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a b s t r a c t

We study how to design a secure observer-based distributed controller such that a group of vehicles
can achieve accurate state estimates and formation control even if the measurements of a subset of
vehicle sensors are compromised by a malicious attacker. We propose an architecture consisting of
a resilient observer, an attack detector, and an observer-based distributed controller. The distributed
detector is able to update three sets of vehicle sensors: the ones surely under attack, surely attack-
free, and suspected to be under attack. The adaptive observer saturates the measurement innovation
through a preset static or time-varying threshold, such that the potentially compromised measure-
ments have limited influence on the estimation. Essential properties of the proposed architecture
include: (1) The detector is fault-free, and the attacked and attack-free vehicle sensors can be identified
in finite time; (2) The observer guarantees both real-time error bounds and asymptotic error bounds,
with tighter bounds when more attacked or attack-free vehicle sensors are identified by the detector;
(3) The distributed controller ensures closed-loop stability. The effectiveness of the proposed methods
is evaluated through simulations by an application to vehicle platooning.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Motivations and related work

Networked control systems (NCS) are ubiquitous. The perfor-
ance of NCS significantly depends on widely deployed sensors
hich might be compromised due to the presence of malicious
ttackers (Baras & Liu, 2019; Shoukry et al., 2018). The attackers
an strategically manipulate the sensor measurements in order
o affect stability and performance of NCS. Attack detection, state
stimation, and system control are three major components in
he design of secure NCS in malicious environments.

To detect whether systems are under attack and identify at-
acked components, quite a few detection methods are proposed.
ttack detection and identification for linear descriptor systems
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are studied in Pasqualetti, Dörfler, and Bullo (2013). Methods of
attack detection and correction for noise-free linear systems are
proposed in Tang, Kuijper, Chong, Mareels, and Leckie (2019). To
detect the Byzantine adversaries with quantized false alarm rates,
a trust-aware consensus algorithm is proposed in Baras and Liu
(2019). In Gallo, Turan, Boem, Parisini, and Ferrari-Trecate (2020),
Ge, Han, Zhong, and Zhang (2019), distributed detectors are de-
signed for false data injection (FDI) attacks in communications.
Detection and mitigation methods are proposed in Deghat, Ugri-
novskii, Shames, and Langbort (2019) for distributed observers
under a class of bias injection attacks. A joint detection and
estimation problem is investigated in Forti et al. (2018) with the
knowledge of some attack statistics. There are some methods
for multi-observer based detector design (Chowdhury, Belikov,
Baimel, & Levron, 2020; Kim, Lee, Shim, Eun, & Seo, 2018; Yang,
Murguia, Kuijper, & Nešić, 2020). However, the computational
complexity of these methods substantially increases as the num-
ber of sensors is increasing. Thus, designing single-observer based
detectors without relying on the knowledge of attack signals
needs more investigations. Moreover, most existing methods fo-
cus on detecting the attacked sensors, but few results are given
for the identification of attack-free sensors.

There are two major approaches in the literature for handling
state estimation under sensor attacks. The first approach is based

on solving optimization problems (Fawzi, Tabuada, & Diggavi,

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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014; Gao, Sun, Liu, Shi, & Wu, 2020; Lu & Yang, 2019; Pajic, Lee,
Pappas, 2017; Shinohara, Namerikawa, & Qu, 2019; Shoukry

t al., 2018, 2017). This approach needs a large number of com-
utational resources in enumerating all sensor combinations in
rder to find the attacked sensor set. Thus, it is not suitable to
arge-scale sensor networks if the resources are constrained. The
econd approach is to use robust techniques in handling poten-
ially compromised data, such as discarding a few largest and
mallest elements (Mitra, Richards, Bagchi, & Sundaram, 2019;
itra & Sundaram, 2019; Ren, Mo, Chen, & Johansson, 2020; Su &
hahrampour, 2020), using the signum information of measure-
ent innovations (Lee, Kim, & Shim, 2020), and saturating the

nnovation which reaches a threshold (Chen, Kar, & Moura, 2019;
e, Ren, Sandberg, & Johansson, 2021). This approach is more
uitable in online estimation since it needs very less computa-
ional resources than the first approach. However, there are few
esults in this direction, especially for dynamical systems under
DI sensor attacks.
Some resilient distributed control strategies have been pro-

osed to achieve formation control of a group of vehicles or
obots in malicious environments. There are strategies on how
o handle different attacks, such as replay attack on control com-
ands (Zhu & Martínez, 2013), denial-of-service (DoS) attack on
easurement and control channels (Zhu & Zheng, 2020), FDI
ttack in the transmission from controller to actuator (Zhao,
ang, Wei, & Han, 2020), attack on network topology of multi-

gent systems (Feng, Wen, & Hu, 2017), and stealthy integrity
ttacks (Weerakkody, Liu, Son, & Sinopoli, 2016). However, there
s no unified architecture integrating resilient estimation, attack
etection and distributed control.

ontributions

In this paper, we propose an architecture comprising of a
esilient observer, an online attack detector, and a distributed
ontroller, such that a group of vehicles can achieve accurate state
stimates and formation control even if the measurements of a
ubset of the vehicle sensors are compromised by a malicious
ttacker. The main contributions of this paper are summarized
s follows:

(i) We propose an adaptive resilient observer, designed by
saturating the measurement innovation through a preset
static or time-varying threshold, such that the potentially
compromised measurements have limited influence to the
estimation (Algorithm 1). Some essential properties are
found: (i) The observer is able to provide an upper bound of
the estimation error at each time (Proposition 1); (ii) If the
observer threshold is static and satisfied with some explicit
design principle (Proposition 2), the estimation error is
asymptotically upper bounded (Theorem 1); and (iii) If the
observer threshold is time-varying and computed adap-
tively, the estimation error is also asymptotically upper
bounded (Theorem 2).

(ii) We develop an online distributed attack detector with the
potentially compromised sensor measurements and the
observer’s estimates. The designed detector is able to up-
date three sets of vehicle sensors: the ones surely under
attack, surely attack-free, and suspected to be under attack
(Algorithm 2). Some properties are found: (i) The detector
is fault-free (Lemma 1), which differs from the existing
results with false alarms (e.g., Baras and Liu (2019)); and
(ii) If some condition holds, all attacked and attack-free
vehicle sensors are identified in finite time (Theorem 3);
2

(iii) We design a distributed controller (Algorithm 3) to achieve
the formation control of the vehicles. We find that if the
controller parameters satisfy some graph-related condi-
tions, the overall performance function is asymptotically
upper bounded in the presence of noise and tending to
zero in the absence of noise (Theorem 4 and Corollary 1),
which ensures the closed-loop stability of the proposed
architecture.

The results of this paper are substantially different from the
literature. Compared to the results of secure distributed estima-
tion for estimating an overall system state (Deghat et al., 2019;
Forti et al., 2018; Mitra & Sundaram, 2019), it should be noted
that we estimate the local vehicle state under compromised sen-
sor measurements. The developed sensor attack detector is based
on one observer, which requires less computational resources
than detectors proposed in the literature based on multiple ob-
servers, such as (Chowdhury et al., 2020) for attacked linear
systems and Kim et al. (2018) and Yang et al. (2020) for nonlinear
systems.

Outline

The remainder of the paper is organized as follows: Section 2
is on the problem formulation, followed by an overview of the
proposed distributed observer-based control architecture in Sec-
tion 3. Section 4 designs a resilient observer for each vehicle,
based on which Section 5 studies the attack detection problem.
In Section 6, a distributed controller is proposed to close the loop.
After simulations of vehicle platooning in Section 7, the paper is
concluded in Section 8. The main proofs are given in Appendix.

Notations: Rn×m denotes the set of real-valued matrices with n
rows and m columns, and Rn the set of n-dimensional real-valued
vectors. Without specific explanation, the scalars and matrices in
this paper are real-valued. Denote Z the set of integers, N+ the
et of positive integers, and N = N+

∪ 0. The matrix In stands
or the n-dimensional square identity matrix. The superscript
‘T’’ represents the transpose. The operator diag{·} represents
he diagonalization. We denote the Kronecker product of A and
by A ⊗ B. The vector norm ∥x∥ is the 2-norm of a vector

x. The matrix norm ∥A∥ is the induced 2-norm, i.e., ∥A∥ =

supx̸=0 ∥Ax∥ /∥x∥. The notations σmin(A) and σmax(A) are the min-
imum and maximum eigenvalues of a real-valued symmetric
matrix A, respectively. The notation a = (ai)i=1,2,...,n is a column
vector consisting of elements a1, . . . , an. Let Ii∈C be an indicator
function, which equals 1 if i ∈ C; otherwise, it is 0. Let ⌈x⌉ =

min{n ∈ Z|x ≤ n}.

2. Problem formulation

In this section, we first motivate the problem through a vehicle
platooning example, and then formulate the problem.

2.1. Motivating example

Consider the five-vehicle platooning in Fig. 1. The aim is to
control the speed of all vehicles to a desired value while main-
taining a safe distance between any two adjacent vehicles. Each
vehicle is able to obtain its position and velocity measurements
through a GPS receiver or a similar sensor, and the relative
position and velocity measurements to its front vehicle through
a sensor like a camera or radar. All vehicles collaborate in the
platoon by using their local measurements, and vehicle-to-vehicle
communication.

Suppose there is a malicious attacker, which aims to affect
the platoon by compromising the position and velocity measure-
ments of vehicle 1. Such attack could be a spoofing attack on a
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Fig. 1. Platoon of five vehicles, where the position and velocity measurements
of vehicle 1 are compromised by a malicious attacker. Each vehicle is able to
exchange messages with other vehicles nearby through wireless communication.

GPS receiver. By using the compromised measurements, vehicle 1
is unable to control its velocity to the desired value. Consequently,
the platoon is not able to maintain a proper formation. The data
redundancy resulting from the absolute and relative measure-
ments of the follower vehicles, however, provides an opportunity
for designing resilient estimation and control algorithms. The
algorithms are expected to mitigate such sensor attacks in order
to achieve vehicle platooning.

2.2. System model

Consider N ≥ 3 vehicles, which are labeled from the leader to
the tail by 1, 2, . . . ,N . We study the second-order vehicle model:
for i = 1, 2, . . . ,N ,

xi(t + 1) = Axi(t) + Bui(t) + di(t)

=

(
1 T
0 1

)
xi(t) +

(
0
T

)
ui(t) + di(t),

(1)

where xi(t) = (si(t), vi(t))T ∈ R2 is the state of vehicle i consisting
of position si(t) and velocity vi(t), ui(t) ∈ R the control input,
di(t) ∈ R2 the process noise, all at time t ∈ N, and T > 0 the sam-
pling time. Vehicle i is able to obtain its absolute measurements
of position and velocity through sensor i, which is a potentially
attacked sensor (e.g., a GPS receiver under spoofing attack):

yi,i(t) = xi(t) + ai(t) + ni,i(t) (2)

where yi,i(t) ∈ R2 and ni,i(t) ∈ R2 are the measurement and mea-
surement noise, and the vector ai(t) ∈ R2 represents an attack
ignal injected by a malicious attacker. Moreover, we assume each
ehicle j ∈ {2, 3, . . . ,N} has a secured sensor (e.g., an onboard
adar or camera) to measure the relative state between itself and
ts front vehicle (i.e., vehicle j − 1):

yj−1,j(t) = xj(t) − xj−1(t) + nj−1,j(t), (3)

where yj−1,j(t) ∈ R2 and nj−1,j(t) ∈ R2 are the measurement and
measurement noise.

Although the relative state measurements {yj−1,j(t)} are se-
cured, it is not possible to accurately estimate the absolute state
xj(t) simply with these measurements. In the rest of the paper,
we say that sensor i is under attack if the unsecured sensor of
vehicle i is under attack.

2.3. Attack model

The attack model is provided in the following assumption.

Assumption 1. There is an unknown and time-invariant attack
set Sa

⊂ {1, 2, . . . ,N} with at most b ≥ 1 elements, such that
the corresponding attack signals ai(t) ∈ R2, i ∈ Sa, t ∈ N,
are arbitrary, and the maximum number of attacked sensors b is
known to each vehicle. For the set of attack-free vehicle sensors
S := {1, 2, . . . ,N} \ Sa, it holds that a (t) ≡ 0, i ∈ S , t ∈ N.
i

3

Even if Assumption 1 restricts the attack set to be time-
invariant, the attacker can compromise the sensors in the set in
an arbitrarily and possibly time-varying way. A subset Sa of the
vehicle sensor measurements (2) can thus be manipulated, but
we do not know which ones. Assumption 1 does not impose any
specific distribution or form of ai(t), and covers several relevant
sensor attacks, including random attack, DoS attack, bias injection
attack, and replay attack (Teixeira, Shames, Sandberg, & Johans-
son, 2015). The assumption is common in the literature (Fawzi
et al., 2014; Lu & Yang, 2019; Pajic et al., 2017; Shinohara et al.,
2019; Shoukry et al., 2018, 2017).

The upper bound b of the number of attacked vehicle sensors
is used in the observer and detector designs. The assumption
on the knowledge of b can be relaxed, but will result in worse
performance for the same number of attacked sensors.

2.4. Problem

In order to achieve vehicle formation control (e.g., vehicle pla-
tooning) in a malicious environment, it is important to estimate
the states of all vehicles simultaneously. For example, when a
group of vehicles are required to achieve a platoon with a desired
speed, it is necessary to estimate the state of the leader vehicle
for controller design. However, its absolute measurements are po-
tentially compromised as in (2). In order to have data redundancy
for the state estimation of the leader vehicle, the secured relative
measurements and accurate estimates of the follower vehicles are
necessary.

To measure the overall estimation and control performance for
system (1)–(3), we introduce the performance function ϕ(t):

ϕ(t) =
1
N

N∑
i=1

x̂i(t) − xi(t)
+

xi(t) − x∗

i (t)
 , (4)

where x̂i(t) is the estimate of xi(t) from the observer to be de-
signed, and x∗

i (t) is the desired vehicle state of the formation
satisfying

x∗

i (t) =

{
x0(t), if i = 1
x∗

i−1(t) − ∆xi−1,i(t), if i ∈ {2, 3, . . . ,N},

where x0(t) is the reference state of the leader vehicle, subject
to x0(t + 1) = Ax0(t), and ∆xi−1,i(t) is the desired relative state
between vehicles i−1 and i, subject to ∆xi−1,i(t+1) = A∆xi−1,i(t),
i = 2, 3, . . . ,N . For convenience, we let ∆x0,1(t) ≡ [0, 0]T.

If ∆xi−1,i(t) ≡ [0, 0]T, i = 1, . . . ,N , it means all vehicles aim
to reach the reference state x0; if ∆xi−1,i(t) ≡ [s0, 0]T, where s0
is a positive scalar, it means all vehicles are expected to have the
same speed, and two nearest neighbor vehicles keep the distance
s0, which is a typical scenario in vehicle platooning.

Assumption 2. The noise in (1)–(3), and the initial estimation
error satisfy: ∀i ∈ {1, . . . ,N} and ∀j ∈ {2, . . . ,N},

∥x̂i(0) − xi(0)∥ ≤ q, sup
t≥0

∥di(t)∥ ≤ ϵ,

sup
t≥0

max{∥ni,i(t)∥, ∥nj−1,j(t)∥} ≤ µ,

where the scalars q > 0, ϵ ≥ 0, and µ ≥ 0 are known to each
vehicle.

The bounded noise can be used to model sensor bias, output
disturbances, unknown bounded inputs, unmodeled dynamics,
and model errors from system linearization and discretization.
The upper bounds q, ϵ, µ are used in the observer and detector
designs. The assumption on the knowledge of q, ϵ, and µ can be
relaxed, but will result in worse performance for the same noise

and initial estimation error.
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The following control design problem is solved in this paper
and explicit estimates of the performance bound c0 are derived.

roblem: Design an observer-based distributed controller for
system (1)–(3) under Assumptions 1–2, and find conditions such
that:

(i) In the presence of noise, there is a scalar c0 > 0, such that
lim supt→∞ ϕ(t) < c0;

(ii) In the absence of noise, limt→∞ ϕ(t) = 0.

3. Observer-based distributed control architecture

In this section, we first introduce the communication struc-
ture of the vehicle network, and then propose an architecture
consisting of a resilient observer, an attack detector, and a dis-
tributed controller. Moreover, the measurements of each vehicle
are reconstructed based on vehicle-to-vehicle communication.

3.1. Communication structure of vehicle network

We model the vehicle communication topology by an undi-
rected graph G = {V, E}, which consists of the set of nodes
V = {1, 2, . . . ,N} and the set of edges E . If there is an edge
(i, j) ∈ E , node i can exchange information with node j. In this
case, node j is called a neighbor of node i, and vice versa. Denote
he neighbor set of node i ∈ V by Ni := {j ∈ V|(i, j) ∈ E}, which
n this paper is assumed to be

i =

⎧⎨⎩
{i − L, . . . , i − 1, i + 1, . . . , i + L}, if i ∈ V1

{1, . . . , i − 1, i + 1, . . . , i + L}, if i ∈ V2,1

{i − L, . . . , i − 1, i + 1, . . . ,N}, if i ∈ V2 \ V2,1,

here L ∈ N+ is a parameter indicating the neighbor range,
2,1 = {1, 2, . . . , L}, and

V1 = {L + 1, L + 2, . . . ,N − L}, V2 = V \ V1. (5)

s seen, each vehicle i ∈ V1 has 2L neighbors, and each vehicle
∈ V2 has less than 2L neighbors. In Section 3.3, we show

hat each vehicle i uses the messages received from its neighbors
∈ Ni to reconstruct measurements for observer design. The
ommunication topologies of five vehicle control systems (VCSs)
or L = 1 and L = 2 are illustrated in Figs. 1 and 2, respectively.
n the following, we use the term ‘vehicle’ to represent a VCS
or convenience. Each vehicle i ∈ V is able to send its neighbor
ehicle j ∈ Ni a message at time t ∈ N+, denoted by Mi(t)
omitting the time index t in the following notation):

i =

{
{y1,1, x̄1, Ŝ1, Ŝa

1, Ŝ
s
1, α1} if i = 1

{yi−1,i, yi,i, x̄i, Ŝi, Ŝa
i , Ŝ

s
i , αi} otherwise,

(6)

here x̄i(t + 1) = Ax̂i(t) + [0, Tui(t)]T is the predicted value
f xi(t + 1) from the observer to be designed, αi(t) denotes the
stimation error bound to be specified in Proposition 1, and

• Ŝi(t): the set of attack-free vehicle sensors estimated by
vehicle i at time t , i.e., the estimate of S

• Ŝa
i (t): the set of attacked vehicle sensors estimated by vehi-

cle i at time t , i.e., the estimate of Sa

• Ŝs
i (t): the set of vehicle sensors, which are suspected to be

under attack, estimated by vehicle i.

hen we find an anomaly via a detector using measurements of
wo vehicle sensors, it is safe to conclude that at least one sensor
s under attack and two sensors are suspicious. Then the two sen-
ors will be included in Ŝs

i (t). The role of Ŝs
i (t) is to update Ŝi(t), as

hown in line 22 of Algorithm 2 in Section 5. Note that Ŝs
i (t) ⊆ V

s not necessarily a subset of Sa, since Ŝs(t) may include some
i

4

Fig. 2. Communication topology of the undirected graph G with five vehicle
control systems (VCSs) for L = 2, where VCS 1 is under attack and Mj , defined
n (6), is the message sent out by VCS j to its neighbors, j = 1, 2, . . . , 5, and a1
s the attack signal.

Fig. 3. Vehicle control system architecture for vehicle i: The control signal for
vehicle i utilizes information from other vehicles as indicated by the dashed
arrows: Mj is defined in (6), j ∈ Ni . The observer, detector, and controller are
designed in Sections 4, 5, and 6, respectively.

attack-free vehicle sensors. The three sets {Ŝi(t), Ŝa
i (t), Ŝ

s
i (t)} are

hared between vehicles through the vehicle-to-vehicle network
and updated in a distributed manner described in Section 5. We
ssume there is no prior information on sensor identities, thus the
ets are initialized as empty sets, i.e., Ŝi(0) = Ŝa

i (0) = Ŝs
i (0) = ∅,

i ∈ V . Otherwise, the sensors with known identities would be
included in these initial sets respectively.

3.2. Resilient observer-based distributed control architecture

We design an architecture for the VCS of each vehicle i in
Fig. 3. The architecture integrates the resilient observer in Sec-
tion 4, the attack detector in Section 5, and the distributed con-
troller in Section 6. The observer leverages the measurements of
vehicle i and neighbor vehicles. Then, the estimate x̂i(t) from the
observer is sent to the controller, which employs x̂i(t) as well
as the estimates of neighbor vehicles to generate control signal
ui(t). If the observer is inefficient, the observer-based controller
would not work well. Therefore, the key point for the observer
is how to use the potentially attacked measurements and the
measurements from neighbor vehicles efficiently. In Section 4,
a resilient observer is proposed by leveraging a new saturation
approach. The designed detector is able to update the three sets
{Ŝi, Ŝa

i , Ŝ
s
i }, and send them to the observer. Then, in order to

improve the estimation performance, the observer will discard
the measurements of the untrustworthy vehicles henceforth, and
fully utilize the measurements of the trustworthy vehicles. Note
that the detector in Section 5 ensures consistency of the three sets
in the sense that they will not conflict. In other scenarios, if an
inconsistent case occurs due to some reasons (e.g., the detection
data is manipulated), the architecture in Fig. 3 can be employed
by abandoning the inconsistent subsets.
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.3. Measurement reconstruction via vehicle communication

Based on whether each vehicle has 2L neighbors, we split the
ehicle set V into two subsets V1 and V2 as shown in (5). In
he following, we first reconstruct the measurement equation of
ehicle i ∈ V1 by employing the local measurements (2)–(3) and
he messages from neighbor vehicles. It follows from (2) and (3)
hat

i|j(t) = xi(t) + aj(t) + ni|j(t), (7)

here

yi|j(t) =

⎧⎪⎨⎪⎩
yj,j(t) +

∑i
m=j+1 ym−1,m(t), if i > j

yi,i(t), if i = j
yj,j(t) −

∑j
m=i+1 ym−1,m(t), if i < j

ni|j(t) =

⎧⎪⎨⎪⎩
nj,j(t) +

∑i
m=j+1 nm−1,m(t), if i > j

ni,i(t), if i = j
nj,j(t) −

∑j
m=i+1 nm−1,m(t), if i < j.

In the view of vehicle j, it can measure the state of vehicle i with
an artificial sensor as (7). Under Assumption 2, it holds that for
any j ∈ Ni,ni|j(t)

 ≤ (L + 1)µ =: µ̄. (8)

Through the graph G, vehicle i ∈ V1 is able to receive the
absolute measurements (i.e., {yj,j(t)}, j ∈ Ni) and relative mea-
surements (i.e., {yj−1,j(t)}), and then calculate the measurements
{yi|j(t)}j∈Ni

⋃
{i}. Hence, it is feasible to reconstruct the measure-

ment equation of vehicle i ∈ V1:

zi(t) = Cxi(t) + ai(t) + ni(t), (9)

where C =
(
I2 I2 · · · I2

)T
∈ R(4L+2)×2, and

zi(t) = (yTi|i−L(t), y
T
i|i−L+1(t), . . . , y

T
i|i+L(t))

T
∈ R4L+2,

ai(t) = (aTi−L(t), a
T
i−L+1(t), . . . , a

T
i+L(t))

T
∈ R4L+2,

ni(t) = (nT
i|i−L(t), n

T
i|i−L+1(t), . . . , n

T
i|i+L(t))

T
∈ R4L+2.

Remark 1. It follows from Assumption 1 that the attack signal
ai(t) has at most 2b non-zero elements, which means at least
4L + 2 − 2b elements of zi(t) are not compromised. If L ≥ b,
according to the sparse observability (Shoukry & Tabuada, 2016),
the measurement redundancy in (9) enables us to design an
effective resilient observer for vehicle i ∈ V1.

Next, we reconstruct the measurement equation of vehicle i ∈

V2 by using the messages from neighbor vehicles:

ŷi|j = xi + n̂i|j, j ∈ Ni

⋂
V1 =: N̂i, (10)

where the reconstructed measurement ŷi|j satisfies

ŷi|j =

{
x̄j −

∑j
m=i+1 ym−1,m if j > i

x̄j +
∑i

m=j+1 ym−1,m if j < i,

and the noise n̂i|j is subject to

n̂i|j =

{
x̄j − xj −

∑j
m=i+1 nm−1,m if j > i

x̄j − xj +
∑j

m=i+1 nm−1,m if j < i.
(11)

As seen, vehicle i ∈ V2 uses the estimate x̄j from neighbor vehicle
j and the relative measurements {ym−1,m} from neighbor vehicle
m, where j ∈ N̂i and m ∈ Ni. In the next section, we will design
a resilient observer for vehicles i ∈ V1 and i ∈ V2 with the
reconstructed measurements in (9) and (10), respectively.
5

4. Observer design

In this section, we design an observer algorithm and ana-
lyze an asymptotic upper bound of the estimation error with
a static observer threshold and an adaptive observer threshold,
respectively. Since the observer algorithm to be designed uses
the detection results, we need the following assumption in this
section.

Assumption 3. The sets Ŝi(t) and Ŝa
i (t) introduced in (6) satisfy

the following two properties:

(i) monotonically non-decreasing, i.e., Ŝa
i (t1) ⊆ Ŝa

i (t2), and
Ŝi(t1) ⊆ Ŝi(t2), if t1 ≤ t2;

(ii) no false alarm at each time, i.e., Ŝi(t) and Ŝa
i (t) are fault-

free, t = 1, 2, . . . .

This assumption is removed after we introduce the detector in
Section 5. In other words, the integrated observer and detector in
this paper satisfy Assumption 3 (see Lemma 1).

4.1. Observer algorithm

From the reconstructed measurement equation (9), we denote
the innovation of vehicle i ∈ V1 by zi(t) − Cx̄i(t) = ηi(t) =

(ηi,ms (t))s=1,2,...,2L+1, where ms ∈ Ni ∪ {i}, ηi,ms (t) ∈ R2, and
ηi(t) ∈ R4L+2. For example, when L = 1 and i ∈ {2, . . . ,N−1}, we
have m1 = i−1,m2 = i,m3 = i+1. For each vehicle i ∈ V , given
the sets {Ŝi(t), Ŝa

i (t)} from the detector, we design the following
observer by employing the measurements from (2), (9), and (10):

x̂i(t) =

⎧⎨⎩
x̄i(t) +

1
2LC

TKi(t)ηi(t), if i ∈ V1

x̄i(t) +
1
ϖ
(yi,i(t) − x̄i(t)), if i ∈ V2

⋂
Ŝi(t),

x̄i(t) +
1
ϖ
(ŷi|ji(t)(t) − x̄i(t)), if i ∈ V2 \ Ŝi(t),

(12)

here

ϖ ∈

(
1,

∥A∥

∥A∥ − 1

)
ji(t) = arg min

j∈N̂i∪Ŝi(t)
|j − i|

Ki(t) = diag{ki,ms (t)I2}s=1,2,...,2L+1,

(13)

here N̂i is introduced in (10), and ki,ms (t) is designed by lever-
ging the following saturation method with a threshold βi(t) > 0
designed in Sections 4.2 and 4.3 ):

i,ms (t) =

⎧⎪⎨⎪⎩
0, if ms ∈ Ŝa

i (t)
1, if ms ∈ Ŝi(t)

min
{
1, βi(t)

∥ηi,ms (t)∥

}
, otherwise.

(14)

emark 2. The observer (12) shows: (i) For one sensor in the set
1, if it is attacked, i.e.,ms ∈ Ŝa

i (t), its measurements are no longer
employed, i.e., ki,ms (t) = 0; If it is attack-free, i.e., ms ∈ Ŝi(t),
its measurements are fully trusted, i.e., ki,ms (t) = 1. Otherwise,
the saturation method with the threshold βi(t) can reduce the
influence of the potentially compromised measurements. (ii) For
each vehicle i ∈ V2, if it is attack-free (i.e., i ∈ V2

⋂
Ŝi(t)), it uses

its own local measurements with full trust to update the state
estimate, otherwise, it uses the estimate of vehicle ji(t) which is
either in the set V1 with redundant measurements or in the set
of attack-free vehicle sensors V2

⋂
Ŝi(t).

For each vehicle i ∈ V , based on (9)–(10) and (12)–(14), we
propose a resilient observer in Algorithm 1.
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Algorithm 1 Resilient Observer
1: Initialization: Initial estimate x̂i(0), observer parameter ϖ , sat-

uration parameter {βi(t)}, and vehicle communication parameter
L

2: Output: State estimate x̂i(t)
3: for t ≥ 1 do
4: Communications between neighboring vehicles: Vehicle i sends

out Mi defined in (6);
Time update: For each vehicle i ∈ V;

x̄i(t) = Ax̂i(t − 1) + [0, Tui(t − 1)]T, (15)

where ui(t − 1) is specifically designed by vehicle i;
Measurement update: See (12).

5: end for

Next, we study a real-time upper bound of the estimation
rror of Algorithm 1. In the following (a)–(c) items, we define
hree sequences, namely, ρi(t), λi(t), and τi(t), which are proved
n Proposition 1 to be the upper bounds of the estimation errors
f the three updates in (12).

a) For vehicle i ∈ V1, we denote Ŝi,1(t) the estimate of the set
f attack-free vehicle sensors in the 2L-neighborhood of vehicle
ensor i, i.e.,

Ŝi,1(t) = Ŝi(t)
⋂(

Ni

⋃
{i}
)

. (16)

hen, for i ∈ V1, we define a sequence {ρi(t)} with ρi(0) = q in
he following

i(t) = m̄i(t) ∥A∥ ρi(t − 1) + Q̄i(t), (17)

here

¯ i(t) =1 −
|Ŝi,1(t)| + (2L + 1 − b − |Ŝi,1(t)|)k̄i(t)

2L
,

k̄i(t) =min
{
1,

βi(t)
∥Aρi(t − 1) + ϵ + µ̄∥

}
,

Q̄i(t) =
(ϵ + µ̄)(2L + 1 − b) + (b − |Ŝa

i (t)|)βi(t)
2L

.

b) For vehicle i ∈ V2
⋂

Ŝi(t), we define a sequence {λi(t)}, as
ollows

i(t) =
(ϖ − 1) ∥A∥

ϖ
λi(t − 1) +

ϵ(ϖ − 1) + µ

ϖ
, (18)

here the parameter ϖ is introduced in (13), λi(Ti) = τi(Ti), the
equence {τi(t)} is to be defined in (19), and Ti is the time after
hich vehicle sensor i is attack-free by detection, i.e., Ti = min t̄ ,
.t., i ∈ Ŝi(t̄ + 1).

c) For vehicle i ∈ V2 \ Ŝi(t), we define a sequence {τi(t)}, as
follows

τi(t) =
(ϖ − 1) ∥A∥

ϖ
τi(t − 1)

+
ϵϖ + µ|ji(t) − i| + ∥A∥ si(t − 1)

ϖ
,

(19)

here τi(0) = q, ji(t) is given in (13), and si(t − 1) = ρji (t − 1),
f ji(t) ∈ V1, otherwise si(t −1) = λji (t −1), where ρji (t) and λji (t)
are given in (17) and (18), respectively.

Remark 3. Although the constructions of the two sequences
{λi(t)} and τi(t) need each other, they are both well defined
because τi(t) starts at time t = 0, which does not require λi(t),
nd λi(t) starts at t = Ti.
6

Proposition 1. Consider Algorithm 1 for system (1)–(3) satisfying
Assumptions 1–3. The estimation error of each vehicle i ∈ V is
subject to

x̂i(t) − x(t)
 ≤ αi(t) :=

⎧⎨⎩
ρi(t), if i ∈ V1,

λi(t), if i ∈ V2
⋂

Ŝi(t),
τi(t), if i ∈ V2 \ Ŝi(t),

where ρi(t), λi(t) τi(t) are given in (17), (18), and (19), respectively.

Proof. See Appendix A.

Remark 4. Based on local information and the vehicle-to-vehicle
network G, vehicle i ∈ V is able to compute the sequence {αi(t)}.
It enables evaluation of the error bounds offline by setting Ŝa

i (t) ≡

Ŝi(t) ≡ ∅, which reduces to the case without detection.

Since the observer threshold βj(t), j ∈ V1, in (14) is essential,
we study the properties of Algorithm 1 by designing βj(t) in a
static way and in an adaptive way respectively in the following
two subsections.

4.2. Observer property with static threshold

In this subsection, we design the observer threshold βj(t) ≡ βj,
for all j ∈ V1. Given a scalar ω ∈ (0, 1), denote

β0 = ∥A∥q + ϵ + µ̄

β̄1(ω) =
2L

2L + 1 − b
(ω + ∥A∥ − 1) β0

∥A∥
(20)

β̄2(ω) = min
{
β0,

2L
b

(
ωq −

(ϵ + µ̄) (2L + 1 − b)
2L

)}
,

where µ̄ is defined in (8). In the following theorem, we study
boundedness of the estimation error of the observer in Algorithm
1 with a static observer threshold βj, j ∈ V1 introduced in (14).

Theorem 1. Consider the observer in Algorithm 1 for system (1)–(3)
satisfying Assumptions 1–3 and sets Ŝi(Ti) and Ŝa

i (Ti) for any i ∈ V .
If there is a scalar ω ∈ (0, 1), such that 0 < β̄1(ω) < β̄2(ω), then for
any βj ∈ (β̄1(ω), β̄2(ω)) with j ∈ V1, the estimation error of vehicle
i is asymptotically upper bounded, i.e.,

lim sup
t→∞

x̂i(t) − xi(t)
 ≤

⎧⎨⎩
α̃1, if i ∈ V1,

α̃2, if i ∈ V2
⋂

Ŝi(Ti),
α̃3, if i ∈ V2 \ Ŝi(Ti),

where β̄1(ω) and β̄2(ω) are defined in (20), and

α̃1 =
Q̃i

1 − m̃i ∥A∥

α̃2 =
ϵ(ϖ − 1) + µ

ϖ − (ϖ − 1) ∥A∥

α̃3 =
ϵϖ + µ|j∗i − i| + ∥A∥max{α̃1, α̃2}

ϖ − (ϖ − 1) ∥A∥
,

(21)

in which

j∗i = arg min
j∈N̂i∪Ŝi(Ti)

|j − i|,

Q̃i =
(ϵ + µ̄)(2L + 1 − b) + (b − |Ŝa

i (Ti)|)β
2L

,

m̃i =1 −
|Ŝi,1(Ti)| + (2L + 1 − b − |Ŝi,1(Ti)|)ki

∗

2L
, (22)

k∗

i =
β

∥A∥q + ϵ + µ̄
,

î,1(Ti) =Ŝi(Ti) ∩ (Ni ∪ {i}) .
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Theorem 1 is based on the available information at Ti ≥ 0.
f Ti = 0, Ŝi(Ti) = Ŝa

i (Ti) = 0, the corresponding bound is the
orst bound which can be offline obtained. With the increase of
i, |Ŝi(Ti)| and |Ŝa

i (Ti)| are non-decreasing. As a result, the error
ound is non-increasing. Thus, it motivates us to design effective
etector to enlarge the sets Ŝi(Ti) and Ŝa

i (Ti).
In the following proposition, we study the feasibility of the

ondition on ω in Theorem 1.

roposition 2. The condition on ω in Theorem 1 holds

• only if b ≤ L;
• if

2L + 1 − b
b

>
ωq + f2
ωq − f1

> 0

2L + 1 − b
2L

>
ω + ∥A∥ − 1

∥A∥

(23)

where f1 =
(ϵ+µ̄)(2L+1−b)

2L and f2 =
ω(ϵ+µ̄)+(∥A∥−1)β0

∥A∥
.

roof. See Appendix C.

emark 5. Proposition 2 does not provide a sufficient and
necessary condition. Note that the sufficient condition in Proposi-
tion 2 holds if q in Assumption 2 is much larger than noise bounds
and µ and the maximum number of attacked sensors b satisfies

< sup
w∈(0,1)

min{f3(w), f4(w)}, (24)

here f3(w) = (L +
1
2 )
(
1 −

∥A∥−1
2w+∥A∥−1

)
and f4(w) = 1 +

2L(1−w)
∥A∥

.
Since b is an integer, it follows that b ≤ L. Hence, the maxi-
mum number of attacked vehicle sensors that can be tolerated
is b = L = ⌈N/2⌉ − 1. This agrees with the sparse observability
in Shoukry and Tabuada (2016), which shows that if half or more
than half of the sensors are attacked, it is infeasible to recover the
states of all vehicles.

4.3. Observer property with adaptive threshold

In this subsection, we design the observer threshold βj(t) in
he following way: for t ≥ 1,

βj(t) = kj,0
(
∥A∥ ρj(t − 1) + ϵ + µ̄

)
, j ∈ V1, (25)

here ρj(·) is introduced in (17), µ̄ is in (8), and kj,0 =
βj,0

∥A∥q+ϵ+µ̄
,

in which βj,0 is a positive scalar designed in the following theo-
rem.

Theorem 2. Consider the observer in Algorithm 1 for system (1)–(3)
satisfying Assumptions 1–3 and sets Ŝi(Ti) and Ŝa

i (Ti) for any i ∈ V .
If there is a scalar ω ∈ (0, 1), such that 0 < β̄1(ω) < β̄2(ω), then
the design of βj(t) in (25) with βj,0 ∈ (β̄1(ω), β̄2(ω)) for j ∈ V1
ensures that the estimation error of vehicle i is asymptotically upper
bounded, i.e.,

lim sup
t→∞

x̂i(t) − xi(t)
 ≤

⎧⎨⎩
ᾱ1, if i ∈ V1,

ᾱ2, if i ∈ V2
⋂

Ŝi(Ti),

ᾱ3, if i ∈ V2 \ Ŝi(Ti),

7

where β̄1(ω) and β̄2(ω) are defined in (20), and

ᾱ1 =
hi,2(Ti)

1 − hi,1(Ti) ∥A∥

ᾱ2 = α̃2

ᾱ3 =
ϵϖ + µ|j∗i − i| + ∥A∥max{ᾱ1, ᾱ2}

ϖ − (ϖ − 1) ∥A∥
.

(26)

in which

hi,1(Ti) =1 −
|Ŝi,1(Ti)| + (L̄ − b + |Ŝa

i (Ti)| − |Ŝi,1(Ti)|)ki,0
2L

,

hi,2(Ti) =
L̄ + (b − |Ŝa

i (Ti)|)ki,0
2L

(ϵ + µ̄),

ki,0 =
βi,0

∥A∥q + ϵ + µ̄
,

where L̄ = 2L+ 1− b, the scalar j∗i and the set Ŝi,1(Ti) are the same
as in (22), and the scalar α̃2 is in (21).

Proof. See Appendix D.

Remark 6. To ensure the required steady performance, from
Theorems 1–2, βj cannot be very large, but βj,0 can, where j ∈ V1.
Since a larger threshold makes the estimation become steady
faster (see (17)), the adaptive threshold βj(t) enables the system
to have better dynamic and steady performance than the static
threshold βj.

5. Detector design

In this section, we design an attack detector algorithm and
then study when all attacked and attack-free vehicle sensors can
be identified by the detector in finite time.

5.1. Detector algorithm

We propose an online distributed attack detector in Algo-
rithm 2 based on the observer in Algorithm 1 and the detec-
tion conditions (27)–(29) as follows. For i ∈ V (and i ≥ 2
for (27))

∥yi−1,i(t) + yi−1,i−1(t) − yi,i(t)∥ > 3µ, (27)

∥yi,i(t) − Ax̂i(t − 1)∥ > gi(t), (28)

li∑
j=1

⌈|Ŝs
i,j(t)|/3⌉ = b. (29)

where gi(t) = ϵ + µ + ∥A∥ ρi(t − 1) if i ∈ V1, otherwise,
gi(t) = ϵ + µ + ∥A∥ τi(t − 1), in which ρi(t − 1) and τi(t − 1) are
generated through (17) and (19), respectively. Here, {Ŝs

i,j(t)}
li
j=1

re disjoint subsets of Ŝs
i(t) := Ŝs

i (t)
⋃

Ŝa
i (t), such that each

ubset has successive sensor labels and the union of all subsets
s equal to Ŝs

i(t).

5.2. Detector properties

Lemma 1. Consider system (1)–(3) and Algorithms 1–2 under
Assumptions 1–2. Then the sets Ŝi(t) and Ŝa

i (t) of Algorithm 2
satisfies Assumption 3.
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Algorithm 2 Online Attack Detector

1: Initialization: Initial estimate for attacked vehicle sensor set Ŝa
i (0) =

∅, initial estimate for suspicious vehicle set Ŝs
i (0) = ∅, and initial

estimate for attack-free vehicle set Ŝi(0) = ∅, i ∈ V .
2: Output: Sets Ŝa

i (t), Ŝs
i (t), and Ŝi(t)

3: for t ≥ 1 do
4: Communications between neighboring vehicles: Vehicle i sends

out Mi defined in (6) Each vehicle i fuses the sets from its
neighbors: Ŝa

i (t) = ∪j∈Ni Ŝ
a
j (t −1)∪ Ŝa

i (t −1), Ŝs
i (t) = ∪j∈Ni Ŝ

s
j (t −

1) ∪ Ŝs
i (t − 1), Ŝi(t) = ∪j∈Ni Ŝj(t − 1) ∪ Ŝi(t − 1)

5: if i ≥ 2, and i /∈ Ŝa
i (t), and i − 1 /∈ Ŝa

i (t) then
6: if (27) holds then
7: if i ∈ Ŝi(t) then
8: let Ŝa

i (t) = Ŝa
i (t) ∪ {i − 1}

9: else if i − 1 ∈ Ŝi(t) then
0: let Ŝa

i (t) = Ŝa
i (t) ∪ {i}

1: else
2: let Ŝs

i (t) = Ŝs
i (t) ∪ {i − 1, i}

3: end if
4: end if
5: end if
6: if i /∈ Ŝa

i (t) and i /∈ Ŝi(t) then
7: if (28) holds then
8: let Ŝa

i (t) = Ŝa
i (t) ∪ {i}

9: end if
0: end if
1: if (29) holds then
2: Ŝi(t) = Ŝi(t) ∪

(
V − Ŝs

i (t) − Ŝa
i (t)

)
3: end if
4: if |Ŝa

i (t)|= b then
5: Ŝi(t) = V − Ŝa

i (t)
6: end if
7: end for

Proof. See Appendix E.

Remark 7. Condition (29) is to infer whether all attacked sensors
have been included in the detected sensor sets. The basic idea
is that one attacked sensor can yield at most three suspicious
sensors including itself and its two neighbors. For example, sup-
pose Ŝs

i (t) = {1, 3, 9, 10, 11, 12} and Ŝa
i (t) = {2, 6, 15}, then

Ŝs
i(t) = {1, 2, 3, 6, 9, 10, 11, 12, 15}. By splitting Ŝs

i(t), we have
Ŝs

i,1(t) = {1, 2, 3}, Ŝs
i,2(t) = {6}, Ŝs

i,3(t) = {9, 10, 11, 12}, and
Ŝs

i,4(t) = {15}. Then there are at least five attacked sensors in
the set Ŝs

i(t). Because Ŝs
i,1(t) has at least one, Ŝs

i,2(t) has one,
Ŝs

i,3(t) has at least two, and Ŝs
i,4(t) has one. If b = 5, then by

29), we conclude that the sensors not belonging to these sets
re attack-free.

Lemma 1 states that the two sets Ŝi(t) and Ŝa
i (t) are fault-free,

hich differs from the existing results of false alarms (e.g., Baras
nd Liu (2019)). The following theorem studies the finite-time
onvergence of the detection sets Ŝa

i (t) and Ŝi(t).

heorem 3. Consider the observer in Algorithm 1 and the detector
in Algorithm 2 for system (1)–(3) under Assumptions 1–2. If there is
time Tj and a vehicle j ∈ V , such that the number of the attacked

vehicle sensors estimated by vehicle j is equal to its upper bound in
Assumption 1, i.e., |Ŝa

j (Tj)| = b, then there exists a time T∗, such
that for t ≥ T∗, the sets of attacked and attack-free vehicle sensors
estimated by each vehicle i ∈ V equal the true sets, i.e.,

Ŝa
i (t) = Sa, Ŝi(t) = S.

Proof. By Algorithm 2, when there is a time Tj and a vehicle
j ∈ V , such that |Ŝa(T )| = b, then Ŝa(T ) = Sa and Ŝ (T ) = S.
j j j j j j

8

Algorithm 3 Distributed Controller

1: Initialization: Initial estimates x̂i(0) and x̄i(0), control param-
eter gs and gv , desired relative position and velocity between
vehicles i − 1 and i, i.e., {∆xsi−1,i(t)} and {∆xv

i−1,i(t)}, i =

1, 2, . . . ,N
2: Output: Control input ui(t)
3: for t ≥ 0 do
4: Communications between neighboring vehicles: Vehicle

i sends out Mi defined in (6)
Distributed controller

ui(t) =

∑
j∈N̄i

(
gs(s̄j(t) − ŝi(t) + ∆xsj,i(t))

+ gv(v̄j(t) − v̂i(t) + ∆xv
j,i(t))

)
,

where [s̄0(t), v̄0(t)]T =: x0(t).

5: end for

Since both |Ŝa
i (t)| and |Ŝi(t)| are non-decreasing and the vehicle

network is finite, there is a time at which all vehicles update their
set estimates to the true sets.

Theorem 3 holds under the condition that the attacker com-
promises b sensors with aggressive attack signals, which is pos-
sible when the attacker has no knowledge of the detector. Other-
wise, the attacker can inject stealthy signals making the attacked
sensors undetectable.

6. Controller design

In this section, we design an observer-based distributed con-
troller algorithm, and then analyze boundedness of the over-
all performance function of the architecture consisting of the
observer in Algorithm 1, the detector in Algorithm 2, and the
distributed controller.

6.1. Controller algorithm

Denote N̄i the set of vehicle(s) nearest to vehicle i, i =

, 1, . . . ,N , i.e.,

¯ i =

⎧⎨⎩
{1}, if i = 0
{i − 1, i + 1}, if i ∈ {1, 2, . . . ,N − 1}
{N − 1}, if i = N,

(30)

where vehicle 0, which is virtual and introduced for convenience,
stands for the reference state of vehicle 1. Assume ŝi(t) and s̄i(t)
are the estimate and predicted value of si(t), and v̂i(t) and v̄i(t)
are the estimate and predicted value of vi(t). Then, we propose
a distributed observer-based controller in Algorithm 3, where
∆xsi−1,i(t) and ∆xv

i−1,i(t) are the desired relative position and
velocity between vehicles i − 1 and i, and gs > 0, gv > 0 are
parameters to be determined.

Remark 8. The relative state measurements in (3) are not
directly used in the controller but the estimates, because: (i) The
relative measurements are noisy. (ii) There is no sensor of the
leader vehicle to measure the relative state to the reference state
(i.e., x1(t) − x0(t)).

6.2. Closed-loop property

The following lemma, proved in He, Hashemi, and Johansson
(2020), is useful in the following analysis.
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emma 2. Consider the linear system x(t + 1) = Fx(t) + G(t),
where F ∈ Rn×n is a Schur stable matrix. If lim supt→∞ ∥G(t)∥ ≤ ς ,
hen lim supt→∞ ∥x(t)∥ ≤

√
2θς2σmax(P)

σmin(P)
, where P ≻ 0 is the unique

olution to FTPF − P = −In and θ = ∥P∥ + 2 ∥PF∥
2.

Let L ∈ R(N+1)×(N+1) be the graph Laplacian matrix (Xie &
Wang, 2012) corresponding to the neighbor sets in (30). Denote
Lg ∈ RN×N the grounded graph Laplacian matrix with respect
to the nodes {1, 2, 3, . . . ,N}, which is obtained by removing the
first row and first column of Laplacian matrix L.

Assumption 4. The parameters gs and gv of the controller in
Algorithm 3 are subject to gv > Tgs > 0 and T 2gs − 2Tgv >
4/σmax(Lg ).

Assumption 4 is satisfied for any positive gs and gv provided
hat the sampling time T > 0 is sufficiently small. In the following
heorem, the closed-loop performance function ϕ(t) in (4) is
tudied.

heorem 4. Consider the observer in Algorithm 1, the detec-
or in Algorithm 2, and the controller in Algorithm 3 satisfying
ssumption 4 for system (1)–(3). Then the following properties hold:

(i) If the observer threshold is static and the conditions in The-
orem 1 are satisfied, the performance function ϕ(t) in (4) is
asymptotically upper bounded, i.e.,

lim sup
t→∞

ϕ(t) ≤ α̂ + ηξ ;

(ii) If the observer threshold is adaptive and the conditions in
Theorem 2 are satisfied, ϕ(t) is asymptotically upper bounded,
i.e.,

lim sup
t→∞

ϕ(t) ≤ ¯̂α + η̄ξ ;

where

ξ =

√
2κσmax(M)
σmin(M)

, M =

∞∑
i=0

(P i
0)

TP i
0, F0 =

(
0 0
Tgs Tgv

)
,

P0 = IN ⊗ A − Lg ⊗ F0, κ = ∥M∥ + 2∥MP0∥2,

η = 2
√
NT α̂ (gs(∥A∥ + 1) + 2gv) +

√
Nϵ, (31)

η̄ = 2
√
NT ¯̂α (gs(∥A∥ + 1) + 2gv) +

√
Nϵ,

α̂ = max{α̃1, α̃2, α̃3}, ¯̂α = max{ᾱ1, ᾱ2, ᾱ3},

n which α̃i and ᾱi, for i = 1, 2, 3, are introduced in Theorems 1 and
, respectively.

roof. See Appendix F.

Theorem 4 and the following corollary provide the solution to
he problem in Section 2.4.

orollary 1. Consider the observer in Algorithm 1, the detector in
lgorithm 2, and the controller in Algorithm 3 satisfying Assump-
ion 4 for system (1)–(3). Then the performance function ϕ(t) tends
o zero, i.e.,

lim
→∞

ϕ(t) = 0,

f the system is noise-free, i.e., µ = ϵ = 0, and one of the following
wo conditions is satisfied:

(i) the observer threshold is static, the conditions in Theorem 1
hold, and there is a vehicle sensor i at some Ti < ∞, such that
|Ŝa

i (Ti)| = b;
(ii) the observer threshold is adaptive, and the conditions in The-

orem 2 hold.
9

roof. The proof follows from Theorems 1–4.

emark 9. Corollary 1 shows the improvement of performance
chieved in the noise-free case in comparison to the noisy case
heorem 4. Note that the first conclusion of Corollary 1 means
hat there is one vehicle that has detected the maximal number
f attacked sensors. This makes it possible to conclude that there
an be no other attacked sensors, so the mitigation mechanism
f the observer can fully compensate for the attack. The second
onclusion of Corollary 1 means that whatever the detection
esults, the observer with the adaptive threshold makes the space
f stealthy attacks diminish to an empty set asymptotically.

. Simulations

In this section, the effectiveness of the proposed methods
s evaluated through simulations by an application to vehicle
latooning.
Suppose there are five vehicles, i.e., N = 5, with sampling

ime T = 0.01 and time range t = 0, 1, . . . , 500. All elements
f the process noise di(t) and measurement noise ni,j(t), j ∈

Ni ∪ {i}, i = 1, . . . , 5, follow the uniform distribution between
(0, µ0/

√
2), where µ0 = 0.1. The bounds in Assumption 2 are

assumed to be µ = ϵ = µ0 and q = 300. The initial state is
x1(0) = (200, 10)T, x2(0) = (100, 8)T, x3(0) = (50, 6)T, x4(0) =

(20, 4)T, x5(0) = (0, 2)T, whose observer estimates are all 02×1.
The required position distance between vehicles i and i + 1 is
|∆i,i+1| = 20, i = 1, 2, 3, 4. The control gains in Algorithm 3 are
gs = gv = 50, and the communication range L = 2. Suppose the
reference position and the reference velocity of the leader vehicle
are s0(t + 1) = s0(t) + v0T and v0 = 10, where s0(0) = 200. We
assume all vehicles share the same observer threshold β(·). In the
following, the time-varying observer gain β(t) is designed as in
(25) with β(0) = 200.

We conduct a Monte Carlo experiment with 100 runs. Denote
the maximum estimation error by ηi(t) := max100j=1

eji(t), where

eji(t) is the state estimation error of vehicle i at time t in the
jth run. Define the relative position and velocity between vehicle
i = 1, . . . , 5 and the leader vehicle 0 by

ζi,s(t) =

∑100
j=1(s

j
i(t) − s0(t))

100
, ζi,v(t) =

∑100
j=1(v

j
i(t) − v0)

100
,

where sji(t) and v
j
i(t) are the position and velocity of vehicle i,

espectively, at time t in the jth run.
First, we study the performance of Algorithms 1–3 with the

daptive observer parameter β(t). For vehicle i under FDI sensor
ttacks, assume that the measurements would be compromised
y the random attack signal ai(t) = wi(t)xi(t), where wi(t) is

drawn from the standard normal distribution. For the case of the
attacked vehicle sensor set Sa

= {3}, the state estimation errors
and error bounds for vehicles 1 and 3, and vehicle platooning
errors are provided in Fig. 4. Fig. 4(a) shows that the estimation
errors and their upper bounds are convergent to small neighbor-
hoods of zero rapidly. By Algorithm 2, vehicle 1 is known to be
attack-free, thus it uses its secure measurements to update the
estimate, achieving better performance than attacked vehicle 3
as in Fig. 4(a). Fig. 4(b) shows that the velocities of all vehicles
converge to the reference velocity, and the relative positions
between two neighbor vehicles tend to the desired one, i.e., 20.
Then, we study the performance function ϕ(t) (averaged over 100
runs) of Algorithms 1–3 with Sa

= {2, 3} under different noise
magnitudes (i.e., ϵ and µ) and under different attacks in (a) and
(b) of Fig. 5, respectively. Fig. 5(a) shows that ϕ(t) decreases as
the noise magnitudes decrease. In Fig. 5(b), we study four typical
attack types, including random attack introduced previously, DoS
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Fig. 4. Estimation and platooning errors of Algorithms 1–3.
Fig. 5. The influence of some essential variables to the performance of Algorithms 1–3.
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Fig. 6. Comparison of five algorithms in platooning error.

attack ai(t) = −ỹi,i(t), bias injection attack ai(t) = 100, and
replay attack ai(t) = ỹi,i(t − 10) − ỹi,i(t) for t ≥ 11, where
ỹi,i(t) = xi(t) + ni,i(t) is the true measurement. It shows that
lgorithms 1–3 with adaptive observer parameter are able to deal
ith these attacks.
Moreover, under the same setting as Fig. 4, we compare the

roposed methods, i.e., Algorithms 1+3 (1 and 3) with a static
bserver parameter β , Algorithms 1–3 with an adaptive observer
arameter β(t), with PWM, which is obtained from Algorithm
by replacing the estimates by measurements, and with PBE,
hich is obtained from Algorithm 3 by using the estimates fol-

owing Byzantine strategy (Mitra & Sundaram, 2019), as well
s PTD (Lin & Jia, 2009). Choose β = 3 for Algorithms 1+3,
nd β(t) for Algorithms 1–3. To evaluate the platooning error of
ach algorithm, we use the performance function φ(t): φ(t) =

1
500

∑100
j=1
∑5

i=1

xji(t) − x∗

i (t)
, where xji(t) is the state of vehicle

i at time t in the jth run. The algorithm comparison result is
10
provided in Fig. 6, which shows that our algorithms outperform
the other three algorithms, and Algorithms 1–3 achieve best pla-
tooning performance among the five algorithms. In Fig. 6, PWM
is divergent since the compromised measurements directly affect
the platooning.

8. Conclusion and future work

This paper studied how to design a secure observer-based
distributed controller such that a group of vehicles can achieve
accurate state estimates and formation control under the case
that the measurements of a subset of vehicle sensors are com-
promised by a malicious attacker. We proposed an architecture
consisting of a resilient observer, an online attack detector, and a
distributed controller. Some important properties of the observer,
detector, and controller were analyzed. An application of the
proposed architecture to vehicle platooning was investigated in
numerical simulations.

There are some directions of future work. One is to extend
the architecture to the attack detection on actuators of vehicles
in platoon. Another is to study more general models of vehicles
and sensors. It is also promising to extend the methods from the
string vehicle topology to more complex vehicle topologies with
higher dimensions and more leaders.

Appendix A. Proof of Proposition 1

Denote the estimation error by ei(t) = x̂i(t) − xi(t), the
rediction error by ēi(t) = x̄i(t) − xi(t), i ∈ V . For notational
onvenience, we let λi(t) = τi(t), t ≤ Ti, where Ti is the time after
hich vehicle i is attack-free by detection, i.e., i ∈ Ŝi(t), t ≥ Ti+1.
e use an inductive method for proof. At the initial time, due

o ρ (0) = λ (0) = τ (0) = q, according to Assumption 2, the
i i i
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onclusion holds. Assume at time t −1 ≥ 0, the conclusion holds.
In the following, we consider the case at time t ≥ 1.

First, we consider each vehicle sensor i ∈ V1, which has at
least 2L+1− b attack-free vehicle sensors as neighbors. Suppose
J is the set of these 2L + 1 − b sensors, i.e., J ⊆ S with
|J | = 2L+1−b, which is unknown to vehicles but useful for the
following analysis. Let J a

= Ni ∪ {i} − J . It holds that |J a
| = b

nd the sensors in the set Ŝa
i (t) ⊆ J a are surely attacked under

ssumption 3. Denote K̄i,J (t) = diag
{
ki,ms (t)Ims∈J I2

}2L+1

s=1
∈

(4L+2)×(4L+2) where ki,ms (t) is introduced in (14). Let K̄ [j]
i (t) be the

th diagonal element of K̄i,J (t), j = 1, . . . , 4L+2, n[j]
i (t) be the jth

element of ni(t) in (9), and

K̂i(t) = diag

⎧⎨⎩ ∑
j=1,3,...,4L+1

K̄ [j]
i (t),

∑
j=2,4,...,4L+2

K̄ [j]
i (t)

⎫⎬⎭ ,

i(t) =

∑
j=1,3,...,4L+1

(
K̄ [j]
i (t)n[j]

i (t)

K̄ [j+1]
i (t)n[j+1]

i (t)

)
,

through which we have K̂i(t) ∈ R2×2 and Wi(t) ∈ R2. By
Algorithm 1, we have

ei(t) =(I2 −
1
2L

K̂i(t))Aei(t − 1) +
1
2L

K̂i(t)di(t − 1)

+
1
2L

Wi(t) +
1
2L

CTK̄i,J a (t)(zi(t) − Cx̄i(t)),

where K̄i,J a (t) = Ki(t) − K̄i,J (t). According to (14), the measure-
ment update of sensor i at time t will be affected by at most
b − |Ŝa

i (t)| attacked vehicle sensors, which remain stealthy till
time t . The measurements of these vehicles will be used at time t .
According to the noise bound in (8) and the saturation operation
in (14), taking 2-norm of ei(t) yields

∥ei(t)∥ ≤∥(I2 −
1
2L

K̂i(t))A∥∥ei(t − 1)∥

+ |J |
ϵ + µ̄

2L
+ (b − |Ŝa

i (t)|)
βi(t)
2L

≤ ρi(t),

where the last inequality is obtained because: (1) In the set
J , there are |Ŝi,1(t)| attack-free vehicles whose measurements
have been fully utilized in the update at time t (i.e., without
saturation), where Ŝi,1(t) is defined in (16); (2) There are 2L+1−

−|Ŝi,1(t)| attack-free vehicles, whose measurement innovations
re saturated with the corresponding gain satisfying K̂ [j]

i (t) ≥

¯ i(t) = min{1, βi(t)
∥A∥ρi(t−1)+ϵ+µ̄

}.
Second, for vehicle i ∈ V2

⋂
Ŝ(t), according to (12) and

ssumption 2, it is straightforward to prove that the estimation
rror is upper bounded by λi(t). Third, for vehicle i ∈ V2 − Ŝ(t),

by Algorithm 1, we have

ei(t) =
(ϖ − 1)A

ϖ
ei(t − 1) −

(ϖ − 1)di(t − 1)
ϖ

+
n̂i|ji(t)(t)

ϖ
.

Regarding n̂i|ji(t)(t) in (11), according to Assumption 2, the defini-
tion ji(t) = argminj∈N̂i∪Ŝi(t) |j − i|, and

ēji(t)(t) ≤ ∥A∥ si(t −1)+

ϵ, we have
n̂i|ji(t)(t)

 ≤ µ|ji(t) − i| + ∥A∥ si(t − 1) + ϵ, where
si(t − 1) = ρji (t − 1), if ji(t) ∈ V1, otherwise si(t − 1) = λji (t − 1).
Taking 2-norm of both sides of ei(t), we have ∥ei(t)∥ ≤ τi(t).

Appendix B. Proof of Theorem 1

At time Ti ≥ 0, the estimate of the attacked vehicle sensor set
is Ŝa

i (Ti) and the estimate of the attack-free vehicle set is Ŝ(Ti).
By Assumption 3, both |Ŝa

i (t)| and |Ŝi(t)| are non-decreasing, thus
|Ŝa(t)| ≥ |Ŝa(T )| and |Ŝ (t)| ≥ |Ŝ (T )|, for any t ≥ T . Instead of
i i i i i i i

11
proving the upper boundedness of the estimation error, in the
following we prove the upper boundedness of ρi(t), λi(t), and
τi(t), which are upper bounds of the estimation error according
to Proposition 1.

First, we consider the case for i ∈ V1. By choosing ∀βi ∈

(β̄1(ω), β̄2(ω)), where β̄1(ω) and β̄2(ω) are in (20), we directly
have

βi < β0 (B.1)

βi <
2L
b

(
ωq −

(ϵ + µ̄) (2L + 1 − b)
2L

)
(B.2)

βi >
2L

2L + 1 − b
(ω + ∥A∥ − 1) β0

∥A∥
. (B.3)

It follows from (B.1) that k∗

i :=
βi

∥A∥q+ϵ+µ̄
< 1. Then accord-

ing to (B.3), it is derived that (1 − L0k∗

i ) ∥A∥ q < (1 − ω)q,
here L0 =

2L+1−b
2L . Since the inequality in (B.2) is equivalent to

(ϵ+µ̄)(2L+1−b)+bβi
2L < ωq, we have

1 − L0k∗

i ) ∥A∥ q +
(ϵ + µ̄)(2L + 1 − b) + bβi

2L
< q. (B.4)

From (B.4) and Proposition 1, by using an inductive method, we
are able to obtain that ρi(t) < q, for t ≥ 1, which, together with
(17), ensures that

ρi(t + 1) ≤ m̃i ∥A∥ ρi(t) + Q̃i, t ≥ Ti, (B.5)

where m̃i and Q̃i are given in (22). According to (B.4), we have
(1 − L0k∗

i ) ∥A∥ < 1, which, together with 0 < m̃i ≤ 1 −

0k∗

i , leads to m̃i ∥A∥ ∈ (0, 1). Thus, it follows from (B.5) that
im supt→∞ ρi(t) ≤ α̃1, where α̃1 is in (21).

Second, for vehicle i ∈ V2
⋂

Ŝi(Ti), according to (18) and
(ϖ−1)∥A∥

ϖ
∈ (0, 1), we have lim supt→∞ λi(t) ≤ α̃2, where α̃2 is

n (21).
Third, for vehicle i ∈ V2 − Ŝi(Ti), since Ŝi(t) is non-decreasing,

e have |ji(t) − i| ≤ |j∗i − i|, where j∗i is in (22), and ji(t) =

rgminj∈N̂i∪Ŝi(t) |j − i|, t ≥ Ti. From (19) and lim supt→∞ si(t) ≤

ax{α̃1, α̃2}, we obtain lim supt→∞ τi(t) ≤ α̃3, where α̃3 is in (21).

ppendix C. Proof of Proposition 2

Necessity: We assume b > L for the proof by contradiction.
hen 2L + 1 − b ≤ b, which leads to 2L

2L+1−b ≥
2L
b . It is known

from β̄1(ω) > 0 that 2L + 1 > b. Given ω ∈ (0, 1), due to
A∥ > 1, we have (ω+∥A∥−1)β0

∥A∥
>
(
ωq −

(ϵ+µ̄)(2L+1−b)
2L

)
, where

β0 = ∥A∥ q + ϵ + µ̄. Thus, β̄1(ω) > β̄2(ω). The assumption b > L
does not hold.

Sufficiency: We will prove that if the inequalities in (23)
are satisfied, the scalar ω is such that 0 < β̄1(ω) < β̄2(ω).
According to (20) and the first inequality in (23), β̄1(ω) <
2L
b

(
ωq −

(ϵ+µ̄)(2L+1−b)
2L

)
. If the second inequality in (23) holds,

then 2L
2L+1−b

(ω+∥A∥−1)
∥A∥

< 1. Multiplying both sides of this inequal-
ity by β0 in (20) leads to β̄1(ω) < β0. Therefore, β̄1(ω) < β̄2(ω).
Due to ∥A∥ > 1 and 2L + 1 − b > 0, we have β̄1(ω) > 0.

Appendix D. Proof of Theorem 2

According to Proposition 1, we prove boundedness of the three
sequences ρi(t), λi(t) τi(t) for the case that βi(t) is designed as in
25). Denote L̄ = 2L + 1 − b.

First, we consider the case for vehicle i ∈ V1. Since βi,0 satisfies
the same condition as βi in Theorem 1, according to the proof of
Theorem 1, we have ki,0 :=

βi,0
∥A∥q+ϵ+µ̄

< 1 and

(1 −
L̄
ki,0) ∥A∥ q +

(ϵ + µ̄)L̄ + bβi,0
< q, (D.1)
2L 2L
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hich corresponds to (B.4). From (D.1) and βi,0 = ki,0(∥A∥ q+ϵ +

µ̄), we are able to obtain(
1 −

L̄ − b
2L

ki,0

)
∥A∥ < 1. (D.2)

Submitting βi(t) in (25) into (17) yields

ρi(t) = hi,1(t) ∥A∥ ρi(t − 1) + hi,2(t), (D.3)

where

hi,1(t) =1 −
|Ŝi,1(t)| + (L̄ − b + |Ŝa

i (t)| − |Ŝi,1(t)|)ki,0
2L

,

hi,2(t) =
L̄ + (b − |Ŝa

i (t)|)ki,0
2L

(ϵ + µ̄),

y Assumption 3, both |Ŝa
i (t)| and |Ŝi(t)| are non-decreasing, thus

Ŝa
i (t)| ≥ |Ŝa

i (Ti)| and |Ŝi(t)| ≥ |Ŝi(Ti)|, for any t ≥ Ti. Due to
i,0 < 1, we have supt≥Ti hi,1(t) ≤ hi,1(Ti) ≤ 1 −

L̄−b
2L ki,0 and

upt≥Ti hi,2(t) ≤ hi,2(Ti), which, together with (D.2)–(D.3), leads
to lim supt→∞ ρi(t) ≤

hi,2(Ti)
1−hi,1(Ti)∥A∥

.
The proofs for vehicle i ∈ V2

⋂
Ŝi(Ti) and for vehicle i ∈

V2 − Ŝi(Ti) are similar to the proofs in Theorem 1.

Appendix E. Proof of Lemma 1

We use induction to prove the result. At the initial time,
Assumption 3 holds trivially. Assume at time t −1, Assumption 3
is satisfied. Then, we consider the case at time t . First, we aim to
prove the following conclusions corresponding to lines 6, 17, and
21 of Algorithm 2 under the preconditions in lines 5 and 16:

(i) If the detection condition (27) is satisfied, either sensor i or
sensor i − 1 is attacked.

(ii) If the detection condition (28) is satisfied, sensor i is at-
tacked.

(iii) If the detection condition (29) is satisfied, the sensors in
the set V \ (Ŝs

i (t) ∪ Ŝa
i (t)) are attack-free.

If (i)–(iii) hold, Algorithms 1–2 ensure that the sets Ŝa
i (t), Ŝ

s
i (t),

and Ŝi(t) are all fault-free. The updates of the three sets in
Algorithm 2 ensure that Ŝi(t) and Ŝa

i (t) are monotonically non-
decreasing. Therefore, Assumption 3 is satisfied at time t . In the
following, we prove (i)–(iii).

Proof of (i): By (2), for two attack-free sensors i− 1 and i, due
to ai = ai−1 = 0, it holds that yi,i(t) − yi−1,i−1(t) = xi(t) −

xi−1(t) + ni,i(t) − ni−1,i−1(t), which, together with (3), leads to
yi−1,i(t) + yi−1,i−1(t) − yi,i(t) = ni−1,i(t) + ni−1,i−1(t) − ni,i(t).
Under Assumption 2, taking 2-norm of its both sides yields the
conclusion. The conclusion (ii) is satisfied according to Proposi-
tion 1 by noting that i /∈ Ŝi(t). Proof of (iii): Since

⋃ji
j=1 Ŝ

s
i,j(t) =

Ŝs
i(t) and each set Ŝs

i,j(t) contains successive sensor labels, the
inimum number of the attacked sensors is no smaller than the
um of the minimum attacked sensor number in each Ŝs

i,j(t).
One attacked sensor can lead to at most three suspicious sensors
comprising of itself and its two neighbor sensors, hence, each
Ŝs

i,j(t) contains ⌈|Ŝs
i,j(t)|/3⌉ attacked sensors at least. Given the

etection condition (29), the conclusion of (iii) is obtained by
oting that the set Ŝs

i(t) = Ŝs
i (t)

⋃
Ŝa
i (t) contains all attacked

ensors.

ppendix F. Proof of Theorem 4

Recall from (4) that x∗

i (t) = [s∗i (t), v
∗

i (t)]
T is the desired state

f vehicle i, 0 ≤ i ≤ N , which is subject to s∗i (t) = s∗j (t) + ∆xsj,i(t)
and v∗(t) = v∗(t) + ∆xv (t), j ∈ N̄ . Denote ẽ (t) = x (t) −
i j j,i i i i

12
x∗

i (t) = [s̃i(t), ṽi(t)]T the tracking error of vehicle i. Since the
virtual reference vehicle 0 is in its desired state, then s̃0(t) =

˜0(t) = 0. For 1 ≤ i ≤ N , it holds that

ẽi(t + 1) = Aẽi(t) + [0, T ũi(t)]T + δi(t),
δi(t) = [0, T ûi(t)]T + di(t),

(F.1)

where

ũi(t) =

∑
j∈N̄i

(
gs(s̃j(t) − s̃i(t))

+ gv(ṽj(t) − ṽi(t))
)
, 0 ≤ i, j ≤ N,

ûi(t) =

∑
j∈N̄i

(
gs((s̄j(t) − sj(t)) − (ŝi(t) − si(t)))

+ gv((v̄j(t) − vj(t)) − (v̂i(t) − vi(t)))
)

.

(F.2)

rom (F.1) and (F.2), we have

˜ (t + 1) = P0Ẽ(t) + δ(t), (F.3)

here P0 is in (31), Ẽ(t) = [ẽ1(t)T, . . . , ẽN (t)T]T, and δ(t) =

δ1(t)T, . . . , δN (t)T]T. By Theorem 1, supt≥0 ∥δ(t)∥ < ∞. Based
n the BIBO stability principle, the asymptotic stability of Ẽ(t) in
F.3) is determined by the eigenvalues of P0. According to Hao, Ba-
ooah, and Veerman (2010), the spectrum of
0 is σ (P0) =

⋃
σl∈σ (Lg ) σ {A − σlF0} =

⋃
σl∈σ (Lg ) σ {Ql}, where Lg

s introduced before Assumption 4, σ (·) is the set of distinct
igenvalues, and Ql =

( 1 T
−σlTgs 1−σlTgv

)
, l = 1, 2, . . . ,N . From Hao

t al. (2010), all eigenvalues of Lg are real-valued and positive,
.e., σl > 0. Denote the eigenvalues of Ql by s, which are the roots
f φ(s) = 0, where φ(s) = s2 + (σlTgv − 2)s + σlT 2gs − σlTgv + 1.
o prove the Schur stability of P0, in the following, we aim to
rove for each σl, l = 1, 2, . . . ,N , s falls into the open unit disk,
.e., |s| < 1. By applying bilinear transformation to φ(s), we can
ransfer the Schur stability of φ(s) into the Hurwitz stability of
continuous-time system. Then we are able to prove that s falls

nto the open unit disk, i.e., |s| < 1, if and only if gv > Tgs > 0
nd T 2gs − 2Tgv > −4/σl. We refer to Xie and Wang (2012) for a
imilar proof. Thus, when (gs, gv) are chosen as in Assumption 4,
0 is Schur stable. From Theorem 1, (F.1), and (F.2), we have
im supt→∞ ∥δ(t)∥ ≤ η, where η is given in (31). Since P0 is Schur
table, we use Lemma 2 with respect to (F.3). Due to

ẽi(t) ≤Ẽ(t), from the definition of the overall function ϕ(t) in (4) and
Theorem 1, the conclusion in (1) is obtained. The proof of (ii) is
the same as the proof of (ii) but using Theorem 2 in the evaluation
of the estimation error instead of using Theorem 1.
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