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a b s t r a c t

This paper is concerned with the problem of how secure the innovation-based remote state estimation
can be under linear attacks. A linear time-invariant system equipped with a smart sensor is studied.
A metric based on Kullback–Leibler divergence is adopted to characterize the stealthiness of the
attack. The adversary aims to maximize the state estimation error covariance while stay stealthy. The
maximal performance degradations that an adversary can achieve with any linear first-order false-data
injection attack under strict stealthiness for vector systems and ϵ-stealthiness for scalar systems are
characterized. We also provide an explicit attack strategy that achieves this bound and compare this
attack strategy with strategies previously proposed in the literature. Finally, some numerical examples
are given to illustrate the results.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Cyber–physical systems (CPS), which closely integrate com-
utational elements and physical processes, are playing a crit-
cal role in society. Any successful cyber–physical attack can
ring huge damages to critical infrastructure or even human
ives. Maroochy water breach in 2000 (Slay & Miller, 2007),
tuxnet malware in 2010 (Karnouskos, 2011), Ukraine power
utage in 2015 (Whitehead et al., 2017), Venezuela blackouts in
019 (Jones, 2019) are examples of incidents that motivate us to
ay more attention to the security of CPS.
An adversary may launch attacks to disturb the monitoring

nd state estimation of CPS. Many existing works focus on design-
ng detection algorithms and secure state estimation strategies
o enhance the security of CPS. Mo et al. (Mo et al., 2013, Mo
Sinopoli, 2009, Mo et al., 2015) analyzed the effect of replay

ttacks where the attackers do not know the system information
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but replay the recorded measurements. They proposed a physical
watermarking scheme to detect the attack. An algorithm that
employs a satisfiability modulo theory paradigm was proposed
in Shoukry et al. (2017) to tackle the complexity of secure state
estimation. Teixeira et al. (2012) characterized the properties
of zero dynamics attacks and provided necessary and sufficient
conditions for which input and output deviations should satisfy to
reveal attacks. A secure state estimation algorithm was presented
in Mishra et al. (2016), and upper bounds on the state estimation
error covariance, when the maximum number of attacked sensors
is known, were derived.

The problem of what is the worst possible attack is of great in-
terest to help in the search for defence strategies. Mo and Sinopoli
(2015) formulated a constrained control problem subject to the
attacker’s strategy and characterized its maximal perturbation. A
linear quadratic function was employed to capture the attacker’s
control goal and constraints in Chen et al. (2017). The authors
stated that linear feedback is the optimal attack strategy and
provided two algorithms to derive the optimal attack sequence. In
Zhang et al. (2015), the problem of scheduling a denial-of-service
(DoS) attack with limited energy was studied. The optimal attack
schedule in a special scenario was proposed and the optimal
attack schedule with both energy constrained sensor and attacker
was analyzed. A similar problem but with a packet-dropping
network was studied in Qin et al. (2018).

To the best of our knowledge, the concept of stealthiness of
the attack was first introduced as δ-marginal stealthiness (δ-MS)
n Bai and Gupta (2014). The authors characterized a stealthi-
ess level from the probability of false alarm and investigated
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he trade-off between the performance degradation of the state
stimation and the stealthiness level. Based on this work, a no-
ion of ϵ-stealthiness based on Kullback–Leibler (KL) divergence
to quantify attack detectability was proposed and the maximal
performance degradation under ϵ-stealthy attack strategy was
evealed in Bai et al. (2015), Bai, Pasqualetti, et al. (2017). The
uthors of Kung et al. (2016) generalized the above results to
ector systems. Furthermore, Bai, Gupta, et al. (2017) was devoted
o seeking the optimal attack by compromising sensor measure-
ents. In this paper, we adopt the same stealthiness metric as in
ai, Gupta, et al. (2017), Bai et al. (2015). Different from these
orks focusing on designing the optimal attack strategy after
eriving the performance degradation bound, in this paper we
btain the maximal performance loss under linear attacks.
Innovation-based linear integrity attacks were first studied in

uo et al. (2016). An optimal linear attack policy was proposed
o achieve the maximal performance degradation while not being
etected by a χ2 detector, which can also be considered as a
trictly stealthy attack as proposed in Bai and Gupta (2014).
ome extensions of this work can be found in Guo et al. (2017),
uo et al. (2019). These authors also investigated this type of
ttacks in the detection framework based on KL divergence (Guo
t al., 2018). Different from previous attack strategies consisting
f a zero-mean random variable, a more general linear attack
trategy with an arbitrary mean random variable was studied in
i and Yang (2019). However, all the above papers only consider
emory less attacks. A larger performance degradation of the

emote estimator can be expected when the attacker utilizes both
ast and present information. Motivated by this point, we con-
ider how vulnerable innovation-based remote state estimators
re to a linear attack which leverages both past and present
nnovation. Moreover, we allow for sequence detection instead
f just one-slot detection.
The main contributions of this paper are as follows:

1. A fundamental performance degradation bound is provided
for innovation-based remote state estimators under strictly
stealthy linear attacks (Theorem 3.1). A worst-case attack
strategy achieving the bound is explicitly stated.

2. For ϵ-stealthy linear attacks, the corresponding degrada-
tion bound is derived for scalar systems (Theorem 4.1).
Again, a worst-case attack strategy achieving the bound is
explicitly stated.

3. The proposed attack strategies are shown to outperform
other attack strategies discussed in the literature. It is illus-
trated how the memory in the proposed strategy provides
specific advantages from an adversary point of view.

Some preliminary results are described in our conference pa-
er (Liu et al., 2020). The main differences between the current
aper and Liu et al. (2020) are significant: (1) The attack model
roposed in this paper is more general. (2) We generalize the
esults of strictly stealthy attacks to vector systems and provide
orst performance degradation ratio for the estimation error
ovariance. (3) Detailed proofs of theorems and lemmas are in-
luded. (4) Simulations to validate our theoretical findings are
rovided.
The rest of the paper is organized as follows. Section 2 for-

ulates the problem by introducing the system model, attack
odel as well as two stealthiness metrics. We present the worst-
ase performance degradation bounds for remote state estimation
nder strictly stealthy attacks for vector systems and ϵ-stealthy
ttacks for scalar systems in Sections 3 and 4, respectively. In
ection 5, some numerical examples are provided to verify the
erformance of the proposed strategies and compare them with
trategies from the literature. Conclusions are provided in Sec-
ion 6. For the sake of readability, some proofs are included in
he appendix.
2

Fig. 1. The system diagram.

Notations:

The notation xk2k1 is the sequence {xk1 , xk1+1, . . . , xk2}. The spec-
tral radius is defined as ρ(A)≜max{|λ1|, |λ2|, . . . , |λn|}, where
λ1, . . . , λn are the eigenvalues of the matrix A ∈ Rn×n. In denotes
the identity matrix of order n. The zero matrix 0m×n is the m× n
matrix with all entries equal to 0. The transpose of matrix A is
represented by A⊺. Sn

+
(Sn

++
) is the set of n × n positive semi-

definite (definite) matrices. When X ∈ Sn
+
(Sn

++
), we simply write

X ⪰ 0 (X ≻ 0).

2. Problem formulation

In this section, the system and attack models are introduced
together with the stealthiness and performance degradation met-
rics. Finally, the problem of interest is formulated. The diagram
for the considered system is illustrated in Fig. 1. A smart sensor
measures the output of a physical plant and transmits the inno-
vation to a remote estimator via a wireless network. An attacker
attempts to modify the transmission data, which are received by
a remote estimator and a detector. The detailed system model is
presented in this section.

2.1. System model

Consider a linear time-invariant (LTI) system described by the
following equations:

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)

where xk ∈ Rn and yk ∈ Rp are the vector of state variables and
sensor measurements at time k, respectively. wk ∈ Rn denotes
the process noise and vk ∈ Rp the measurement noise. They
are assumed to be mutually independent zero-mean Gaussian
variables with covariances Q ⪰ 0 and R ≻ 0, i.e., wk ∼ N (0,Q )
and vk ∼ N (0, R). We further assume that x0 is a zero mean
Gaussian random vector independent of the process noise and the
measurement noise, and with covariance Σ . We focus on stable
systems.

Assumption 2.1. The spectral radius ρ(A) < 1.

The system is equipped with a local smart sensor whose
functions include signal conditioning, signal processing, and de-
cision making (Lewis, 2004). In our work, the smart sensor em-
ploys the Kalman filter to process measurement and transmit the
innovation to the remote estimator:

x̂sk+1|k = Ax̂sk,
Pk+1|k = APk|kA⊺

+ Q ,

Kk = Pk|k−1C⊺(CPk|k−1C⊺
+ R)−1,

ˆ
s
k = x̂sk|k−1 + Kk(yk − Cx̂sk|k−1),

k|k = Pk|k−1 − KkCPk|k−1,

ith initialization x̂ = x .
0|−1 0
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Under Assumption 2.1, the Kalman gain will converge expo-
nentially. Therefore, we consider a steady-state Kalman filter with
gain K and a priori minimum mean square error (MMSE) P:

P≜ lim
k→∞

Pk|k−1, (3)

K≜PC⊺(CPC⊺
+ R)−1. (4)

As a result, the Kalman filter can be rewritten as:

x̂sk+1|k = Ax̂sk, x̂sk = x̂sk|k−1 + Kzk,

where zk ≜ yk − Cx̂sk|k−1 is the innovation at time k, which is
transmitted to the remote estimator. Recall that zk ∼ N (0, Σz),
here Σz ≜ CPC⊺

+ R ≻ 0. Since yk = zk + Cx̂sk|k−1, one can argue
that zk contains the same information about the uncertainty in
the process as yk. It is worth noticing that transmitting the raw
sensor measurement does not make the system safer (Guo et al.,
2019). In the literature (Guo et al., 2016, Guo et al., 2019, Li et al.,
2017, Ribeiro et al., 2006), similar setups have been considered.

2.2. Attack model

The adversary is assumed to have the following capabilities:

1. The attacker has access to all innovations from the smart
sensor, i.e., it knows the innovations z1, . . . , zk at time k.

2. The attacker can modify the innovations to arbitrary values.
3. The attacker has knowledge of the system matrix A, the

measurement matrix C , as well as the covariances, i.e., Q
and R, of the noises.

Remark 2.1. The third capability can be relaxed. If the attacker
does not have access to A but it can access the input and output,
it can identify the system parameters. The accuracy of the identi-
fication will affect the attack performance. This will be illustrated
in Section 5.

The attacker injects the false data zak and modifies the innova-
tions in real-time as:

z̃k = T z̃k−1 + Szk + φk, (5)

where T ∈ Rp×p and S ∈ Rp×p are matrices to be chosen by the
attacker, and φk ∼ N (0, Φ) is an i.i.d. Gaussian random variable
with covariance Φ ∈ Sp

+, which is independent of zk. The attack
model (5) suggests that the attacker can generate the false-data
injection attack based on filtering the innovation sequence from
the smart sensor with a linear type potentially driven by noise.

Remark 2.2. Observe that the works (Guo et al., 2016, 2017,
2018, Guo et al., 2019) consider memoryless attacks, i.e., the
attack is only based on the current innovation. Here, we seek to
explore the possibility of a larger performance degradation for
the remote estimator when the attacker utilizes both past and
present information. More specifically, we focus on a linear time-
invariant first order attack model and characterize the maximal
performance degradation that an adversary can achieve. We also
provide an explicit attack strategy that achieves this bound. It is
hoped that our work can provide some insight into other more
general attack models such as linear-time varying and nonlinear
attack models.

The remote estimator receives z̃k so the remote state estima-
tion follows:

x̂k|k−1 = Ax̂k−1, (6)

x̂k = x̂k|k−1 + K z̃k. (7)

ˆ ˆs ˜
Here, we initialize x1|0 = x1|0 and zk = 0 when k ≤ 0. f

3

2.3. Detector and stealthiness metric

The attacker wants to be stealthy, otherwise the system will
take countermeasures to keep a safe operation. We employ a
metric based on KL divergence to quantify stealthiness, as first
proposed in Bai et al. (2015).

The attack detection problem is posed as sequential hypothe-
sis testing. The detector uses the received sequence to carry out
the following binary hypothesis testing:

H0 : There is no attack in process. (The remote estimator
receives zk1).

H1 : There is an attack in process. (The remote estimator
receives z̃1k ).

In testing H0 versus H1 there are two types of possible errors:
the first type is called ‘‘false alarm‘‘, which denotes that the
detector decides H1 given H0, and the second type is called ‘‘miss
detection‘‘, which represents that the detector decides H0 when
H1 is correct. Here, we denote the probability of miss detection at
time k as pMk , and the probability of false alarm as pFk . Furthermore,
the probability of correct detection is pDk , which denotes that the
detector decides H1 given H1. Obviously, pDk +pMk = 1. We provide
wo definitions for attack stealthiness:

efinition 2.1 (Strictly Stealthy Attack (Bai, Gupta, et al., 2017)).
he attack is strictly stealthy if pFk ≥ pDk , (k ≥ 0), holds for any
etector.

efinition 2.2 (ϵ-stealthy Attack Bai, Gupta, et al., 20171). The
ttack is ϵ-stealthy if

im sup
k→∞

−
1
k
log pFk ≤ ϵ (8)

holds for any detector that satisfies 0 < pMk < δ for all k ≥ 0,
where 0 < δ < 1.

2.4. Performance degradation metric

We employ the ratio of the trace of the covariance of the state
estimation error P̃ and P to quantify the performance degradation
ntroduced by the attacker, i.e.,

=
tr P̃
tr P

, (9)

where P is defined in (3) and P̃ is defined as follows:

P̃ ≜ lim sup
k→∞

1
k

k∑
l=1

P̃l, (10)

here P̃l = E[(xl − x̂l|l−1)(xl − x̂l|l−1)⊺]. When there is no attack,
˜k = zk. As x̂1|0 = x̂s1|0, one can derive that x̂k|k−1 = x̂sk|k−1. Hence,
˜ = P and η = 1. In other words, the performance will not be
egraded without attacks.

.5. KL divergence

In order to quantify the stealthiness level of attacks, we need
o employ the KL divergence (Cover & Thomas, 2012, Kullback &
eibler, 1951), which is defined as:

1 Motivated by the Chernoff–Stain Lemma, the notion of ϵ-stealthiness was
irst proposed in Bai, Gupta, et al. (2017).
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efinition 2.3 (KL Divergence). Let z̃k1 and zk1 be two random
sequences with joint probability density functions fz̃k1 and fzk1 ,
espectively. The KL divergence between z̃k1 and zk1 equals

(z̃k1 ∥ zk1) =

∫
+∞

−∞

log
fz̃k1 (ξ

k
1 )

fzk1 (ξ
k
1 )

fz̃k1 (ξ
k
1 )dξ

k
1 . (11)

One can see that D(z̃k1 ∥ zk1) ≥ 0, and D(z̃k1 ∥ zk1) = 0 if
nd only if fz̃k1 = fzk1 . Generally, KL divergence is asymmetric,
.e., D(z̃k1 ∥ zk1) ̸= D(zk1 ∥ z̃k1).

Necessary and sufficient conditions for strictly stealthy attacks
nd ϵ-stealthy attacks are provided in Bai, Gupta, et al. (2017):

emma 2.1 (Strictly Stealthy Attacks Bai, Gupta, et al., 2017). An
ttack sequence z̃k1 is strictly stealthy if and only if {z̃1, z̃2, . . .} is

a sequence of i.i.d. Gaussian random variables with zero mean and
covariance Cov(z̃k) = Σz = CPC⊺

+ R.

Lemma 2.2 (ϵ-stealthy Attacks Bai, Gupta, et al., 2017). If an attack
z̃k1 is ϵ-stealthy, then

lim sup
k→∞

1
k
D(z̃k1 ∥ zk1) ≤ ϵ. (12)

onversely, if an attack sequence z̃k1 is ergodic and satisfies

lim
→∞

1
k
D(z̃k1 ∥ zk1) ≤ ϵ, (13)

then the attack is ϵ-stealthy.

2.6. Problem of interest

We aim to derive fundamental vulnerabilities of innovation-
based remote estimation. In other words, we seek to obtain how
secure one can make innovation-based remote state estimation
under linear attacks.

Given the innovation-based remote state estimator system in
Fig. 1, how vulnerable is such a system under attack (5)? The
answer is given by the worst performance degradation (9). For
strictly stealthy and ϵ-stealthy attacks, these degradation can be
formulated as the following optimization problems:

1. The attack is strictly stealthy:

argmax
T ,S,Φ

ηs ≜ lim sup
k→∞

1
k

∑k
l=1 tr P̃l
tr P

,

s. t. attack is strictly stealthy.

(14)

2. The attack is ϵ-stealthy:

argmax
T ,S,Φ

ηϵ ≜ lim sup
k→∞

1
k

∑k
l=1 tr P̃l
tr P

,

s. t. attack is ϵ-stealthy.

(15)

We seek to obtain the optimal attack tuple (T ∗, S∗, Φ∗) to
maximize the performance degradation, while guaranteeing the
prespecified stealthiness level.

3. Strictly stealthy attacks

The following theorem characterizes the maximal performance
degradation ratio under a strictly stealthy attack. We also specify
the optimal attack strategy.

For the simplicity of notations, we define

P1 ≜ KΣzK ⊺.

Theorem 3.1. Consider system (1)–(2) satisfying Assumption 2.1.
For strictly stealthy attacks of the form (5), the worst performance
4

degradation ratio for the estimation error covariance is

ηs = 1 + 4
trX
tr P

,

where X = X1 − P1 and X1 is the solution to the Lyapunov
equation: X1 = AX1A⊺

+ P1. The corresponding attack strategy is
(T ∗, S∗, Φ∗) = (0m×m, −Im, 0m×m).

Proof. Rewrite (5) as follows:

z̃l = T z̃l−1 + Szl + φl

=

l∑
i=1

T l−iSzi +
l∑

i=1

T l−iφi.
(16)

By Lemma 2.1, the covariance of z̃l (l = 1, 2, . . . ) needs to
satisfy

Cov(z̃l) =

l−1∑
i=0

T i (SΣzS⊺
+ Φ) (T i)⊺ = Σz .

The feasible solution thus is (T , S, Φ) = (0m×m, S, Σz − SΣzS⊺),
where Σz − SΣzS⊺

⪰ 0. i.e., z̃l = Szl + φl, and the covariance of
φl is Σz − SΣzS⊺. Now we derive the ratio ηs. Let us rewrite P̃l as
follows:
P̃l =E[(xl − x̂l|l−1)(xl − x̂l|l−1)⊺]

=E[(xl − x̂sl|l−1)(xl − x̂sl|l−1)
⊺
]

+ E[(x̂sl|l−1 − x̂l|l−1)(x̂sl|l−1 − x̂l|l−1)⊺]
+2E[(xl − x̂sl|l−1)(x̂

s
l|l−1 − x̂l|l−1)⊺]

=P + E[(x̂sl|l−1 − x̂l|l−1)(x̂sl|l−1 − x̂l|l−1)⊺],

(17)

here the last equality holds due to the orthogonality principle,
.e., all the random variables generated by the smart sensor are
ndependent of the estimation error xl − x̂sl|l−1 of the MMSE
stimate x̂sl|l−1 (Bai, Gupta, et al., 2017). More specifically, x̂s is the
tate estimate of the smart sensor. x̂ is the state estimate of the
emote estimator and it is updated by the modified innovation z̃k,
here z̃k is linear with the innovation of zk. Since the error vector

l−x̂sl|l−1 is orthogonal to the innovation zk, the last equality holds.
efine ẽl ≜ x̂sl|l−1 − x̂l|l−1, where

ˆ
s
l|l−1 = Ax̂sl−1|l−2 + AKzl−1

= Al−1x̂1|0 +

l−1∑
i=1

AiKzl−i,

nd
ˆl|l−1 = Ax̂l−1|l−2 + AK z̃l−1

= Al−1x̂1|0 +

l−1∑
i=1

AiK z̃l−i.
(18)

Since x̂s1|0 = x̂1|0, which implies that ẽ1 = 0m×1, we have

[ẽlẽ
⊺
l ] =

l−1∑
i=1

AiKE
[(
zl−i − z̃l−i

) (
zl−i − z̃l−i

)⊺] (AiK )⊺. (19)

Take the limit of E[ẽlẽ
⊺
l ], we have

lim
l→∞

E[ẽlẽ
⊺
l ]

lim
l→∞

l−1∑
i=1

AiKE [[(Im − S)zl−i − φl−i] [(Im − S)zl−i − φl−i]⊺] (AiK )⊺

lim
l→∞

l−1∑
i=1

AiK [(Im − S)Σz(Im − S)⊺ + Σz − SΣzS⊺] K ⊺(Ai)⊺.
(20)
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For the simplicity of notations, we define

P1 ≜ K [(Im − S)Σz(Im − S)⊺ + Σz − SΣzS⊺] K ⊺.

Since P1 is positive semi-definite and A is stable, (21) can be
simplified as

lim
l→∞

E[ẽlẽ
⊺
l ] = Y,

where Y = Y1−P1 and Y1 is the solution to the discrete Lyapunov
equation Y1 = AY1A⊺

+ P1.
The performance degradation ratio is

s = lim
k→∞

1
k

∑k
l=1 tr P̃l
tr P

=
tr P + trY

tr P
.

Considering Σz − SΣzS⊺
⪰ and the expression of P1, we can

erive two special cases as follows:

(1) (T , S, Φ) = (0m×m, Im, 0m×m): z̃l = zl, i.e., the attacker is not
launching an attack, the corresponding ratio ηs,1 = 1.

(2) (T , S, Φ) = (0m×m, −Im, 0m×m): z̃l = −zl, i.e., the attacker
flips the sign of the innovation.

For case (2), we can easily derive that

s,2 = lim
k→∞

1
k

∑k
l=1 tr P̃l
tr P

= 1 + 4
trX
tr P

> 1.

here X = X1 − P2, X1 is the solution to X1 = AX1A⊺
+ P2 and

P2 is defined as P2 ≜ KΣzK ⊺. Let us compare ηs,2 and ηs.

4 trX − trY

=

∞∑
i=1

tr
(
AiK (2Σz + SΣz + ΣzS⊺) (AiK )⊺

)
=

∞∑
i=1

tr
(
AiK ((Im + S)Σz(Im + S)⊺ − SΣzS⊺

+ Σz) (AiK )⊺
)

≥ 0.

The worst performance degradation ratio is ηs = 1 + 4
trX
tr P

ith the corresponding attack strategy (T ∗, S∗, Φ∗) = (0m×m,
Im, 0m×m). □

emark 3.1. In Theorem 3.1, the linear first-order attack model
5) is considered. The same result can be easily extended to a
eneral linear time-invariant attack model of the form:

k = Mck−1 + Nzk−1,

z̃k = Wck + Gzk,

here ck ∈ Rm,M ∈ Rm×m,N ∈ Rm×p,W ∈ Rp×m,G ∈ Rp×p. That
s, under strictly stealthy attacks of the above form, the worst case
erformance remains the same as that in Theorem 3.1 and the
ptimal attack strategy is that G = −Ip and the parameters M,N
nd W need to satisfy WM iN = 0 (i = 0, 1, . . . ).

Remark 3.2. For scalar systems, the worst performance degrada-
tion ratio is

ηs = 1 +
4A2K 2(C2P + R)

(1 − A2)P
nd the corresponding attack strategy is (T ∗, S∗, Φ∗) = (0, −1, 0).

Hence, the degradation is worse for systems with a higher Kalman
filter gain. Note also that the worst case attack simply flips the
sign of the innovation sequence.

Remark 3.3. Under the strict stealthiness metric, the optimal
attack strategy in our work is aligned with the result about
the worst-case linear attack under the χ2 false alarm detector
obtained in Guo et al. (2016). The reason why the optimal attack
5

policies are the same for the different problem settings is that the
modified innovation needs to preserve the statistics of the attack-
free innovation, which leads to that T = 0m×m. However, since
we consider a more general model that utilizes both past and
current information, the derivation of the optimal attack strategy
is different from that in Guo et al. (2016). Note that η = 1 when
A = 0n×n.

Remark 3.4. Under Assumption 2.1, i.e., A is stable, Theorem 3.1
provides a closed-form solution for the performance degradation
ratio. If A is not stable, (21) will diverge. Besides, although we
mainly study the scenario under strictly stealthy attacks in this
section, the strictly stealthy attack can be considered as a special
case of ϵ-stealthy attacks with ϵ = 0. In other words, a strictly
stealthy attack strategy should be feasible when considering an
ϵ-stealthy attack.

4. ϵ-Stealthy attacks

In this section, we will characterize the maximal performance
degradation under an ϵ-stealthy attack. The memoryless attacker
T = 0m×m was studied in Guo et al. (2018), Li and Yang (2019).
We focus on the attacker with memory, i.e., T ̸= 0m×m. For the
sake of analysis, we will focus on scalar systems, i.e., m = n =

1 in the following analysis. The vector case will be a potential
future work. In order to differentiate between scalar and vector
systems, we use σ 2

z to replace Σz to represent the covariance of
zk, i.e., σ 2

z = C2P + R.
For the simplicity of notation, define

≜
Φ

σ 2
z

, q ≥ 0.

Then we have the following lemma, the proof of which is
reported in the appendix.

Lemma 4.1. Consider the scalar system (1)–(2), the optimization
problem (15) is equivalent to the following problem:

argmax
T ,S,q

J(T , S, q),

s. t. −
1
2

−
1
2
log(S2 + q) +

S2 + q
2(1 − T 2)

= ϵ,

− Soqmax < S ≤ −

√
e−2ϵ − q,

(21)

here

(T , S, q) = (1 − S)2 + q +
T 2(S2 + q)
1 − T 2 − 2AT

S − S2 − ST 2
− q

(1 − T 2)(1 − AT )
.

For a given q, denote

q1(T , S) ≜ J(T , S, q). (22)

rom the constraint function of (21), one can obtain

= fq(S) ≜

√
1 −

S2 + q
2ϵ + 1 + log(S2 + q)

. (23)

y substituting (23) into (22), we have

q1(fq(S), S) = Jq2(S) ≜ − (2ϵ + log(S2 + q)) −
2S

1 − Afq(S)

+
2(2ϵ + 1 + log(S2 + q))

1 − Afq(S)
.

(24)

The following lemma characterizes the worst performance
ratio for the estimation error covariance and gives the corre-
sponding attack strategy to achieve this performance bound for a
given q, the proof of which is reported in the appendix.
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emma 4.2. Consider scalar system (1)–(2) satisfying Assump-
ion 2.1 and linear attack of the form (5). Given q ≥ 0 and ϵ > 0,
under the ϵ-stealthy attacks, the worst performance degradation
ratio for the estimation error covariance is

ηϵ = 1 +
Jq optA2K 2σ 2

z

(1 − A2)P
,

here Jq opt = Jq2(Sq) with Sq being such that J ′q2(Sq) = 0. The
corresponding attack strategy is (Tq, Sq), where Tq = fq(Sq).

Next, we will first prove that the optimal strategy requires
q = 0. Then, we provide the optimal attack strategy and the
corresponding worst case performance. Finally, we show that our
proposed attack strategy can achieve a better attack performance
than that of the existing work in Guo et al. (2018) under the same
ϵ-stealthy attacks. Similarly, for the sake of readability, the proof
of the following lemma is reported in the appendix.

Lemma 4.3. The solution to the original optimization problem
(15) requires q = 0. Hence, the optimization problem (21) can be
transformed into the following problem:

argmax
S,T

J(S, T , 0),

s. t. −
1
2

−
1
2
log(S2) +

S2

2(1 − T 2)
= ϵ,

0 < |T | ≤

√
1 − e−2ϵ .

Before we give the theorem regarding ϵ-stealthy attacks, we
define the following equations for the simplicity of notations:

f0(S) ≜

√
1 −

S2

2ϵ + 1 + log(S2)
,

J0(S) ≜ −(2ϵ + log(S2)) −
2S

1 − Af0(S)

+
2(2ϵ + 1 + log(S2))

1 − Af0(S)
.

The following theorem characterizes the maximal performance
degradation ratio under an ϵ-stealthy attack. We also provide the
attack strategy to achieve the maximum.

Theorem 4.1. Consider the scalar system (1)–(2) satisfying
ssumption 2.1 and linear attack of the form (5). Given ϵ > 0, under
he ϵ-stealthy attacks, the worst performance degradation ratio for
he estimation error covariance is

ϵ = 1 +
JoptA2K 2σ 2

z

(1 − A2)P
,

where Jopt = J0(Sopt). The corresponding attack strategy is (Topt, Sopt,
0), where Sopt satisfies J ′0(Sopt) = 0 and Topt = f0(Sopt).

Proof. The results follow from Lemmas 4.2 and 4.3.

Remark 4.1. The attack policy in Guo et al. (2018) is given by
z̃k =

√
Xzk, where X is the largest solution of the equation

X = 2ϵ + 1+ log X . It corresponds for our model to qg = 0, Tg =

0, Sg = −
√
X . The corresponding performance degradation ratio

s

ϵ,g = 1 +
(1 − Sg )2A2K 2σ 2

z

(1 − A2)P
.

ence, the difference of performance degradation between our
pproach and that in Guo et al. (2018) is given by:

s − ηϵ,g =
(Jopt − (1 − Sg )2)A2K 2σ 2

z ,

(1 − A2)P

6

where Jopt is defined in Theorem 4.1. Note that the optimal
parameter S for our proposed approach is between −Soqmax and
−e−ϵ while the existing linear attack strategy takes −Soqmax,
where Soqmax is defined in the proof of Lemma 4.2 and Jopt ≥

(1 − Sg )2. Hence, it is clear that the performance degradation
ratio bound for the estimation error covariance induced by the
proposed attack strategy is larger than or equal to the existing
linear attack strategy in Guo et al. (2018) under ϵ-stealthy attacks
with the same ϵ.

Remark 4.2. We focus on the scalar case in this section. For the
vector case, Lemma A.2 needs to be rewritten as ‘‘If an attacker
employs an ϵ-stealthy attack in the form of (5), then ρ(T ) < 1’’.
In Lemma A.3, the derivation of the objective function involves
the sum of a geometric sequence. For the vector case, we need
to use Proposition 1.5.31 in Hubbard and Hubbard (2015), ‘‘Let A
be a square matrix. If ρ(A) < 1, the series S = I + A + A2

+ · · ·

converges to (I − A)−1’’. Reconsider Lemma A.3, since ρ(A) < 1
and ρ(T ) < 1, the above proposition can be directly applied. Then,
the optimization problem for the vector case can be obtained by
using a similar method. However, it is difficult to obtain a closed-
form solution since the optimization problem is not convex and
involves more than one parameter. Further studies will be carried
out in the future.

5. Simulation

In this section, we provide some numerical examples to eval-
uate the performance of the proposed attack strategies.

5.1. Vector case under strictly stealthy attacks

In this subsection, we set the system parameters as follows:

A =

[
0.5 0.2
0.1 0.8

]
, C =

[
1 2
0 1

]
,

Q =

[
0.6 0
0 0.3

]
, R =

[
0.3 0
0 0.6

]
.

We can obtain that

K =

[
0.3583 −0.2866
0.2374 0.2027

]
, P =

[
0.6833 −0.0302

−0.0302 0.3548

]
,

and from Theorem 3.1, the optimal attack performance degra-
dation ratio is η = 4.6017. Assume that the attack starts at
time k = 53. We run 10000 simulations. The ratio of the state
estimation error covariance P̃ to P v.s. time k is shown in Fig. 2.
The parameter Si (i = 1, 2) for attack 1–2 and S∗ for strictly
stealthy attack and Snormal for normal operation are as follows:

S∗
=

[
−1 0
0 −1

]
, Snormal =

[
1 0
0 1

]
,

S1 =

[
0.5 0
0 0.5

]
, S2 =

[
−0.5 0
0.1 −0.8

]
,

and the corresponding covariance of the added noise is derived
by Φ = Σz − SΣzS⊺.

From this figure, there is an obvious difference of the perfor-
mance degradation between the normal operation and an attack
operation. It is easy to see that the error covariance ratio under
the optimal attack is larger than the one under normal operation
and other attacks with different attack parameters. Besides, we
can also see that the optimal simulation value is almost the same
as the theoretical value.
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Fig. 2. The ratio of the error covariance P̃ to P v.s. time k. The red line is the
ratio of simulation under strictly stealthy attack. The blue line is the ratio of
the simulation under normal operation. The teal and magenta lines denote the
corresponding ratio under different attack type 1 to attack type 2, respectively.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. The ratio of the error covariance P̃ to P v.s. stealthiness level ϵ. The blue
ine with circle markers is the ratio obtained from the existing work (Guo et al.,
018). The red line with upward-pointing triangle markers denotes the ratio in
ur work. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

.2. Different ϵ-stealthy level

In this subsection, we consider an LTI system with scalars and
set A = 0.4, C = 1,Q = 0.2, and R = 0.5. One can compute that

= 0.3102, and P = 0.2248.
The ratio of the state estimation error covariance P̃ to P v.s.

stealthiness level ϵ is shown in Fig. 3. From this figure, one could
see that the error covariance obtained in our work is equal to the
one obtained in the existing work (Guo et al., 2018) when ϵ = 0.
And the error covariance obtained in our work is larger than the
one derived in Guo et al. (2018) when ϵ > 0. Furthermore, the
difference of the error covariances between our work and (Guo
et al., 2018) is becoming larger as ϵ grows.

The values of T , S and Tk (which is used in Guo et al., 2018)
v.s. the stealthiness level ϵ are shown in Fig. 4. From Fig. 4,
one can see that as ϵ grows, the absolute values of T and S
are becoming larger. It means that as the stealthiness level ϵ

increases, the attacker employs more past attack information and
current innovation.

5.3. Different system parameter A

In this subsection, we consider an LTI system with scalars and
set ϵ = 0.8, C = 1,Q = 0.2, and R = 0.5. We study the difference
induced by different system parameter A. The ratio of the error
7

Fig. 4. The values of T , S and Tk (which is used in Guo et al. (2018)) v.s. the
stealthiness level ϵ. The red lines with circle markers and triangle markers are
the value of T and S in our proposed strategy, respectively. The blue line with
circle markers denotes the value of Tk from the existing work (Guo et al., 2018).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. The ratio of the error covariance P̃ to P v.s. A. The blue line with circle
arkers is the ratio obtained in the existing work (Guo et al., 2018). The red

ine with upward-pointing triangle markers denotes the ratio in our work. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

ovariance P̃ to P v.s. A is shown in Fig. 5. From this figure,
ne could see that the error covariance obtained in our work is
arger than the one derived in Guo et al. (2018). Furthermore, the
ifference of the error covariances between our work and (Guo
t al., 2018) is becoming larger with A increasing.
The values of T , S and Tk (which is used in Guo et al., 2018) v.s.

the system matrix A are shown in Fig. 6. From this figure, one can
see that as A increases, the absolute value of T is becoming larger
and the absolute value of S is becoming smaller. It implies that as
the system parameter A increases, the remote state estimator will
ttach more importance to the priori state estimate by (6) and (7).
orrespondingly, the attacker will employ the past information
ore and use current innovation less in order to maximize the
ttack performance. Since the proposed approach in Guo et al.
2018) is only related with the stealthiness level, the value of Tk
eeps constant.

. Conclusion

In this paper, we characterized the fundamental limits for
nnovation-based remote state estimation under linear attacks.
he attacker was constrained to follow a linear attack type based
n the past attack signal, the latest innovation and an addi-
ive random variable. We obtained optimal attack strategies to
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Fig. 6. The values of T , S and Tk (which is used in Guo et al., 2018) v.s. A. The
ed lines with circle markers and triangle markers are the value of T and S in
ur proposed strategy, respectively. The blue line with circle markers denotes
he value of Tk from the existing work (Guo et al., 2018). (For interpretation of
he references to color in this figure legend, the reader is referred to the web
ersion of this article.)

chieve maximal performance degradation under a given stealth-
ness requirement. Then we provided the maximal performance
egradation ratio and the corresponding optimal attack strategy
o achieve this maximum under strictly stealthy attacks for vector
ystems, which is a generalization of the previous work. For
-stealthy attacks on scalar systems, the optimal attack strategy
ith an additive random noise was also presented. It was proven
hat the maximal performance degradation ratio can be achieved
ithout additive noise and the proposed strategy performs better
han the existing linear attack strategies in terms of performance
egradation. Simulation results were presented to support the
heoretical results. For future works, we would like to study
ector systems under ϵ-stealthy attacks. Besides, it is also of great
nterest to study multi-sensor extensions, and in such extensions
nvestigate how sensors can collaborate to mitigate attacks under
arious adversarial scenarios.
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ppendix A. Proof of Lemma 4.1

The whole section is devoted to proving Lemma 4.1. We shall
resent several lemmas and then proceed with the proof of
emma 4.1.
First, we give the following lemma to characterize the prop-

rty of the modified innovation sequence, which will be used
o simplify the constraint condition of the optimization prob-
em (15). The following lemma is for a vector case, and the scalar
ase follows as a special case.

emma A.1. If an attacker employs an attack in the form of (5),
he differential entropy of the compromised innovation sequence z̃k1
s equal to k

2 log
(
(2πe)p det S

)
, where S≜SΣzS⊺

+ Φ .

roof. Here, we use the notation h(z̃k1) to represent the differen-
ial entropy:

(z̃k1) = −

∫
fz̃k1 (ξ ) log fz̃k1 (ξ )dξ,

here f k is the probability density function.
z̃1

8

By (16), z̃k1 follows a multivariate Gaussian distribution. We
have:

h(z̃k1) =
1
2
log
(
(2πe)pk detΣ

)
, (25)

where
Σ≜ Cov

([
z̃⊺1, z̃

⊺
2, . . . , z̃

⊺
k

]⊺)⎡⎢⎢⎢⎣
S ST ⊺

· · · S(T k−1)⊺

TS TST ⊺
+ S · · · TS(T k−1)⊺ + S(T k−2)⊺

.

.

.
.
.
.

. . .
.
.
.

T k−1S T k−1ST ⊺
+ T k−2S · · · T k−1S(T k−1)⊺ + · · · + S

⎤⎥⎥⎥⎦ ,
(26)

nd S≜SΣzS⊺
+Φ . One can perform an elementary row transfor-

mation on the matrix Σ and obtain detΣ = (det S)k.
Hence, for any T , the differential entropy can be obtained as

ollows:

(z̃k1) =
k
2
log
(
(2πe)p det S

)
. (27)

The proof is completed. □

Lemma A.2. If an attacker employs an ϵ-stealthy attack in the form
of (5), then |T | < 1.

Proof. From Lemma A.1, it is easy to obtain

1
k
D(z̃k1 ∥ zk1)

= −
1
k
h(z̃k1) +

1
2
log(2πσ 2

z ) +
1
k

k∑
l=1

E[(z̃l)2]
2σ 2

z

−
1
2
log
(
2πe(S2σ 2

z + Φ)
)
+

1
2
log(2πσ 2

z ) +
1
k

k∑
l=1

E[(z̃l)2]
2σ 2

z

= −
1
2

−
1
2
log(

S2σ 2
z + Φ

σ 2
z

) +
1
k

k∑
l=1

E[(z̃l)2]
2σ 2

z
.

Let us consider the sufficient condition of ϵ-stealthy:

lim
→∞

1
k
D(z̃k1 ∥ zk1) ≤ ϵ, (28)

which implies

lim
k→∞

−
1
2

−
1
2
log(

S2σ 2
z + Φ

σ 2
z

) +
1
k

k∑
l=1

E[(z̃l)2]
2σ 2

z
≤ ϵ,

where E[(z̃l)2] =
∑l−1

i=0 T
2i
(
S2σ 2

z + Φ
)
.

Similarly, we divide four cases (0 < |T | < 1, |T | = 1 and
|T | > 1) to compute E[(z̃l)2]:

1. 0 < |T | < 1:

E[(z̃l)2] =
1 − T 2l

1 − T 2

(
S2σ 2

z + Φ
)
, (29)

then we have limk→∞
1
k

∑k
l=1

E[(z̃l)2]
2σ 2

z
=

S2σ2
z +Φ

2(1−T2)σ2
z
, which

could satisfy the requirement of ϵ-stealthiness.
2. |T | = 1: E[(z̃l)2] = l

(
S2σ 2

z + Φ
)
, then, limk→∞

1
k

∑k
l=1

E[(z̃l)2]
2σ 2

z
→ ∞, which contradicts the requirement of

ϵ-stealthiness.
3. |T | > 1: the sum is expressed as (29). It is easy to check

that lim
k→∞

1
k

k∑
l=1

E[(z̃l)2]
2σ 2

z
will diverge, which also contradicts

the requirement of ϵ-stealthiness.
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As a result, T must satisfy that 0 < |T | < 1. □

Lemma A.3. The optimization problem (15) is equivalent to the
following problem:

argmax
T ,S,q

(1 − S)2 + q +
T 2(S2 + q)
1 − T 2 − 2AT

S − S2 − ST 2
− q

(1 − T 2)(1 − AT )
,

s. t. −
1
2

−
1
2
log(S2 + q) +

S2 + q
2(1 − T 2)

≤ ϵ,

0 < |T | < 1.

(30)

roof. From (17), one can see that the error covariance between
he state estimate and the real state, P̃l, can be split into two parts,
ne is the minimum mean square error P which is constant, and
he other is the error covariance of ẽl+1 = x̃sl+1|l − x̃l+1|l. Note that

ẽk+1 =x̂sk+1|k − x̂k+1|k

=Ax̂sk|k−1 + AKzk − (Ax̂k|k−1 + AK z̃k)
=A(x̂sk|k−1 − x̂k|k−1) − AK (T z̃k−1 + Szk + φk) + AKzk
=Aẽk + AK (1 − S)zk − AKT z̃k−1 − AKφk.

(31)

rom (31), one can know that E[ẽk] = 0. Hence, the covariance
of ẽk is

E[(ẽk+1)2]

=A2E[(ẽk)2] + [AK (1 − S)]2 σ 2
z + 2A2K (1 − S)E[ẽkzk]

+ (AKT )2E[(z̃k−1)2] + A2K 2qσ 2
z − 2A2KTE[ẽkz̃k−1]

(a)
=A2E[(ẽk)2] + [AK (1 − S)]2 σ 2

z + (AKT )2E[(z̃k−1)2]

+ A2K 2qσ 2
z − 2A2KTE[ẽkz̃k−1]

=A2E[(ẽk)2] + [AK (1 − S)]2 σ 2
z − 2A2KTE[ẽkz̃k−1]

+ A2K 2qσ 2
z + (AKT )2

1 − T 2(k−1)

1 − T 2 (S2 + q)σ 2
z ,

(32)

here

˜k =Aẽk−1 + AK (1 − S)zk−1 − AKT z̃k−2 − AKφk−1

=Ak−1ẽ1 + AK

(
k−1∑
i=1

Ak−1−i(1 − S)zi

)

− AK

(
k−2∑
i=0

Ak−2−iT z̃i

)
− AK

(
k−1∑
i=1

Ak−1−iφi

)
,

and (a) holds due to the independence of ẽk and zk.
To simplify the notations, we define

Ξ1 ≜AK (1 − S)E

[(
k−1∑
i=1

Ak−1−izi

)
z̃k−1

]
,

Ξ2 ≜AKE

[(
k−2∑
i=0

Ak−2−iT z̃i

)
z̃k−1

]
,

Ξ3 ≜AKE

[(
k−1∑
i=1

Ak−1−iφi

)
z̃k−1

]
,

then we have

Ξ1 =
1 − (AT )k−1

1 − AT
AK (1 − S)Sσ 2

z ,

Ξ2 =
AT
[
1 − (AT )k−2

]
1 − AT

KT (S2 + q)σ 2
z

1 − T 2

−
AT k(T k−2

− Ak−2) KT (S2 + q)σ 2
z

T − A 1 − T 2

9

Ξ3 =
1 − (AT )k−1

1 − AT
AKqσ 2

z ,

Reconsider the third term of (32), we have

E[ẽkz̃k−1]

=Ξ1 − Ξ2 − Ξ3

1 − (AT )k−1

1 − AT
AK (1 − S)Sσ 2

z −
1 − (AT )k−1

1 − AT
AKqσ 2

z

+
AT k(T k−2

− Ak−2)
T − A

KT (S2 + q)σ 2
z

1 − T 2

−
AT
[
1 − (AT )k−2

]
1 − AT

KT (S2 + q)σ 2
z

1 − T 2 .

Consider the asymptotic behavior for (32) and take the limit
or the above equation, one can obtain

lim
k→∞

1
k

k∑
l=1

E[(ẽl+1)2]

= lim
k→∞

1
k

k∑
l=1

A2E[(ẽn)2] + A2K 2(1 − S)2σ 2
z + A2K 2qσ 2

z

+ (AKT )2
(S2 + q)σ 2

z

1 − T 2 − 2A2KT
1
k

k∑
l=1

E[ẽnz̃l−1]

= lim
k→∞

1
k

k∑
l=1

A2E[(ẽn)2] + A2K 2 [(1 − S)2 + q

+ T 2 (S
2
+ q)

1 − T 2

]
σ 2
z − 2A2KT

1
k

k∑
l=1

E[ẽnz̃l−1]

= lim
k→∞

1
k

k∑
l=1

A2E[(ẽn)2] + A2K 2
[
(1 − S)2 + q + T 2 (S

2
+ q)

1 − T 2

]
σ 2
z

− 2A2KT
[
AK (1 − S)S
1 − AT

−
AKT 2(S2 + q)

(1 − T 2)(1 − AT )
−

AKq
1 − AT

]
σ 2
z .

From (32), it is easy to obtain (33) since limk→∞
1
kE[(ẽ1)2] = 0

nd limk→∞
1
kE[(ẽk+1)2] = 0.

lim
k→∞

1 − A2

k

k∑
l=1

E[(ẽl+1)2]

= lim
k→∞

A2

k
E
[
(ẽ1)2 − (ẽk+1)2

]
+ A2K 2

[
(1 − S)2 + q + T 2 (S

2
+ q)

1 − T 2

]
σ 2
z

− 2A2KT
[
AK (1 − S)S
1 − AT

−
AKT 2(S2 + q)

(1 − T 2)(1 − AT )
−

AKq
1 − AT

]
σ 2
z

=A2K 2
[
(1 − S)2 + q + T 2 (S

2
+ q)

1 − T 2

]
σ 2
z

− 2A2KT
[
AK (1 − S)S
1 − AT

−
AKT 2(S2 + q)

(1 − T 2)(1 − AT )
−

AKq
1 − AT

]
σ 2
z .

(33)

Hence, the optimization problem can be rewritten as

rgmax
T ,S,q

σ 2
z A

2K 2
[[

(1 − S)2 + q + T 2 (S
2
+ q)

1 − T 2

]
− 2AT

[
(1 − S)S

−
T 2(S2 + q)

2 −
q

]]
,

1 − AT (1 − T )(1 − AT ) 1 − AT
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S
s

a

T

L
o
a

P

=

W
t
J

L
p
s

s

−

L
−

s
w
L

=

w

δ

f

S

s

H

f

s. t. −
1
2

−
1
2
log(S2 + q) +

S2 + q
2(1 − T 2)

≤ ϵ,

0 < |T | < 1.

ince σ 2
z > 0 and A2K 2 > 0, the optimization problem can be

implified as follows:

rgmax
T ,S,q

(1 − S)2 + q +
T 2(S2 + q)
1 − T 2 −

2AT (S − ST 2
− S2 − q)

(1 − T 2)(1 − AT )
,

s. t. −
1
2

−
1
2
log(S2 + q) +

S2 + q
2(1 − T 2)

≤ ϵ,

0 < |T | < 1.

he proof is completed. □

emma A.4. When S is negative, q is fixed and the absolute value
f T is fixed, J(T , S, q) ≥ J(−T , S, q), where the sign of T is the same
s the sign of A.

roof. Consider the objective function J , one has

J(T , S, q) − J(−T , S, q)

=(1 − S)2 + q +
T 2(S2 + q)
1 − T 2 −

2AT (S − ST 2
− S2 − q)

(1 − T 2)(1 − AT )

−

[
(1 − S)2 + q +

T 2(S2 + q)
1 − T 2 +

2AT (S − ST 2
− S2 − q)

(1 − T 2)(1 + AT )

]
−2AT (S − ST 2

− S2 − q)
1 − T 2 (

1
1 − AT

+
1

1 + AT
).

hen the sign of T is the same as the sign of A, i.e., AT>0,
he above equation is non-negative, which implies J(T , S, q) ≥

(−T , S, q). □

emma A.5. The attack tuple (T ∗, S∗, q∗) that maximizes the
erformance degradation ratio for the estimation error covariance
atisfies −

1
2 −

1
2 log(S∗2

+ q∗) +
S∗2

+q∗

2(1−T∗2)
= ϵ, where S∗ < 0.

Proof. First, we assume that there exists an attack tuple (Te, Se, qe)
uch that J(Te, Se, qe) > J(T ∗, S∗, q∗), where

1
2

−
1
2
log(S2e + qe) +

S2e + qe
2(1 − T 2

e )
< ϵ. (34)

et S∗
e denote the corresponding smallest solution to the equation

1
2 −

1
2 log(S∗

e
2

+ qe) +
S∗
e
2
+qe

2(1−Te2)
= ϵ. Considering the derivative

of J with respect to S and the property of the constraint, one can
verify that J(Te, S∗

e , qe) > J(Te, Se, qe). Since among all the attack
tuples satisfying the constraint equality, (T ∗, S∗, q∗) is the optimal
one that achieves the maximum value of J , we have J(T ∗, S∗, q∗) ≥

J(Te, S∗
e , qe). Hence, J(T

∗, S∗, q∗) > J(Te, Se, qe) is a contradiction to
the early assumption. The proof is completed. □

For the simplicity of analysis, we only consider T > 0 and
A > 0. Hence, T is non-negative in the above equation. The case
when T < 0 and A < 0 is essentially the same.

Reconsider the constraint function of (30). Define S ≜ S2 + q
and

C ≜ −
1
2

−
1
2
log(S ) +

S

2(1 − T 2)
− ϵ. (35)

It is easy to obtain that C takes the minimum value at S = 1−T 2.
Since C must satisfy C ≤ 0, S ≥ e−2ϵ should hold. Hence, the
range of S is −Soqmax < S ≤ −

√
e−2ϵ − q, where −Soqmax is the

maller solution to the equation S2 + q = 1 + log(S2 + q) + 2ϵ,
hich implies the critical solution when T = 0. One can prove
emma 4.1 by the above lemmas.
10
Appendix B. Proof of Lemma 4.2

Compute the derivative of Jq2:

J ′q2(S)

(−2)
SA2f 2q (S) + S2 + q − A(S2 + q)fq(S) − S

(S2 + q)(1 − Afq(S))2

− 2

[
S(S2 + q) − (S2 + q)(2ϵ + 1 + log(S2 + q))

]
Af ′

q(S)

(S2 + q)(1 − Afq(S))2
,

(36)

here f ′
q(S) = −

S(2ϵ+1+log(S2+q))−S
(2ϵ+1+log(S2+q))2√
1 −

S2+q
2ϵ+1+log(S2+q)

.

First we consider the left boundary. Since there is no derivative
of Jq2 at S = −Soqmax, we consider the local property near

S = −Soqmax. Let us take S = Sδ , where S2
δ
+q

2ϵ+1+log(S2
δ
+q)

= 1−δ (0 <

< 1). When δ → 0, we have

q(Sδ) =

√
1 −

S2δ + q
2ϵ + 1 + log(S2δ + q)

=
√

δ.

Hence, we rewrite the numerator of (36) as follows:

lim
δ→0

SδA2f 2q (Sδ) + S2δ + q − A(S2δ + q)fq(Sδ) − Sδ

+
[
Sδ(S2δ + q) − (S2 + q)(2ϵ + 1 + log(S2δ + q))

]
Af ′

q(Sδ)

= lim
δ→0

SδA2δ + S2δ + q − A(S2δ + q)
√

δ − Sδ

+
[
Sδ(S2δ + q) − (S2δ + q)(2ϵ + 1 + log(S2δ + q))

]
Af ′

q(Sδ),

=lim
δ→0

S2δ + q − Sδ + (S2δ + q)
(
Sδ −

S2δ + q
1 − δ

)
Af ′

q(Sδ),

(37)

where f ′
q(Sδ) = −

Sδ (2ϵ+1+log(S2
δ
)+q)−Sδ

(2ϵ+1+log(S2
δ
+q))2√

1 −
S2
δ
+q

2ϵ+1+log(S2
δ
+q)

= −
Sδ(

S2
δ
+q

1−δ
− 1)

( S
2
δ
+q

1−δ
)2

√
δ

.

Hence, as δ approaches to 0, (37) is given by

lim
δ→0

S2δ + q − Sδ − (S2δ + q)
(
Sδ −

S2δ + q
1 − δ

)
A
Sδ(

S2
δ
+q

1−δ
− 1)

( S
2
δ
+q

1−δ
)2

√
δ

.

(38)

ince limδ→0

⎡⎣−(S2δ + q)
(
Sδ −

S2
δ
+q

1−δ

)
A

Sδ

( S
2
δ
+q

1−δ
)2

√
δ

⎤⎦ = −∞, the

ign of (38) is determined by the sign of S2δ + q − 1 + δ. Hence,
we have

lim
δ→0

S2δ + q − 1 + δ = lim
Sδ→−Soqmax

S2δ + q − 1 + δ > 0.

ence, when Sδ → −S+
oqmax, the derivative of Jq2 is positive.

When Sϵ = −

√
e−2ϵ − q, we have:

q(Sϵ) =

√
1 −

e−2ϵ

2ϵ + 1 + log(e−2ϵ)
=

√
1 − e−2ϵ,

and

f ′

q(Sϵ) = −

−

√
e−2ϵ−q(2ϵ+1+log(e−2ϵ ))+

√
e−2ϵ−q

(2ϵ+1+log(e−2ϵ ))2√
1 −

e−2ϵ
= 0.
2ϵ+1+log(e−2ϵ )
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=

m

1

SϵA2f 2q (Sϵ) + S2ϵ + q − A(S2ϵ + q)fq(Sϵ) − Sϵ

+
[
Sϵ(S2ϵ + q) − (S2ϵ + q)(2ϵ + 1 + log(S2ϵ + q))

]
Af ′

q(Sϵ)

=SϵA2(1 − e−2ϵ) + e−2ϵ
− Ae−2ϵ

√
1 − e−2ϵ − Sϵ

Sϵ[A2(1 − e−2ϵ) − 1] + e−2ϵ(1 − A
√
1 − e−2ϵ)

(b)
> 0,

where inequality (b) holds since A2 < 1, 1− e−2ϵ
≤ 1 and Sϵ < 0.

Hence, the derivative of Jq2 at S = −

√
e−2ϵ − q is negative.

Since the function J1 is continuous, there must be at least one
aximum point where its first derivative is zero. Hence, η =

+
Jq optA2K 2σ 2

z

(1 − A2)P
, where Jq opt = Jq2(Sq). □

Appendix C. Proof of Lemma 4.3

By analyzing the derivative of J with respect to S, combin-
ing (23), (24), and Lemma 4.2, we know that when S takes its
minimum value, J obtains the maximum. Hence, q = 0 performs
better than q > 0. In other words, the solution to the optimization
problem (15) requires q = 0. □
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