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Abstract— In this paper, a security problem in remote esti-
mation scenario is studied. We consider a multi-sensor system
where each sensor transmits its local innovation to a remote
estimator through a wireless communication network. A cen-
tralized residue-based detection criterion is adopted to monitor
system anomalies. We propose a linear attack strategy and
present the corresponding feasibility constraints to guarantee
stealthiness. For a resource-limited attacker, who is able to
listen to all the channels while only launches an attack on
one sensor at each time instant, we investigate which sensor
should be attacked and what strategy should be used such
that the remote estimation error covariance is maximized. A
closed-form expression of the optimal linear attack strategy is
obtained. Simulation examples are provided to illustrate the
theoretical results.

Index Terms— Cyber-Physical System Security, Remote State
Estimation, Integrity Attack

I. INTRODUCTION

Cyber-Physical Systems (CPS) are systems that integrate
sensing, communication, control, computation and physical
processes [1]. Due to the complex integration of various
technologies and components with the cyber information
layer, CPS offer a variety of attack surfaces to malicious
agents [2]. Attacks may result in severe consequences on
national economy, social security or even loss of human
lives [3]. Therefore, security is of fundamental importance
to ensure the safe operation of CPS.

With the increasing adoption of CPS to safety-critical
applications, attack strategies and defense mechanisms have
been recently investigated. Depending on their resources and
capabilities, the malicious attackers aim to deteriorate the
system functionality, while remain undetected for as long as
possible [4]. Denial-of-service (DoS) and deception attacks,
two major categories of cyber attacks in CPS, were studied
in [5]. DoS attacks which attempt to block the communi-
cation channels were investigated for resource-constrained
attackers [6]–[8]. Besides, Li et al. [9] proposed a game-
theoretic framework to study the decision-making process
with energy constraints of the sensor and the attacker.
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The deception attacks, which aim at compromising the
data integrity, have recently received considerable attention.
Replay attacks, which are able to access, record, and replay
the sensor data, were studied in [10]. False-data injection
attacks were first considered for resource-limited attackers
against remote state estimation in power grids [11]. The
reachable estimation error covariance under such attacks
was investigated in [12], [13]. A covert data attack, which
misleads the control center to remove useful measurements,
was proposed and analyzed for dynamic systems in [14].
Other formulations of cyber attacks on secure estimation
problems were investigated in [15], [16].

A type of linear attack that modifies the transmitted
innovations without being noticed by the χ2 detector, was
first proposed in our previous work [17]. The evolution of
the estimation error covariance and the closed-form optimal
attack strategy were obtained for the single sensor system.
In this work, we consider a networked system with multiple
sensors. If a centralized detection criterion is adopted by the
remote estimator, the previous single-senor attack strategy
may fail to bypass the false-data detector. Hence, we propose
a new linear attack strategy for the multi-sensor scenario and
derive the corresponding stealthiness constraints. Moreover,
the optimal linear attack which maximizes the remote estima-
tion error covariance is investigated for the resource-limited
attacker.

The main contributions of this paper are threefold. First,
we extend the linear integrity attack strategy to the multi-
sensor framework, which is more general and involved than
the single sensor scenario. Second, we propose a centralized
false-data detection criterion and analyze two necessary
conditions for the malicious agent to guarantee the attack
stealthiness. Specifically, one is to modify the feedback
information, and the other is to maintain the same statistical
characteristics. Last, for a resource-constrained attacker who
is only able to attack one sensor at each time instant, we
derive an explicit expression of the optimal linear attack
strategy, i.e., which sensor should be attacked and what
strategy should be adopted to achieve the largest degradation
of system estimation performance.

The remainder of the paper is organized as follows.
Section II introduces the architecture of the multi-sensor
system. Section III presents the linear attack strategy and
corresponding feasibility constraints. Section IV derives the
optimal linear attack strategy for resource-constrained attack-
ers. Numerical examples are provided in Section V. Some
concluding remarks are given in the end.
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Fig. 1. System block diagram: The attacker tries to intercept and modify
sensor data to degrade the remote estimation performance despite the false
data detector.

II. PROBLEM FORMULATION

A. System Model

Consider a networked system consisting of a group of N >
1 wireless sensors and one remote estimator as depicted in
Fig. 1. Each sensor i ∈ {1, 2, . . . , N} measures the output
of the same first-order linear time-invariant (LTI) process:

x(k + 1) = ax(k) + w(k), (1)
yi(k) = cix(k) + vi(k), (2)

where a, c ∈ R, c 6= 0, k ∈ N is the time index, x(k) ∈ R is
the process state vector, yi(k) ∈ R is the measurement vector
obtained by sensor i, w(k) ∈ R and vi(k) ∈ R are zero-mean
i.i.d. Gaussian noises with E[w(k)(w(l))′] = δklq (q ≥ 0),
E[vi(k)(vj(l))

′] = δijδklri (ri > 0), E[w(k)(vi(l))
′] =

0, ∀k, l ∈ N, i = 1, 2, . . . , N . The initial state x(0) is
zero-mean Gaussian with covariance π0 ≥ 0. The pair
(a, [c1, c2, . . . , cN ]′) is detectable and (a, q) is stabilizable.

B. Remote Estimator

Each sensor sends its data to a remote estimator through
a wireless communication network at each time step. To
estimate the system state, a centralized Kalman filter is
adopted by the remote estimator to fuse the received data:

x̂−k = ax̂k−1, (3)

P−k = a2Pk−1 + q, (4)

Kk = P−k C
′(CP−k C

′ +R)−1, (5)

x̂k = x̂−k +Kk(Yk − Cx̂−k ), (6)

Pk = (I −KkC)P−k , (7)

where the Kalman gain is

Kk ,
[
k1(k) k2(k) . . . kN (k)

]
,

the measurement vector is

Yk ,
[
y1(k) y2(k) . . . yN (k)

]′
,

the measuring matrix is

C ,
[
c1 c2 . . . cN

]′
, (8)

the noise covariance matrix

R , diag
[
r1 r2 . . . rN

]
, (9)

and x̂−k , x̂k are the a priori and the a posteriori minimum
mean squared error (MMSE) estimates of x(k) at the remote
estimator and P−k , Pk the corresponding error covariances.
The recursion starts from x̂−0 = 0 and P−0 = π0 ≥ 0.

For notational brevity, we define the Lyapunov and Riccati
operators h, g̃ : R+ → R+ as:

h(X) , a2X + q,

g̃(X) , X −XC ′(CXC ′ +R)−1CX.

It is well known that the Kalman filter converge from any
initial condition exponentially fast [18]. Hence, we assume
that the system has already entered the steady state and
simplify our subsequent discussion by setting

P̂ , lim
k→+∞

Pk, P , lim
k→+∞

P−k ,

K , PC ′(CPC ′ +R)−1, (10)

where P̂ and P are the unique positive semi-definite solution
of g̃ ◦ h(X) = X and h ◦ g̃(X) = X , respectively.

Similar to the single sensor case [17], to reduce the
communication bandwidth and for the security purpose, each
sensor will also first locally process the raw measurement
data and send its local innovation to the remote estimator.
However, in the multi-sensor scenario, each single sensor
cannot compute the a priori estimate x̂−k at the remote side
based on its own measurements. Therefore, one efficient way
is that the remote estimator broadcasts its x̂−k at each time
step to reduce the communication costs of the sensors, see
Fig. 1. Under such a protocol, the innovation transmitted by
sensor i, i ∈ {1, 2, . . . , N} is defined as

zi(k) = yi(k)− cix̂−k , (11)

which has the following properties:

Lemma 1 (See [18])
1) zi(k) has Gaussian distribution N (0, pi), where pi =

c2iP + ri.
2) zi(k) and zi(l) are independent ∀k 6= l.

Remark 1 Due to the power asymmetry in many sate esti-
mation applications (the remote side is more powerful than
the local sensor), the estimator is able to send feedback
information to the sensors. A practical example can based
on the IEEE 802.15.4/ZigBee protocol [19].

Remark 2 The sensor sends the innovation zi(k), rather
than the measurement yi(k), due to communication efficiency
and detection convenience. The steady-state Gaussian distri-
bution of zi(k) enables an direct detection of abnormal data
modified by malicious attackers.

C. False-Data Detector

False-data detectors are widely used in CPS to monitor
system behavior and detect cyber attacks by checking the
statistical characteristics of received data [20]. In this paper,
a centralized residue-based detection algorithm is used at the
remote estimator.
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Specifically, the remote estimator diagnoses the existence
of malicious attacks by checking the sum of the normalized
innovation sequence for all sensors at the beginning of each
time step, i.e., at time k, the remote estimator first collects
all the innovations to form a column vector

Zk ,
[
z1(k) z2(k) . . . zN (k)

]′
,

which is further checked by the χ2 false-data detector
according to the following criterion:

Gk =

k∑
i=k−J+1

Z ′iP
−1Zi

H0

≶
H1

δ, (12)

where J is the detection window size, δ the threshold,

P =


p1 c1c2P c1c3P . . . c1cNP

c1c2P p2 c2c3P . . . c2cNP
c1c3P c2c3P p3 . . . c3cNP

...
...

...
. . .

...
c1cNP c2cNP c3cNP . . . pN

 (13)

denotes the covariance matrix of Zk, and pi = c2iP + ri.
The null hypothesis H0 means that the system is operating
normally, otherwise the system is under attack. Note that
the false alarm rate can be easily calculated since Gk is χ2

distributed with NJ degrees of freedom. If Gk exceeds the
threshold, the detector will trigger an alarm.

D. Problem of Interest

Based on the aforementioned system, we are interested in
the following questions:

1) Does the linear attack strategy for the single-sensor case
apply to the multi-sensor setup?

2) Under which feasibility constraints do the attacker re-
main undetectable to the proposed false-data detector?

3) What is the optimal resource-limited attack strategy that
yields the largest remote estimation error covariance?

The detailed mathematical formulations and solutions to
these problems will be introduced in the following sections.

III. LINEAR ATTACK IN THE MULTI-SENSOR SCENARIO

In this section, we consider the existence of a malicious
agent who intentionally launches cyber attacks to degrade
the system performance. We first recall the innovation-based
linear attack in a single sensor scenario, based on which the
linear attack strategy for the multi-sensor system is proposed.
Then, we analyze the feasibility constraints needed for such
an attack from being detected by the proposed false-data
detector.

It is assumed that the attacker has capability to intercept
and modify the innovations transmitted from the sensor to
the remote estimator. According to [17], the linear attack
strategy for a single-sensor system is defined as

z̃k = Tkzk + bk, (14)

where z̃k ∈ Rm is the intercepted innovation, zk ∈ Rm the
corrupted innovation, Tk ∈ Rm×m an arbitrary matrix, and
bk ∈ Rm a zero-mean i.i.d. Gaussian random variable.

For the multi-sensor system (1)–(2) considered in this pa-
per, the single-sensor attack strategy corresponds to z̃i(k) =
ti(k)zi(k) + bi(k). However, such an attack cannot success-
fully bypass the false-data detector (12) since the feedback
information from the remote estimator has already deviated
from the true priori estimate x̂−k when the system is under
attack and the resulting covariance of innovation Zk is no
longer the same with P . Hence, to maintain the stealthiness
of the attack, the attacker has to be capable of modifying
the feedback information to x̂−k at each time step as well.
Moreover, for the scenario where the attacker can only
compromise a subset of the existing sensors, the attack still
cannot avoid being detected since the off-diagonal elements
in the covariance matrix of the corrupted innovation are not
the same as the original ones. In this case, to guarantee attack
stealthiness, we propose to change the attack policy to

z̃i(k) =

N∑
j=1

tij(k)zj(k) + bi(k), (15)

which thus depends on the information of all sensors. We
represent (15) in a matrix expression as

Z̃k , TkZk +Bk, (16)

where Zk ∈ RN and Z̃k ∈ RN stand for the currently
intercepted innovation and the innovation modified by the
attacker, respectively. Tk ∈ RN×N is the attack matrix. Bk ∼
N (0, L) is an i.i.d. Gaussian random variable independent of
Zk with L = diag(l1, l2, . . . , lN ). Omitting the time index
for simplicity, (16) is equivalent to

z̃1
z̃2
...
z̃N

 =


t11 t12 . . . t1N
t21 t22 . . . t2N
...

...
. . .

...
tN1 tN2 . . . tNN



z1
z2
...
zN

+


b1
b2
...
bN

 .
It is also worth noticing that Z̃k is Gaussian distributed

with zero mean and covariance TkPT
′
k + L since Zk ∼

N (0, P ). To bypass the false-data detector, the modified
innovation Z̃k needs to keep the same distribution as the
original innovation Zk, i.e.,

TkPT
′
k + L = P. (17)

Based on the proposed attack strategy for the multi-sensor
scenario and corresponding feasibility constraints, the prob-
lem we are interested in is to find the optimal linear attack
under attacker resource constraints. Optimality is quantified
in terms of the estimation performance, where we define P̃−k
and P̃k as the a priori and the a posteriori MMSE estimation
error covariance of the remote estimator under attack.

IV. OPTIMAL ATTACK STRATEGY UNDER
RESOURCE CONSTRAINT

In practical applications, the malicious attacker may not
be able to intercept and modify the transmitted data packet
of each sensor all the time due to resource constraints. We
thus study such a scenario in this section. As a first and
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important step, we assume that the attacker can only attack
one of N sensors at each time instant. An explicit expression
of the optimal linear attack strategy is obtained for this case,
which yields the largest estimation error covariance.

A. Optimal Linear Attack in Single-sensor Scenario

Before we derive the optimal attack policy for multi-sensor
system, we recall the results of the single-sensor case, which
are summarized in the following proposition.

Proposition 1 (See [17]) Consider a single-sensor system
under linear attack z̃k = Tkzk + bk.

1) The remote estimation error covariance follows

P̃k = AP̃k−1A
′ +Q+ PC ′(Σ−T′kΣ− ΣTk)CP,

where Σ = (CPC ′ +R)−1.
2) The optimal linear attack, which maximizes the remote

estimation error covariance, is achieved when Tk = −I
and bk = 0.

B. Optimal Linear Attack in Multi-sensor Scenario with
Resource Constraint

In this subsection, we consider the networked system
with detection criterion (12) under linear attack (15). For
a resource-constrained attacker, the optimal linear attack
strategy when one sensor is under attack is first investigated.
Then, the best choice for the attacker of which sensor should
be attacked is obtained in the sense of maximum estimation
error covariance. We now introduce the following lemmas
which will be used in the subsequent derivation.

Lemma 2 At steady state, the gain of the Kalman filter at
the remote estimator is given as K = [k1, k2, . . . , kN ], where
ki = P̂ ci/ri.

Proof: According to (10), the steady-state value of the
Kalman gain at the remote estimator satisfies K(CPC ′ +
R) = PC ′, which is equivalent to

KR = (I −KC)PC ′ = P̂C ′. (18)

Substituting (8) and (9) into (18), one has K = P̂C ′R−1 =
[P̂ c1/r1, P̂ c2/r2, . . . , P̂ cN/rN ].

Lemma 3 (See [21]) For matrices A ∈ Rn×n, B ∈ Rn×k,
C ∈ Rk×k, D ∈ Rk×n, if A and C are invertible, then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1.

Lemma 4 (See [21]) For a block matrix X =

[
A B
C D

]
∈

R(n1+n2)×(m1+m2), if D and its Schur complement DS =
A−BD−1C are invertible, then

X−1 =

[
D−1S −D−1S BD−1

−D−1CD−1S D−1 +D−1CD−1S BD−1

]
.

Theorem 1 Consider the multi-sensor system (1)–(2) with
centralized detection criterion (12) under linear attack (15).
When sensor i is under attack, the optimal linear attack
strategy, which yields the largest estimation error covariance,
is given by tii = −1, bi = 0.

Proof: Without loss of generality, we investigate the
optimal linear attack strategy when sensor i = 1 is under
attack. We partition K, C, P , R, Zk, Bk, Tk into block
matrices as

K =
[
k1 K

]
, C =

[
c1
C

]
, Zk =

[
z1
Z

]
, Bk =

[
b1
B

]
,

P =

[
p1 M
M′ P

]
, Tk =

[
t11 N
N′ T

]
, R =

[
r1

R

]
,

where k1, c1, z1, b1, p1, t11, r1 are scalars. K′, C, Z, B, M′,
N′ ∈ RN−1 and P, T, R ∈ R(N−1)×(N−1). Then, the
modified innovation can be represented as

Z̃k =

[
t11 N
0 I

] [
z1
Z

]
+

[
b1
0

]
=

[
t11z1 + NZ + b1

z

]
.

To bypass the false-data detector, the feasibility constraint
(17) needs to be satisfied, i.e.,[
t211p1 + NPN′ + l1 + t11(MN′ + NM′) t11M + NP

(t11M + NP)′ P

]
=

[
p1 M
M′ P

]
,

based on which one has{
t211p1 + NPN′ + l1 + t11(MN′ + NM′) = p1

t11M + NP = M.

Consequently, 
N = (1− t11)MP−1

t211 =
p1 −MPM′ − l1
p1 −MPM′

.
(19)

According to the evolution of the remote estimation error
covariance in Proposition 1, to maximize the error covariance

P̃k = P̃−k + ∆− PC ′T ′kK ′ −KTkCP
= P̃−k + ∆− P (c1t11k1 + C′N′k1 + C′K′)

− (k1t11c1 + k1NC + KC)P , (20)

where ∆ = PC ′(CPC ′ + R)−1CP ≥ 0, is equivalent to
minimize

k1t11c1 + k1NC + KC

= k1(c1 −MP−1C)t11 + k1MP−1C + KC, (21)

which is an affine function in t11. According to Lemma 2
and M = c1PC

′, the coefficient of t11 in (21) can be further
simplified as

k1(c1 −MP−1C) = P̂
c21
r1

[1−C′(
1

P
P)−1C]

= P̂
c21
r1

[1−C′(
1

P
R + CC′)−1C],

where

1

P
P =


c22 + r2

P
c2c3 . . . c2cN

c2c3 c23 + r3
P

. . . c3cN
...

...
. . .

...
c2cN c3cN . . . c2N + rN

P

 . (22)
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According to Lemma 3, one has

1−C′(
1

P
R + CC′)−1C

= 1−C′[PR−1 − PR−1C(1 + C′PR−1C)−1C′PR−1]C

=
1

1 + V
> 0, (23)

where V = PC′R−1C =
∑N

i=2 Pc
2
i /ri ≥ 0. Hence, the

coefficient of t11 in (21) is always positive and the maximum
value of P̃k is achieved when t11 is minimized, i.e., when
l1 = 0, t11 = −1.

Based on the above optimal linear attack strategy when
one sensor is under attack, the best decision for the malicious
agent of which sensor should be attacked is summarized in
the following theorem.

Theorem 2 Consider the multi-sensor system (1)–(2) with
centralized detection criterion (12) under linear attack (15).
If the attacker can only attack one sensor at each time
instant, the optimal linear attack strategy, which maximizes
the estimation error covariance, is to attack the sensor i
having the largest ratio c2i /ri.

Proof: Without loss of generality, we assume that
c21/r1 ≥ c22/r2 ≥ · · · ≥ c2N/rN . What we need to prove
is that a larger estimation error covariance will be obtained
if the first sensor is under attack rather than any other sensor.

We use subscript i in the subsequent proof to represent
variables corresponding to sensor i ∈ {1, 2, . . . , N}. Ki

stands for the matrix K without the i-th column. Ci refers
to the matrix C without the i-th row and Mi = ciPC

′
i. Pi

is the matrix P removing the i-th column and i-th row.
The estimation error covariance when the first sensor is

under optimal attack t11 = −1,N1 = 2M1P1
−1 is

P̃ 1
k = P̃−k + ∆− P (−c1k1 + 2C′1P1

−1M′1k1 + C′1K
′
1)

− (−k1c1 + 2k1M1P1
−1C1 + K1C1)P . (24)

Similarly, when sensor j 6= 1 is under attack, the error
covariance is

P̃ j
k = P̃−k + ∆− P (−cjkj + 2C′jPj

−1M′jkj + C′jK
′
j)

− (−kjcj + 2kjMjPj
−1Cj + KjCj)P . (25)

By substituting C1,K1,Cj,Kj, the difference between (24)
and (25) can be calculated as

P̃ 1
k − P̃

j
k

= 4
(
k1c1P − k1M1P1

−1C1P − kjcjP + kjMjPj
−1CjP

)
= 4PP̂

[
c21
r1

[1−C′1(
1

P
P1)−1C1]−

c2j
rj

[1−C′j(
1

P
Pj)
−1Cj]

]
,

(26)

where the last equality is due to Lemma 2 and Mi = ciPC
′
i.

We partition C1,Cj,
1
P
P1,

1
P
Pj as

C1 =

[
cj
C

]
,

1

P
P1 =

[
x1 Y1

Y′1 Z1

]
,

Cj =

[
c1
C

]
,

1

P
Pj =

[
xj Yj

Y′j Zj

]
,

where C = [c2, . . . , cj−1, cj+1, . . . , cN ]′, x1 = c2j + rj/P ,
Y1 = cjC′, xj = c21 + r1/P , Yj = c1C′, and Z1 = Zj = Z
is the matrix in (22) removing the (j−1)-th row and column.

According to Lemma 4, one has

(
1

P
P1)−1 =

[
s1 −s1cjC′Z−1

−s1cjZ−1C s1c
2
jZ
−1CC′Z−1 + Z−1

]
,

where s1 = (x1−Y1Z
−1Y′1)−1 = P

c2jP (1−C′Z−1C)+rj
, based

on which

1−C′1(
1

P
P1)−1C1

=
rj

c2jP (1− C′Z−1C) + rj
(1− C′Z−1C). (27)

Similarly, we can easily obtain that

1−C′j(
1

P
Pj)
−1Cj

=
r1

c21P (1− C′Z−1C) + r1
(1− C′Z−1C). (28)

Substituting (27) and (28) into (26), it is obvious that

c21
r1

[1−C′1(
1

P
P1)−1C1]−

c2j
rj

[1−C′j(
1

P
Pj)
−1Cj] ≥ 0

is equivalent to

c21r
2
j

c2jP (1− C′Z−1C) + rj
−

c2jr
2
1

c21P (1− C′Z−1C) + r1
≥ 0.

According to the assumption c21/r1 > c2j/rj and the fact that
1− C′Z−1C > 0,

(c41r
2
j − c4jr21)P (1− C′Z−1C) + (c21rj − c2jr1)r1rj ≥ 0

holds, which completes the proof.

Remark 3 Note that the optimal linear attack strategy is
to attack the sensor having the largest ratio c2i /ri. This is
consistent with the intuition that tampering the most accurate
data leads to the worst estimation quality.

Remark 4 The optimal linear attack strategy for a single-
sensor system obtained in [17] can be viewed as a special
case of the results obtained in this paper when there is no
resource constraint for the malicious attacker.

V. SIMULATION EXAMPLE

In this section, we provide numerical examples to demon-
strate the analytical results. We consider a system with pa-
rameters a = 0.8, q = 1.5, C = [c1 c2 c3]′ = [1.5 1.1 0.8]′,
R = diag (r1, r2, r3) = diag (0.7, 0.8, 0.9).

For a resource-constrained attacker, Fig. 2 illustrates the
optimal linear attack strategy when one sensor is under
attack. Without loss of generality, we assume that sensor 1 is
under attack. During time period [0, 9], the remote estimator
runs a Kalman filter and enters steady state. The blue star
line stands for the estimation error covariance when sensor
1 is under the optimal linear attack t11 = −1, b1 = 0, while
the blue diamond line represents that the malicious attacker
randomly launches linear attacks on sensor 1 at each time
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Fig. 2. Remote state estimation error covariances when sensor 1 is under
the optimal linear attack t11 = −1, b1 = 0 and random attack strategy.
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Fig. 3. Remote state estimation error covariances when each sensor i ∈
{1, 2, 3} is under the optimal linear attack tii = −1, bi = 0 and random
sensor is under the optimal linear attack.

instant. It can be easily observed that the optimal linear attack
strategy is worse.

Fig. 3 shows the best choice for the resource-constrained
attacker, i.e., which sensor should be attacked such that
the largest estimation performance degradation is achieved.
Besides the estimation error covariance when each sensor
i ∈ {1, 2, 3} is under optimal linear attack tii = −1, bi = 0,
the case when random senor under optimal attack is also
shown in Fig. 3. Note that c21/r1 = 3.2 > c22/r2 = 1.5 >
c23/r3 = 0.7. According to Theorem 2, the optimal linear
attack strategy which maximizes the error covariance is to
attack the sensor with largest ratio c2i /ri, i.e., to attack
sensor 1. This is consistent with the result observed from
the figure. It is also worth noticing that the estimation error
covariance converges for a stable system, while it diverges
exponentially fast when the system is unstable.

VI. CONCLUSION

In this paper, we have considered a multi-sensor system in
a remote state estimation scenario. We have proposed a linear

attack strategy and analyzed the corresponding necessary
conditions to bypass the proposed centralized false-data
detector. For a resource-constrained attacker, who is able to
listen to all the channels but only launches an attack on one
sensor at each time instant, we have proved that the optimal
linear attack strategy is to attack the sensor with largest ratio
c2i /ri using the strategy tii = −1, bi = 0. Simulations are
provided to demonstrate the analytical results.
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