-stable system ẋ = Ax + Bu with any bounded input
signal u(t), there always exists at least one initial condition
x(0) from which the solution x(t) is bounded, and that the
initial condition is determined by all future information of
u(t), ∀t ≥ 0 [16]. Proposition 2 also says those initial
conditions compose a Lebesgue measure zero set, so that
this special case hardly occurs. �

Now we recall that the attack policy (17) is not realistic
yet because of two reasons: (i) knowledge of z(0), when
the attack is initiated, is needed in order to set zan(0) as in
(13), and (ii) the attack signal a? is composed of uncertain
parameters and unmeasured states. The first item (i) may not
be a big problem if the system is in the steady state so that
the value of z is easily guessed (at least approximately), or if
the uncertainty is not too large and the attacker can employ
a state observer using the information of y and uc before the
attack starts. Or, in some cases, the information of z may
be actually available to the attacker. On the other hand, the
second item (ii) looks more challenging. Yet interestingly,
this situation is quite familiar in the perspective of robust
control. Indeed, if one regards a? in (14) as the so-called
lumped disturbance (or total disturbance) [12], [14], then
the problem under consideration is converted into how to
design a robust controller that estimates and compensates
the disturbance a?. As one of such robust controllers, we
will construct a disturbance observer (DOB) in the next
subsection, which will become our robust attack generator
(10) that implements the ideal policy (17) in a practical sense.

C. Robust Zero-dynamics Attack: Implementation of a = a?

via Disturbance Observer Technique
For the design of DOB, some sets and matrices are defined

below. First, take compact sets Ẑs and X̂ that strictly contain
Zs and X in Proposition 2, respectively. Next, for a given
number zu > 0, consider the set

A(zu) :=

{
a? in (15) : ‖zu‖ ≤ zu, [zs;χ] ∈ Ẑs × X̂

}
containing all the possible values of a? under the variations
of g, ψ, and φ. This set is clearly bounded, because all the
variations of the uncertain parameters are bounded. Finding
the set A(zu) may be a difficult task, and so, let us choose
its upper estimate Â(zu) that is compact and strictly contains
A(zu). Using this compact set, design a saturation function
s̄ : R→ R that is C1, bounded, and satisfies

s̄(â) = â, ∀â ∈ Â(zu) and 0 ≤ ∂s̄

∂â
(â) ≤ 1, ∀â ∈ R.

Here s̄ can be any smooth bounded function whose slope is
limited by 1, and is identity on the set Â(zu).

In addition, we define a matrix Γ(τ) := diag(τ, . . . , τν) ∈
Rν×ν for a positive constant τ , and also define vectors
φn := [φn,ν ; · · · ;φn,1] ∈ Rν (with φn =: [φn,1; . . . ;φn,ν ]),
and α := [αν−1; · · · ;α0] ∈ Rν . Here, the components αi,
i = 0, . . . , ν − 1, are selected such that the transfer function

W (s) :=
sν + αν−1s

ν−1 + · · ·+ α1s+ (g/gn)α0

sν + αν−1sν−1 + · · ·+ α1s+ (g/gn)α0
(18)
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Fig. 2. The proposed attack generator (red dashed block) and the system

is strictly positive real. The design parameters τ and zu used
above will be discussed in Theorem 1.

Remark 4: The coefficients αi that make W (s) strictly
positive real can always be obtained by the following two
steps. First, select α1, . . . , αν−1 to make sν−1+αν−1s

ν−2+
· · ·+α1 Hurwitz. Then, pick sufficiently small α0 > 0 such
that the Nyquist plot of

G(s) =
α0

sν + αν−1sν−1 + · · ·+ α1s

does not encircle the disk D(g/gn, g/gn) (i.e., the disk in
the complex plane whose diameter is the real line segment
[−gn/g,−gn/g]). For more details, see [13]. �

Following the DOB structure in [15], a robust attack
generator (10) is designed by

ṗ =
(
Aν − Γ−1αCν

)
p (19a)

+
α0

τν
Bν

(
uc + arob +

1

gn
ψᵀ
n z

a
n

)
+
α0

τν
1

gn

(
φn + Γ−1α

)
y,

arob = s̄

(
Cνp−

α0

τν
1

gn
y

)
(19b)

together with the zan-dynamics (12), where p ∈ Rν and zan ∈
Rn−ν are the states, uc and y are the inputs, and arob ∈ R
is the output. (See Fig. 2.) The initial condition p(0) can be
anything (as long as it belongs to a compact set) but is set
to be zero for convenience, and zan(0) is initiated as in (13).

Briefly explaining how the robust attack generator (12)
and (19) works, the following lemma shows that the attack
arob(t) plays the role as an (approximate) estimate of a?(t).

Lemma 1: Suppose that a = arob and

‖zu(t)‖ ≤ zu, [zs(t);χ(t)] ∈ Ẑs × X̂ .

Then there exists τ0 > 0 such that for every τ ∈ (0, τ0),

‖ã(t)‖ = ‖arob(t)− a?(t)‖ ≤ k1
τν
e−λ1(t/τ) + k2τ (20)

where k1, k2, and λ1 are positive constants independent on
τ . �

It is seen from (20) that the smaller τ is, the faster
and the more accurate the approximation arob(t) ≈ a?(t)
is. Consequently, with small τ and large zu, the proposed
attack generator (12) and (19) can almost recover the attack
performance of the ideal attack policy (17), as seen in the
following theorem.

Theorem 1: Suppose all assumptions hold. Then, for
given zu > 0 and ε > 0, there exist τ > 0 and zu > zu such

that for each [zu(0); zs(0);χ(0)] ∈ (Z0 × X0) \ L̂?0 where
L̂?0 is a Lebesgue measure zero set, the closed-loop system
(1), (2), (12), (13), and (19) with a = arob and τ ∈ (0, τ)
satisfies the following:
(a) There exists a constant T > 0 such that

‖zu(T )‖ > zu. (21)

(b) For 0 ≤ t ≤ T ,

‖χ(t)− χn(t)‖ < ε (22)

where χn(t) is the solution of (11) from χn(0) = χ(0).
The proofs of Lemma 1 and Theorem 1 are omitted due

to the page limit.

IV. SIMULATION: POWER GENERATING SYSTEMS

We consider the scenario that a malicious attack enters
a power generating system having a hydro turbine [17],
[18]. A state-space representation of the plant with the droop
characteristics is given by

ζ̇1 = −(1/TP )ζ1 + (KP /TP )(ζ2 − 2ζ3), (23a)

ζ̇2 = −(2/Tw)ζ2 + (6/Tw)ζ3, (23b)

ζ̇3 = −(1/TG)ζ3 + (1/TG) (uc + a− (1/R)ζ1) , (23c)

where uc is the input, y = ζ1 is the output, and ζ =
[ζ1; ζ2; ζ3] := [∆f ; ∆PG + 2∆XG; ∆XG] is the state con-
sisting of the incremental frequency deviation ∆f (Hz),
the change in generator output ∆PG (p.u.), and the change
in governor valve position ∆XG (p.u.). The constants TP ,
Tw, and TG indicate time constants of load and machine,
hydro turbine, and governor, respectively, and R is the speed
regulation due to the governor action (Hz/p.u.). The detailed
parameters of the plants are given by KP = 1, TP = 6,
TG = 0.2, and R = 0.05, while Tw ∈ [4, 6] is uncertain [18].
For robustly stabilizing the uncertain plant (23), a (band-
limited) PID-type controller K(s) = (1.8124s2−18.8558s+
0.1523)/(0.01s2 + s) is designed a priori.

The main purpose of the attack is that the valve position
∆XG increases up to 1.5 p.u., while the frequency derivation
∆f and the generating power ∆PG remain close to those
without attack. As a result, the attack leads to overuse of
water in a forebay for generating the same amount of power.

For the attack design, we first represent the hydro-turbine
power system (23) in the normal form (1) with a coordinate
transformation

x1 := ζ1, x2 := −(1/TP )ζ1 + (KP /TP )ζ2 − (2KP /TP )ζ3,

z := ζ2 + (3TP /Tw)(1/KP )ζ1

and some constants φ1, φ2, ψ, g, and S > 0 (which
are possibly uncertain because of Tw). For comparison,
let us construct two types of attack generator; one is the
conventional zero-dynamics attack (4) for the nominal plant
with Tw,n = 4; the other is the proposed robust attack
(12) and (19) designed with the same Tw,n, τ = 0.001,
zu = 1.6, and a saturation function s̄(â) whose inactive
region is Â = {â : |â| ≤ 1000}.
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Fig. 3. Simulation results with the conventional zero-dynamics attack (4)
when Tw = 4 = Tw,n (black dashed), Tw = 5 (red dash-dotted), and
Tw = 6 (blue solid)

Figs. 3 and 4 depict the simulation results of the conven-
tional and the proposed attacks applied to the uncertain plant
(23), respectively. These attacks are initiated at t = 60 sec
when the controlled system is already in the steady state.
As shown in these figures, when there is no uncertainty,
both attacks work as desired and successfully spoil the plant.
However, the conventional scheme (4) immediately fails to
be stealthy if it encounters the uncertain plant (Fig. 3),
while the proposed attack (12) and (19) remains robust
against model uncertainty (Fig. 4). It is also observed from
these figures that the modified stealthiness, the item (b)
of Problem Statement, is sufficient for the success of the
proposed attack. This is because, as discussed in Remark 2,
the existing controller K(s) robustly stabilizes the uncertain
plant, so all the possible (attack-free) output trajectories y0(t)
(including yn(t)) remain around the zero regardless of model
uncertainty, at the moment the attack is initiated.

V. CONCLUDING REMARKS

We have shown in this paper that fatal attacks on cyber-
physical systems are possible even without exact system
knowledge by employing robust control techniques that
automatic control community has developed for a long time.
Specifically, we have presented a robust zero-dynamics attack
that remains stealthy even for uncertain physical systems
while forcing the internal states, corresponding to unstable
zero dynamics of the system, to diverge. Although in this
paper the robust zero dynamics attack is presented for sys-
tems with linear dynamics, extending the result to uncertain
nonlinear systems seems straightforward. This indicates more
research is called for in order to prevent lethal attacks on
cyber-physical systems.
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