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Abstract— In this paper, we analyze the cyber security of
state estimators in Supervisory Control and Data Acquisition
(SCADA) systems operating in power grids. Safe and reliable
operation of these critical infrastructure systems is a major
concern in our society. In current state estimation algorithms
there are bad data detection (BDD) schemes to detect random
outliers in the measurement data. Such schemes are based on
high measurement redundancy. Although such methods may
detect a set of very basic cyber attacks, they may fail in the
presence of a more intelligent attacker. We explore the latter by
considering scenarios where deception attacks are performed,
sending false information to the control center. Similar attacks
have been studied before for linear state estimators, assuming
the attacker has perfect model knowledge. Here we instead
assume the attacker only possesses a perturbed model. Such a
model may correspond to a partial model of the true system,
or even an out-dated model. We characterize the attacker
by a set of objectives, and propose policies to synthesize
stealthy deceptions attacks, both in the case of linear and
nonlinear estimators. We show that the more accurate model
the attacker has access to, the larger deception attack he can
perform undetected. Specifically, we quantify trade-offs between
model accuracy and possible attack impact for different BDD
schemes. The developed tools can be used to further strengthen
and protect the critical state-estimation component in SCADA
systems.

I. INTRODUCTION

Several infrastructures are of major importance to our
society. Examples include the power grid, telecommunication
network, and water supply, and due to how essential they are
in our daily life they are referred to as critical infrastructures.
These systems are operated by means of complex distributed
software systems, which transmit information through wide
and local area networks. Because of this fact, critical infras-
tructures are vulnerable to cyber attacks [1], [2]. These are
performed on the information residing and flowing in the IT
system.

Power networks, for instance, are operated through
SCADA systems complemented by a set of application
specific software, usually called energy management systems
(EMS). Modern EMS provide information support for a
variety of applications related to power network monitoring
and control. The power system state estimator (PSSE) is an
on-line application which uses redundant measurements and
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a network model to provide the EMS with an accurate state
estimate at all times. The PSSE has become an integral tool
for EMS, for instance for contingency-constrained optimal
power flow. The PSSE also provides important information
to pricing algorithms. SCADA systems collect data from
remote terminal units (RTUs) installed in various substations,
and relay aggregated measurements to the central master
station located at the control center. Several cyber attacks
on SCADA systems operating power networks have been
reported [3], [4], and major blackouts, as the August 2003
Northeast blackout, are worsened by the misuse of the
SCADA systems [5]. The 2003 blackout also highlighted
the need of robust state estimators that converge accurately
and rapidly in such extreme situations, so that necessary
preventive actions can be taken in a timely manner. As
discussed in [1], there are several vulnerabilities in the
SCADA system architecture, including the direct tampering
of RTUs, communication links from RTUs to the control
center, and the IT software and databases in the control
center. For instance, the RTUs could be targets of denial-of-
service (DoS) or deceptions attacks injecting false data [6].

Power networks, being systems where control loops are
closed over communication networks, represent an important
class of networked control systems (NCS). Unlike other IT
systems where cyber security mainly involves encryption
and protection of data, here cyber attacks may influence the
physical processes through the digital controllers. Therefore
focusing on encryption of data alone may not be enough
to guarantee the security of the overall system, especially
its physical component. In order to increase the resilience of
these systems, one needs appropriate tools to first understand
and then to protect NCS against cyber attacks. Some of the
literature has already tackled these problems such as false
data injection in power system state estimation [6], security
constrained control [7], and replay attacks [8].

Our work analyzes the cyber security of the PSSE in
the SCADA system. In current implementations of PSSE
algorithms there are bad data detection (BDD) schemes [9],
[10] designed to detect random outliers in the measurement
data. Such schemes are based on high measurement redun-
dancy and are performed at the end of the state estimation
process. Although such methods can detect basic attacks,
they may fail in the presence of more intelligent attackers
that wish to stay undetected, in which case the false data
could be introduced in a coordinated manner so that it looks
consistent to the detection mechanism, thus bypassing it. We
explore the latter by considering scenarios where deception
attacks are performed by sending false information to the
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control center. A related study was performed in [6] for linear
state estimators, assuming the attacker has perfect model
knowledge. Here we instead assume the attacker only pos-
sesses a perturbed model. Such a model may correspond to a
partial model of the true system, or an out-dated model. We
characterize the attacker by defining a set of objectives, and
propose policies to synthesize stealthy deceptions attacks,
both for linear and nonlinear estimators. We show that the
more accurate model the attacker has access to, the larger
deception attack he can perform undetected. Specifically,
we quantify trade-offs between model accuracy and possible
attack impact for different BDD schemes.

The outline of this paper is as follows. We present the
main concepts behind state estimation in power systems, the
attacker model, and problem formulation in Section II. The
properties of the estimation algorithm which are deployed in
practice are discussed in Section III. In Section IV, two com-
mon BDD methods are reviewed. The analysis of stealthy
deception attacks with partial knowledge is performed in
Section V. An example that illustrates the results is presented
in Section VI, followed by the conclusions in Section VII.

II. STEALTHY DECEPTION ATTACKS ON PSSE

We focus on additive deception attacks aimed toward
manipulating the measurements to be processed by the PSSE
in such a manner that the resulting systematic errors intro-
duced by the adversary are either undetected or only partially
detected by a BDD method. We call such attacks stealthy

deception attacks on the PSSE. We are also interested in
finding the class of stealthy deception attacks that do not
pose significant convergence issues for the estimator. Attacks
affecting the convergence of the PSSE are related to data

availability, as they can be seen as DoS attacks. However
the focus of this work is on deception attacks, which are
related to data integrity. Note that the non-convergence of
the PSSE without any attack can have several reasons, such
as low measurement redundancy and topology and parameter
errors. Since this is not related to the security of the PSSE,
we assume the estimator converges if no attack is performed.

A. PSSE

The basic PSSE problem is to find the best n-dimensional
state x for the measurement model

z = h(x) + ε, (1)

in a weighted least square (WLS) sense. Here z is the
m-dimensional vector of measurements, h is a nonlinear
function modeling the power network, and ε ∼ N (0, R)
is a vector of independent zero-mean Gaussian variables
with covariance matrix R = diag(σ2

1 , . . . , σ2
m). For an

electric power network with N buses, the state vector x =
(θ!, V !)!, where V = (V1, . . . , VN )! is the vector of bus
voltage magnitudes and θ = (θ2, . . . , θN )! the vector of
phase angles. Without loss of generality, bus 1 is considered
as the reference bus with θ1 = 0, so the state dimension is
n = 2N −1. Detailed formulae relating measurements z and
state x may be found in [11].

Defining the residual vector r(x) = z−h(x), we can write
the WLS problem as

min
x∈Rn

J(x) =
1

2
r(x)!R−1r(x).

The PSSE yields a state estimate x̂ as a minimizer to
this minimization problem. The measurement estimates are
defined as ẑ := h(x̂). The WLS estimate x̂ satisfies the
following first order necessary condition for optimality

F (x̂) := ∇J(x̂) = −H!(x̂)R−1r(x̂) = 0, (2)

where H = dh/dx is the m × n dimensional measurement
Jacobian matrix. The solution x̂ of the nonlinear equation
F (x̂) = 0 may be obtained by the Newton method in which
a linear equation is solved at each iteration to compute the
correction ∆xk := xk+1 − xk:

[F ′(xk)](∆xk) = −F (xk), k = 0, 1, . . . , (3)

where the Hessian matrix [F ′(xk)] = ∇2J(xk) is given by

[F ′(xk)] = H!(xk)R−1H(xk) +
m

∑

i=1

ri(xk)

σ2
i

∇2ri(x
k).

The iterates (3) guarantee the convergence to a local min-
imum as long as the generated sequence {xk} converges
and the matrices [F ′(xk)] remain non-singular during the
iteration process. A nearly singular Hessian matrix [F ′(xk)]
can result in a convergence failure. A precise statement of
local convergence is presented in the Appendix.

The second order information in [F ′(xk)] is computation-
ally expensive, and its effect often negligible when applied to
PSSE. Thus, the symmetric approximation is used in practice

[F ′(xk)] ≈ H!(xk)R−1H(xk) =: Kk

where Kk is called the gain (or information) matrix. This
approximation leads to the Gauss-Newton steps obtained by
solving the so called normal equations:

(

H!(xk)R−1H(xk)
)

(∆xk) = H!(xk)R−1r(xk), (4)

for k = 0, 1, . . . For an observable power network, the
measurement Jacobian matrix H(xk) is full column rank.

Consequently, the gain matrix Kk =
∑m

i=1
H!

i (xk)Hi(x
k)

σ2

i

in (4) is positive definite and the Gauss-Newton step gen-
erates a descent direction, i.e., for the direction ∆xk =
xk+1 − xk the condition ∇J(xk)!∆xk < 0 is satisfied. We
now present the attacker model.

B. Attacker Model

The goal of a stealthy deception attacker is to compromise
the telemetered measurements available to the PSSE such
that: 1) The PSSE algorithm converges; 2) For the targeted
set of measurements, the estimated values at convergence are
close to the compromised ones introduced by the attacker;
and 3) The attack remains fully undetected by the BDD
scheme.

As a consequence of the attacker’s stealthy action, the
incorrect state estimates generated by the PSSE can have
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x̂

Alarm!

u∗

u

a

Fig. 1. The state estimator under a cyber attack

different effects on other power management functions. In
fact, as depicted in Figure 1, the state estimate is used as
an input to other software applications, in particular the
contingency analysis and optimal power flow.

Let the corrupted measurement be denoted za. We assume
the following additive attack model

za = z + a, (5)

where a ∈ Rm is the attack vector introduced by the
attacker. The vector a has zero entries for uncompromised
measurements. Under attack, the normal equations (4), give
the estimates

x̃k+1 = x̃k +
(

H!(x̃k)R−1H(x̃k)
)−1

H!(x̃k)R−1ra(x̃k),

for k = 0, 1, . . . , where x̃k is the biased estimate at iterate
i, and ra(x̃k) := za − h(x̃k). If the local convergence
conditions hold, then these iterations converge to x̂a, which
is the biased state estimate resulting from the use of za. Thus,
the convergence behavior can be expressed as the following
statement:

1) The sequence {x̃0, x̃1, . . . } generated by the mapping
G(x) = x + (H!(x)R−1H(x))−1H!(x)R−1ra(x)
converges to a fixed point x̂a of G in a region Sa

ϑ ,

where Sa
ϑ is a closed ball in Rn of radius ϑ governed by the

conditions required for the local convergence to hold. We
will occasionally use the notation x̂a(za) to emphasize the
dependence on za.

The BDD schemes for PSEE are based on checking if
the weighted p-norm of the measurement residual is below
some threshold τ , which is selected based on permissible
false-alarm rate. Thus, the attackers action will be undetected
by the BDD scheme provided that the following condition
holds:

2) The measurement residual under attack ra := r(x̂a) =
za − h(x̂a), satisfies the condition ‖Wr(x̂a)‖p < τ .

Finally, let the target set be represented by Itgrt containing
indices of the measurements which are targeted by the
attacker. For each i ∈ Itgrt, the attacker would like the
estimated measurement ẑa

i := hi(x̂a(za)) to be equal to the
actual corrupted measurement za

i . However, such a condition
may not be satisfied since corrupted measurements may not
be consistent with the model, and can result in violation of
conditions 1), and 2) mentioned above. Therefore, we arrive

at the following condition which will additionally govern the
synthesis of attack vector a:

3) The attack vector a is chosen such that |za
i − ẑa

i | < η
for i ∈ Itgrt, where η is a small positive constant.

The aim of a stealthy deception attacker is then to find and
apply an attack a that satisfies conditions 1), 2), and 3). In
Section V, we take a similar approach as in [6] to synthesize
stealthy attack policies of the form of a = H̃c, where H̃ is
the imperfect model known by the attacker. Unlike in [6],
we do not assume the attacker has the exact model of the
system and we consider both linear and nonlinear estimators.

III. PSSE ITERATES AS LINEAR WLS PROBLEMS

As seen in the previous section, solving the normal equa-
tion is the corner stone of the estimation algorithm. In this
section we take a closer look on the normal equation and
show that it can be seen as the solution for a linear least
squares problem. This is quite useful as it provides a unified
interpretation of the residual for both the linear and nonlinear
estimation algorithms.

The normal equation can be interpreted as the solution of
a linear least squares problem. In particular, writing H(xk)
as H , and ∆xk as ∆x, and r(xk) = z − h(xk) as ∆z for
notational convenience, and defining ∆z̄ = R−1/2∆z and
H̄ = R−1/2H , the k−th iteration as given by equation (4)
is the solution of the linear least squares problem

min
∆x

(∆z̄ − H̄∆x)!(∆z̄ − H̄∆x).

It can be obtained as a solution of the overdetermined system
of equations

H̄∆x ∼= ∆z̄. (6)

Given that H̄ has full column rank and using the notation of
the pseudo-inverse H̄† := (H̄!H̄)−1H̄!,

∆x = H̄†∆z̄ = (H̄!H̄)−1H̄!∆z̄.

For the approximate (linear) model

∆z̄ = H̄∆x̄ + ε̄

where ε̄ = R−1/2ε, the measurement residual can be ex-
pressed as

r̄ = S̄ε̄, (7)

where S̄ = (I − H̄(H̄!H̄)−1H̄!) is called the
weighted sensitivity matrix. Since the matrix T̄ =
H̄(H̄!H̄)−1H̄! is symmetric and orthogonal with range
space Im(H̄(H̄!H̄)−1H̄!)) same as Im(H̄), we call it the
orthogonal projector onto Im(H̄) and denote it by PIm(H̄).
Such matrix is known as the hat matrix in the power system
literature [11], [12]. Consequentially, we see that S̄ in (7) is
the orthogonal projector onto the null-space (kernel) of H̄!,
i.e. S̄ = (I − PIm(H̄)) = PKer(H̄!).
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IV. BAD DATA DETECTION

The measurements used in PSSE may be corrupted by
random errors and so a necessary security capability of the
PSSE is BDD [11], [12], [10]. Traditionally, the bad data is
understood as a result of parameter errors which corrupt the
values of modeled circuit elements, incorrect network topol-
ogy descriptions, and gross measurement errors due to device
failures and incorrect meter scans. However, in view of new
security threats, bad data can be deliberately introduced by
an active adversary which manipulates the communication
between remote RTUs and the SCADA system.

Through BDD the PSSE detects measurements corrupted
by errors whose statistical properties exceed the presumed
standard deviation or mean. This is achieved by hypothesis
tests using the statistical properties of the weighted mea-
surement residual (7). We now introduce two of the BDD
hypothesis tests widely used in practice, the performance

index test and the largest normalized residual test. These
indices are used to model the BDD objective in Section II-
B.

1) Performance index test: For the measurement error
ε̄ ∼ N (0, I), the random variable y :=

∑m
i=1 ε̄i

2 has a chi-
square distribution with m degrees of freedom (χ2

m) with
E {y} = m. Consider the quadratic cost function evaluated
at the optimal estimate x̂

J(x̂) = r̄!r̄ = ε̄!S̄ε̄. (8)

Recalling that rank(H̄) = n, Im(H̄) ⊕ Ker(H̄!) = Rm,
and using the definition of orthogonal projector, we note
that S̄ = PKer(H̄!), and we have rank(S̄) = m − n.
Therefore, in the absence of bad data, the quadratic form
ε̄!S̄ε̄ has a chi-squares distribution with m − n degrees of
freedom, i.e. J(x̂) ∼ χ2

m−n with E {J(x̂)} = m − n. The
main idea behind the performance index test is to use J(x̂)
as an approximation of y and check if J(x̂) follows the
distribution χ2

m−n. This can be posed as a hypothesis test
with a null hypothesis H0, which if accepted means there
is no bad data, and an alternative bad data hypothesis H1

where

H0 : E {J(x̂)} = m − n, H1 : E {J(x̂)} > m − n

Defining α ∈ [0, 1] as the significance level of the test
corresponding to the false alarm rate, and τχ(α) such that

∫ τχ(α)

0
gχ(u)du = 1 − α, (9)

where gχ(u) is the probability distribution function (pdf) of
χ2

m−n, and noting that J(x̂) = ‖R−1/2r(x̂)‖2 the result of
the test is

reject H0 if ‖R−1/2r‖2 >
√

τχ(α),

accept H0 if ‖R−1/2r‖2 ≤
√

τχ(α).

2) Largest normalized residual test: From (7), we note
that r̄ ∼ N (0, S̄) and equivalently r ∼ N (0,Ω) with Ω =
R1/2S̄R1/2. Now consider the normalized residual vector

rN = D−1/2r, (10)

with D ∈ Rm×m being a diagonal matrix defined as D =
diag(Ω). In the absence of bad data each element rN

i , i =
1, . . . ,m of the normalized residual vector then follows a
normal distribution with zero mean and unit variance, i.e.

rN
i ∼ N (0, 1), ∀i = 1, . . . ,m. Thus, bad data could be

detected by checking if rN
i follows N (0, 1). Posing this as

hypothesis test for each element rN
i

H0 : E
{

rN
i

}

= 0, H1 : E
{

|rN
i |)

}

> 0

Again defining α ∈ [0, 1] as the significance level of the
test and τN such that

∫ τN (α)

−τN (α)
gN (u)du = 1 − α, (11)

where gN (u) is the pdf of N (0, 1), and noting (10), the
result of the test is

reject H0 if ‖D−1/2r‖∞ > τN (α)

accept H0 if ‖D−1/2r‖∞ ≤ τN (α)

We observe that for the case of single measurement with
bad data, the largest normalized residual element |rN

i | cor-
responds to the corrupted measurement [11]. It is clear that
both tests may be written as ‖Wr(x̂)‖p < τ , for suitable W ,
p, and τ .

V. DECEPTION ATTACKS ON LINEAR STATE ESTIMATOR

Several scenarios of stealthy deception attacks on PSSE for
the DC case have been analyzed in [6]. The authors of [6]
considered linear models, which were fully known by the
attacker, and focused on additive attack policies that would
guarantee the measurement residual to remain unchanged for
the linear least squares algorithm. The feasibility of such at-
tack policies was then analyzed for several IEEE benchmarks
under different resource constraints of the attacker (for e.g.,
number of sensors the attacker could corrupt) and attacker
objectives (for e.g., random attack, targeted attack). The main
result related to attack policies was that if the attack vector a
was in the range space of H , then the measurement residual
ra = (z + a) − Hx̂ would be the same as the residual r
when there was no attack. Thus, such attack vectors would
not increase the residual. Such undetectable errors have been
analyzed previously within the power system’s community,
see [9], [13].

In this section we analyze how the attacker may fulfill the
objective Section II-B, and thereby remain undetected.

A. Attack Synthesis

In general a stealthy attack requires the corruption of
more measurements than the targeted ones, see [6], [14].
This relates to the fact that a stealthy attack must have the
attack vector a fitting the measurement model, which for the
weighted linear case is equivalent to have a ∈ Im(H̄).
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We now present a general methodology for synthesizing
stealthy attacks for the linear case with specific target con-
straints. Suppose the attacker wishes to compute an attack
vector a such that z̄a = z̄+a satisfies a set of goals, encoded
by a ∈ G, and the attack is stealthy, i.e. a ∈ Im(H̄).
Assuming the attacker knows the weighted measurement
model H̄ , such attack could be computed by solving the
optimization problem

min
a

‖a‖p

s.t. a ∈ G, a ∈ Im(H̄) ,
(12)

corresponding to the ”least-effort“ attack in the p-norm sense.
An interesting case is that of p = 0, which means the
attacker is computing the attack with minimum cardinality,
e.g., minimizing the number of sensors to corrupt. Another
particular formulation is the 2-norm case with a single attack
target, zi

a = zi + 1 or ai = 1. By recalling that a ∈ Im(H̄)
means that a = H̄c for a given c, the optimization problem
may be recast as

min
c

‖H̄c‖2
2

s.t. e!i H̄c = 1
, (13)

where ei is a unitary vector with 1 in the i-th component.
Recall T̄ = PIm(H̄) = H̄H̄†.

Proposition 1: The optimal solution a∗ to the optimiza-
tion problem (13) is given by a∗ = T̄

T̄ii
ei

Proof: The Lagrangian of this optimization problem
is L(c, ν) = cH̄!H̄c + ν(e!i H̄c − 1) and the KKT condi-
tions [15] for an optimal solution (c∗, ν∗) are

{

H̄!H̄c∗ + ν∗H̄!ei = 0

e!i H̄c∗ − 1 = 0
. (14)

Since it is assumed the power network is observable, the
solution for the first equation is c∗ = ν∗H̄†ei. Including
this in the second equation results in ν∗e!i T̄ ei = 1 which
is equivalent to ν∗ = 1

T̄ii
with T̄ii being the i-th diagonal

element of T̄ . We then have that a∗ = H̄c∗ = T̄
T̄ii

ei.

In the power system’s literature, the hat matrix T̄ is known
to have information regarding measurement redundancy and
correlation. This result highlights a new meaning: each
column of T̄ actually corresponds to an optimal attack vector
yielding a zero residual.

B. Relaxing the Assumptions on Adversarial Knowledge

Here we consider the scenario where the attacker is
performing an attack according to (12), but having only a
partial or corrupted knowledge of the measurement model.
Such knowledge may be obtained, for instance, by recording
and analyzing data sent from the RTUs to the control center
using suitable statistical methods. The corrupted measure-
ment model may also correspond to an out-dated model or
an estimated model using the power network topology, usual
parameter values and uncertain operating point. We further
assume that the covariance matrix R is known.

In the following analysis we provide bounds on the
measurement residual under this kind of attack scenario.

These bounds give some insights on what attacks may go
undetected, given the model uncertainty. For the moment we
assume there are no random errors in the measurements and
so we consider the weighted measurements z̄ = H̄x.

Let the perturbed measurement model known by the
attacker be denoted by H̃ , such that

H̃ = H̄ +∆H̄, (15)

and consider the linear policy to compute attacks on the
measurements to be a = H̃c, resulting in the corrupted set
of measurements z̄a = z̄ + a. Recall the objectives of the
attacker as defined in Section II-B.

The third objective, being undetected, depends both on the
desired bias on the flow measurements a and on the model
uncertainty ∆H̄ . The measurement residual under attack,
ra := r̄(z̄a), can be written as

r̄(z̄a) = S̄(z̄ + H̃c) = S̄z̄ + r̄a. (16)

Using (15) and the fact that S̄ = PKer(H̄!), we can rewrite
it as

r̄(z̄a) = S̄(z̄ + H̄c) + S̄∆H̄c = S̄∆H̄c. (17)

We denote r̄a = S̄∆H̄c as the residual due to the attack,
since it only depends on c and ∆H̄ . Furthermore, we see
that ‖r̄a‖ ≤ ‖S̄‖‖∆H̄‖‖c‖ = ‖∆H̄‖‖c‖, since S̄ is an
orthogonal projector, showing that the residual norm is linear
in terms of the model uncertainty. However, this bound
does not capture an important property of the sensitivity
matrix S̄, i.e., S̄ is the orthogonal projector onto Ker(H̄!).
To show this, assume H̃ = δH̄ for some nonzero δ,
yielding ∆H̄ = (1− δ)H̄ . From the previous result we have
‖r̄a‖ ≤ ‖(1− δ)H̄‖‖c‖. However, since S̄ is the orthogonal
projector onto Ker(H̄!) and this subspace is the orthogonal
complement of Im(H̄) we know that r̄a = S̄∆H̄c = 0.
Therefore, although there is model uncertainty, the residual is
still zero. This reasoning indicates that there is a geometrical
meaning in the residual, since all the model perturbations
∆H̄ spanning Im(H̄) will yield a zero residual. To further
explore this property, we will make use of the so-called
principal angles and projection theory described in [16]. The
main results and definitions used in this work are now given.

Definition 1 ([16]): Let M1 and M2 be subspaces of Cm.
The smallest principal angle γ1 ∈ [0, π/2] between M1 and
M2 is defined by

cos(γ1) = max
u∈M1

max
v∈M2

|uHv|

subject to ‖u‖ = ‖v‖ = 1
(18)

Lemma 1 ([16]): Let P1,P2 ∈ Rm×m be orthogonal
projectors of M1 and M2, respectively. Then the following
holds

‖P1P2‖2 = cos(γ1) (19)
Proposition 2: Let γ1 be the smallest principal angle

between Ker(H̄!) and Im(H̃). The residual increment due
to a deception attack following the policy a = H̃c satisfies

‖r̄a‖2 ≤ cos γ1‖a‖2. (20)
Proof: Recall the so-called hat matrix defined by T̄ =

H̄H̄†, which is the orthogonal projector onto Im(H̄) and
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define T̃ = PIm(H̃) = H̃H̃†. The residual under attack in
Eq. (16) may be rewritten as

r̄a = S̄T̃ H̃c, (21)

since T̃ H̃ = H̃ . The residual norm can be upper bounded
as

‖r̄a‖2 ≤ ‖S̄T̃‖2‖H̃c‖2 = cos γ1‖a‖2, (22)

where γ1 is the smallest principal angle between Ker(H̄!)
and Im(H̃).
Analyzing the example where H̃ = δH̄ , we see that
Im(H̃) = Im(H̄) is orthogonal to Ker(H̄!). Hence the
smallest principal angle between these subspaces is γ1 = π

2 ,
yielding ‖r̄a‖2 ≤ cos(γ1)‖a‖2 = 0.

Thus we achieved a tighter bound that explores the ge-
ometrical properties of the residual subspace. In brief, γ1
measures how close the subspaces Ker(H̄!) and Im(H̃) are
from each other. In order for the model uncertainty not to
affect the residual, it is desired that Ker(H̄!) and Im(H̃)
are as close to orthogonal as possible. For some insights on
the physical interpretation of this geometrical property, see
Section VI.

C. Stealthy Attacks

Consider the measurement residual under attack in (16).
Taking into account the random error vector ε̄ we can rewrite
the residual as

r̄(z̄a) = S̄ε̄+ S̄a. (23)

The residual then has the following distribution r̄(z̄a) ∼
N (r̄a, S̄). Note that due to the model uncertainties the
residual has a non-zero mean, which increases the chances
of triggering an alarm in the BDD. Recall that one of the
attacker’s objective is to keep such probability as low as
possible, i.e. ‖Wr(x̂a)‖p < τ . We now provide insights
on how such objective may be fulfilled for the two BDD
schemes presented in Section IV.

1) Performance index test: Recall that without any attack
on the measurements we have J(x̂) ∼ χ2

m−n. Under attack
the cost function Ja(x̂) = r̄(z̄a)!r̄(z̄a) will have the so-
called non-central chi-squares distribution [17], due to the
non-zero mean which affects all the statistical moments of
the χ2

m−n distribution. We denote Ja(x̂) ∼ χ2
m−n(λ) where

λ = ‖S̄a‖2
2. Recalling the relationship between the false

alarm probability α and the detection threshold τχ(α) in (9),
in the presence of attacks we have

∫ ∞

τχ(α)
gλ(u)du = α+ δλ(λ), (24)

with gλ(u) being the pdf of χ2
m−n(λ). We call δλ(λ) the

increase in the alarm probability that the attacker must
minimize to remain undetected. It is not possible to attack
the PSSE and guarantee that no alarm is triggered, due to
the presence of random measurement errors. Therefore we
assume the attacker has an upper limit on δλ(λ) which is

considered acceptable, δ̄λ. Given reasonable values of α, the
attacker is able to compute feasible values of λ by solving

∫ ∞

τχ(α)
gλ(u)du ≤ α+ δ̄λ. (25)

Under the reasonable assumption that δλ(λ) increases
with λ, since the mean of χ2

m−n(λ) is shifted along the
positive direction and its variance increases as λ increases,
we provide the following result.

Proposition 3: Suppose that δλ(λ) increases with λ.
Given α and δ̄λ an attack is stealthy regarding the perfor-
mance index test if the following holds

cos γ1‖a‖2 ≤
√

λ̄(α, δ̄λ) (26)

where λ̄(α, δ̄λ) is the maximum value of λ for which (25)
is satisfied.

Proof: First note that from our assumption δλ(λ)
increases with λ. Therefore stealthy attack vectors satisfy

‖r̄a‖2 ≤
√
λ̄, as this implies by definition that λ ≤ λ̄ and

δλ(λ) ≤ δ̄λ. The rest of the proof follows from Prop. 2.
2) Largest normalized residual test: Recall that the resid-

uals without attack follow a normal distribution r̄ ∼ N (0, S̄),
whereas under attack we have r̄a ∼ N (d, S̄) with d = S̄a.
Each element of the normalized residual vector then has
distribution rN

ai
∼ N (dN

i , 1) with dN
i = D−1/2

ii di being
the bias introduced by the attack vector. Similarly as before,
defining δ̄d as the maximum admissible increase in the alarm
probability and given α, the biases dN

i providing the required
level of stealthiness satisfy the inequality

∫ τN (α)

−τN (α)
gNdN

i
(u)du ≥ 1 − α− δ̄d, (27)

with gN
dN

i
(u) being the pdf of rN

ai
.

Proposition 4: Given α and δ̄d an attack is stealthy re-
garding the largest normalized residual test if the following
holds

‖D−1/2‖2 cos γ1‖a‖2 ≤ d̄N (α, δ̄d) , (28)

where d̄N (α, δ̄d) is the maximum value of ‖dN‖∞ for which
(27) is satisfied with dN

i = ‖dN‖∞.
Proof: Clearly it is sufficient to require (27) to hold

for |dN
i | = ‖dN‖∞, as this corresponds to the worst-

case bias. Note that the increase in alarm probability δd
increases with |dN

i | due to the symmetrical nature of gN
dN

i
(u).

Thus (27) reaches equality for ‖dN‖∞ = d̄N and a sufficient
condition for (27) to hold is to have ‖dN‖∞ ≤ d̄N . Recalling
dN = D−1/2S̄a and ‖ · ‖∞ ≤ ‖ · ‖2, we conclude the
attack is stealthy if ‖D−1/2S̄a‖2 ≤ d̄N , which is satisfied by
‖D−1/2‖2‖S̄a‖2 ≤ d̄N . The rest follows from Proposition 2.

The main result of this section is as follows:
Theorem 1: Given the perturbed model H̃ , the false-alarm

probability α and the maximum admissible increase in alarm
probability δ̄, an attack following the policy a = H̃c is
stealthy if

‖a‖2 ≤ β(α, δ̄) , (29)
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where β(α, δ̄) is given by:

• β(α, δ̄) =
√

λ̄(α,δ̄λ)
cos γ1

, for the performance index test;

• β(α, δ̄) = d̄N (α,δ̄d)
‖D−1/2‖2 cos γ1

, for the largest normalized

residual test.
Proof: Assuming the BDD method is the performance

index and taking β(α, δ̄) =
√

λ̄(α,δ̄λ)
cos γ1

, the proof directly fol-
lows from Proposition 3. For the largest normalized residual,

defining β(α, δ̄) = d̄N (α,δ̄d)
‖D−1/2‖2 cos γ1

the proof follows from

Proposition 4.
Note that in the scenario analyzed here, the designer of the

BDD scheme chooses both the detection method as well as
the false-alarm probability α. These elements are fixed and
usually unknown to the attacker, who defines the maximum
risk δ̄ he is willing to take and has some knowledge of
the power network H̃ , that is used to compute the attack
vector a. However α can be estimated by reasonable values
and the same happens for the degrees of freedom of the
chi-squares distribution. Although the exact value of γ1 is
not accessible to an attacker tampering only with RTUs,
additional knowledge such as the topology of the network
may be used to compute worst-case estimates of γ1, as it is
shown in the next section.

VI. CASE STUDY

An interesting analysis is to understand what is the worst-
case uncertainty for the attacker, ∆H̄ , maximizing the or-
thogonality between Im(H̃) and Im(H̄). This corresponds
to maximizing the effect of the attack vector a on the
measurement residual. From the attacker’s view, this could
lead to a set of robust attack policies. As for the control
center this could be useful to implement security measures
based on decoys, for instance. It is known that the network
model used in the PSSE can be kept in the databases of
the SCADA system with little protection. Thus a possible
defensive strategy would be, for instance, to disseminate a
perturbed model with fake but ”genuine“ looking parameter
values in the database which, if retrieved and used by an
attacker, would produce large residuals and increase the
detection of intelligent attacks.

The first observation at this point is that it is of little
interest to consider cases when only the maximum magnitude
of the model perturbation is considered,i.e. ‖∆H̄‖ ≤ ω.
Note that this formulation only tells us that the uncertainty
is within a ball of radius ω from the nominal model H̄ . Thus
one can always choose a worst-case perturbation satisfying
‖∆H̄‖ = ω which is orthogonal to H̄ , yielding ‖S̄T̄∆‖ = 1.
Hence scenarios where the uncertainty is more structured are
of greater interest.

We now apply the previous results to the scenario where
the attacker knows the exact topology of the network but has
an error on the transmission line’s parameters of ±20%. The
detectability of attacks in this scenario is intimately related
to the detectability of parameter or topology errors [13],
[18]. Consider the power network in Fig. 2 with the data
in Table I. The network shown in Fig. 2 corresponds to
the bus-branch model of a, possibly larger, power network

∼ ∼
1 2 3

4 5 6

Fig. 2. Power network with 6 buses

TABLE I

DATA OF THE NETWORK IN FIG. 2

Branch From bus To bus Reactance (pu) Parameter Error
b1 1 4 0.370 -20%
b2 1 2 0.518 +20%
b3 6 5 1.05 -20%
b4 6 3 0.640 -20%
b5 5 4 0.133 -20%
b6 4 2 0.407 -20%
b7 3 2 0.300 +20%

computed by the EMS after analyzing which buses and
branches are energized, based on measurements from RTUs
such as breaker status. This model is then used by the PSSE,
together with the list of available measurements, to compute
the measurement model. In this example we consider the
linear case where z = Hx. The parameter errors in Table. I
were computed so that cos(γ1) = ‖S̄T̃‖2 is maximized
for errors up to ±20%, corresponding to the worst-case
uncertainty. This actually corresponds to the constrained
maximization of a convex function, which was solved using
the numerical solvers available in MATLAB.

In Fig. 3 we show how the maximum 2-norm of a stealthy
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Fig. 3. Attack stealthiness as a function of the detection risk. The solid
line represents the 2-norm of the optimal attack vector a∗ constrained by
ab1

= 1, where ab1
is the power flow in branch b1. The curves denoted as

χ2 and LNR represent the value of β(0.05, δ) for the performance index
test and largest normalized residual test, respectively. From these results,
we conclude that the LNR test is more sensitive to this kind of attacks.
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attack vector β(α, δ) in terms of Theorem 1 varies with
respect to the increased detection risk δ, for α = 0.05.
As it is seen, the performance index test allows for larger
attacks than the largest normalized residual test. Since attacks
following a = H̃c have a similar meaning to multiple
interacting bad data, this validates the known fact that largest
normalized residual test is more robust to such bad data than
the performance index test [11]. Note that the norm of the
optimal attack vector in the sense of (13) when targeting
the power flow between buses 1 and 4 is also shown. We
see that such attack would have a small risk, even for the
largest normalized residual.

VII. CONCLUSIONS

In this work we provided methods to analyze cyber-
security of PSSE in scenarios where the attacker has a
limited knowledge of the network and unlimited resources. In
particular we proposed a framework to model such attackers,
which is capable of taking into account resource constraints.
We also explored and considered two BBD methods widely
used and showed that such tools do not guarantee security
against cyber-attacks.
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APPENDIX

CONVERGENCE OF NEWTON’S METHOD

For Newton method applied to WLS estimation problem,
we have F (x) = −H(x)!R−1(z − h(x)). Assuming that
[F ′(x)] is nonsingular, following (3) we define

G(x) = x − [F ′(x)]−1F (x). (30)

G : Rn → Rn. A solution x∗ = G(x∗) is called the fixed

point of G. Since G arises as an iteration function for the
equation F (x) = 0, x∗ is a fixed point of G if and only
if F (x∗) = 0. The local convergence theorem for Newton
iterates is as follows:

Theorem 2: Let F be continuously differentiable function,
and [F ′(x)] be nonsingular with elements continuous in the
ball S := {x ∈ Rn| ‖ x − x0 ‖< ε}. Let us define

c := max
ξ∈S

‖ G′(ξ) ‖∞ .

Suppose the following conditions are satisfied

(A1) c < 1
(A2) ‖ G(x0) − x0 ‖< (1 − c)ε

then

• There exists a unique solution of F (x) = 0 in S,
• the sequence {x0, x1, x2, . . .} generated by G will con-

verge to the fixed point x∗ of G in S,
• ‖ xi − x∗ ‖< c

1−c ‖ xi − xi−1 ‖.
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