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Abstract— The security issue in cyber-physical systems has
attracted growing interests in the last decades. This paper
considers how false data injection attack can degrade the
estimation quality of a remote state estimation system. In this
system, smart sensors measure a dynamic process and send
preprocessed data through a communication network to a
remote estimator to estimate the process. It is assumed that
there are malicious attackers in the communication network,
who are able to obtain and falsify all the data sent by the
sensors. It is common that the remote estimator is equipped
with a residue-based detector to detect potential attacks. We
propose a class of deception attack and analyze its feasibility.
We show that the proposed attack enables the attacker to inject
false data into the remote estimator without being detected. We
derive a criterion to judge the optimality of performance of this
type of attack in the sense of maximizing the estimation error
covariance. Furthermore, we find that a simple linear attack
strategy, which flips the sign of intercepted signal, satisfies
the optimality criterion. We present numerical examples to
illustrate our theoretical results.

Index Terms— Cyber-physical systems (CPS), deception at-
tack, remote state estimation.

I. INTRODUCTION
The combination of communication and control system

brings about tremendous change in control system design.
The emergence of cyber-phyisical systems, which introduces
the communication layer to classical feedback control sys-
tems, enables possible design and implementation of large
and complex systems in a remote operation scenario [1].
A wide range of areas can benefit from the development
of the cyber-physical systems (CPSs), including energy,
manufacturing, mining and transportation.

The introduction of communication channel, however, also
brings more challenges to the design of control systems
because the constraints of network effect, such as time delay,
packet drop and disorder, would cause new challenges and
should be considered. Since signals are transmitted through
unprotected communication channels, the vulnerability of the
CPSs poses another fundamental challenge to control engi-
neers. Any successful attacks on the cyber-physical systems
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may cause enormous loss, including leakage of classified
information, suspension of industrial process, infrastructure
destruction and even casualty in human lives. Recent acci-
dents (e.g. StuxNet malware in [2], [3]) related to security
flaws in the cyber-physical systems gradually attracted re-
searchers’ interest [4]. It is important to understand what
potential attacks are, what effect they might cause, and what
the most catastrophic effect would be.

Based on knowledge and resources available to the ma-
licious attackers, they are able to eavesdrop, intercept and
falsify signal transmitted in the communication network and
thus cause catastrophic effect on the CPSs. In [5], the authors
classified several attack patterns in cyber-physical systems
from the perspective of attacker’s knowledge of the system,
disclosure resources and disruption resources. Dennial-of-
Service (DoS) attack is one of the basic class of attacks,
in which attacker blocks the communication channel for
data transmission. Zhang et al. [6] studied the worst-case
attack with limited energy budget in the system. Li et al. [7]
studied the interactive decisions of sending data by a sensor
and jamming channel by an attacker, and adopted a Nash
Q-learning algorithm to derive the optimal policy for both
parties.

Compared with DoS attacks, depcetion attacks are subtler
and thus are more difficult to be detected. Mo and Sinopoli
[8] investigated the feasiblity of replay attacks against con-
trol systems equipped with a false-data detector. They also
designed a watermark based detection scheme to detect such
an attack in [9]. Bai et al. [10] analyzed the stealthy attack
on Kalman filter. They revealed the trade-off between the
degradation of estimation quality due to attacks, versus the
stealthiness or detectablity. The authors derived bounds of the
degradation under the constraint of avoiding detection by an
ergodicity based detector. The results were derived with the
assumption that the the system parameters were known for
the attacker. In [11], we obtained an optimal linear deception
attack against remote state estimation.

Note that although an optimal attack policy was derived
in [11], the set of the attack policies was restricted to linear
form. The linearity of attack policy leaves two questions to
be answered. Firstly, the framework of linear attack analysis
cannot cover a general form of possible attacks. Therefore,
the effect on remote estimator caused by a general form
of deception attacks remains unknown. The second is that
whether there are any attack policies in a more general form
can cause worse effect on the remote estimator. Our goal is to
derive the worst-case deception attack, which can maximize
the estimation error covariance and evade detection by the χ2
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detector. In this work, we extend the linear attack policies to a
general form and obtain a criterion for judging the optimality
of this type of attacks, which indicates that the optimal attack
policy is nonunique.

The main contribution of this work are summarized as fol-
lows. Firstly, we extend the linear attack policy of deception
attack aimed at innovation sequence to a more general form.
We analyze the feasibility of this type of attack and show
that attacker can inject false data into the remote estimator
while remaining undetected by χ2 based detector. Secondly,
we show how error covariance propagates in the presence
of the general deception attack and compare the results with
the evolution of Kalman filter iteration. Lastly, a criterion
for judging the optimality of this type of attack is derived,
and we find that flipping the sign of innovation sequence is
capable of meeting this criterion.

The remainder of this work is as follows. We introduce
the architecture of the system under cyber-attack and its
mathematical formulation in Section II. In Section III, how
the cyber-attack is conducted is introduced. The system
performance degradation due to the proposed attack along
with optimal attack parameter is analyzed in Section IV.
Section V presents numerical simulation of the analysis
conducted.

Notations: N is the set of nonnegative integers. R denotes
the set of real numbers, and Rn is the n-dimensional Eu-
clidean space. Sn+ is the set of n × n positive semi-definite
matrices. We write X ≥ 0 for X ∈ Sn+ and X − Y ≥ 0 for
X −Y ∈ Sn+. X ′ denotes the transposition of the matrix X .
E stands for the expectation of a random variable.

II. SYSTEM SETUP AND PROBLEM
FORMULATION

In this work, the architecture of remote state estimation
system under cyber-attacks is presented in Fig. 1. There are
six major elements, namely, the process to be estimated,
the smart sensor, the communication network, the remote
estimator, a malicious attacker and an intrusion detector. The
smart sensor is equipped with computation capacity, and it
is able to run a local Kalman filter based on measurement
yk from the process and sends innovation sequence, which
will be introduced later, through a communication network
to the remote estimator. By hijacking the communication
network, the attacker is able to intercept the innovation
sequence and falsify it so that estimation quality in the
remote estimator is degraded. When the innovation sequence
reaches the estimator, it is also received by a false data
detector. The detector can predict and inform the remote
estimator whether the received data has been modified based
on testing the statistical characteristics of the sequence.

A. Process Description

Consider the following stochastic discrete-time linear
time-invariant process

xk+1 = Axk + wk, (1)
yk = Cxk + vk, , (2)

Proces Sensor Network Estimator

Attacker Detector

yk zk

z̃k

Fig. 1. System architecture. A malicious attacker is able to acquire and
falsify data sent by a smart sensor and thus degenerate the performance of
remote estimation.

where k ∈ N is time index, xk ∈ Rn is the state vector,
yk ∈ Rm is the measurement vector of sensor(s), wk ∈ Rn
and vk ∈ Rm are process noise and measurement noise,
respectively. The two noise processes are mutually uncorre-
lated Gaussian stochastic process with covariance Q ≥ 0 and
R > 0, respectively. Moreover, the initial condition of system
state x0 is a zero-mean Gaussian distributed random vector
uncorrelated with wk and vk, and its covariance Σ ≥ 0. We
assume (A,C) is detectable and (A,

√
Q) is stabilizable.

B. Kalman Filter in Remote Estimation

The sensor module in the remote estimation scheme is
deployed to measure the process described above and is
able to obtain the yk in (2). In standard setting, sensors
directly send the measurement to an estimator which renders
Minimum Mean Squared Error (MMSE) estimate of the state
of the process through the following iteration of Kalman filter

x̂−k = Ax̂k−1, (3)

P−k = APk−1A
′ +Q, (4)

Kk = P−k C
′
[
CP−k C

′ +R
]−1

, (5)

x̂k = Ax̂k−1 +Kk

(
yk − CAx̂k−1

)
, (6)

Pk = (I −KkC)P−k , (7)

where x̂−k and x̂k are the a priori and the a posteriori MMSE
estimates of the state in the Kalman filter, and P−k and Pk are
the corresponding estimation error covariances. The iteration
starts from x̂0 = 0 and P0 = Σ0 > 0. It is known that the
initial condition of iteration does not affect the performance
the Kalman filter in the long term in the sense that P−k
and Kk converge to a unique positive definite matrix for
sure if (A,C) is detectable and (A,

√
Q) is stabilizable. The

corresponding steady state values are

P = lim
k→∞

P−k , (8)

K = PC ′
(
CPC ′ +R

)−1
. (9)

This implies that Kalman filter would become a fixed gain
estimator after sufficiently long time, and the corresponding
estimation error covariance is P . This paper, however, studies
a modified version.

In our framework, smart sensors are considered instead
of standard sensors. Compared with standard sensors, smart
sensors are equipped with extra computation unit which can
be used to improve the estimation quality. Instead of directly
sending measurements to the remote estimator, smart sensors
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are able to send the innovation sequence which is defined as
follows

zk = yk − CAx̂k−1.

The innovation zk is computed through the iteration of
a local Kalman filter running in the smart sensor. Two
factors contribute to sending innovation zk instead of the
measurement yk. The first reason is that the computation
load in the remote estimator can be reduced, which will be
shown in the later section. The second reason is that zk’s are
independent and identically distributed, which facilitates the
false data detection.

After the remote estimator receives zk, it conducts a
Kalman filter algorithm similar to (3) to compute the remote
estimate of the states. The only difference is that yk −
CAx̂k−1 is substituted with zk.

C. χ2-Based False Data Detector

When the innovation sequence enters the remote estimator,
it is also received by a false data detector. The detector
collects data in a monitor windows of appropriate size and
computes the statistic of collected data. By comparing the
computed statistic with a threshold, the detector is able to
judge the authenticity of the received data. If the statistic is
greater than the threshold, an alarm will be triggered.

In Kalman filter, the innovation sequnce consists of
independent random variables with identical distribution
N (0, CPC ′ + R). The false data detector can utilize the
statistical property of the sequence to detect abnormity in
the coming sequence. Since the sequence follows a normal
distribution with known mean and variance, χ2 test is an
appropriate option. Given a moving windows, we take the
summation over the normalized past sequence. By comparing
it with a threshold, correctness of the current data in the
windows can be decided. The detection algorithm for time
k in a moving windows of size J is in the following form:

k∑
i=k−J+1

z′i
(
CPC ′ +R

)−1
zi

H0

≶
H1

δ,

where δ is a threshold, H0 is the null hypotheses which
suggests that the received sequence in current monitor
windows follows the expected probability distribution, and
H1 is the alternative hypotheses which suggests that the
received sequence no longer follows the expected probability
distribution. This detector is easy to implement and effective
in some scenarios.

D. Problem of Interest

Based on the setting of the process, sensor, remote esti-
mator, attacker and detector described above, the problems
we are interested in are as follows:

1) Are there any feasible attacking strategies such that the
attack will not trigger the false data detector?

2) What will be the corresponding estimation perfor-
mance?

3) Are there any optimal attack strategies which cause
maximal estimation error in each time step?

These problems will be elaborated in detail and solved in
the following sections.

III. ATTACK CHARACTERIZATION AND
FEASIBILITY ANALYSIS

In this section, we propose a type of deception attacks and
analyze how an attacker can launch deception attack on the
remote estimation system. We first discuss what resources
are available to the attacker. Next, the stealthiness of an
attack can be achieved so that the false data detector can be
bypassed. In other words, feasibility of our proposed attack
is addressed.

A. False Data Deception Attack

To run remote estimation based on Kalman filter, the smart
sensor sends innovation sequence zk = yk − Cx̂−k to the
remote estimator. However, the innovation signal is obtained
and modified by a malicious attacker. The attacker is in-
tended to deceit the remote estimator by sending incorrect
innovation information. The strategy of an attacker therefore
can be described as launching the attack by falsifying zk
without detection by the false data detector described above.
At each time step k, a generalized attack strategy is

z̃k = fk(zk), (10)

where zk is the innovation intercepted by the attacker, z̃k is
the actual innovation provided by the attacker to the remote
estimator, and fk(·) is an arbitrary function. In order to avoid
being detected by a χ2 detector, the falsified innovation z̃k
should also follow a normal distribution as zk does, i.e.
z̃k ∼ N (0, CPC ′ + R). Note that the random variable of
innovation sequence is independent and so is their effect on
the estimation error covariance. Therefore, it is reasonable to
assume the attack is in the form of (10), which only modifies
the present innovation.

B. Feasibility of Proposed Attack

According to the analysis presented previously, the only
information for the attacker to falsify the innovation data
without being detected by χ2 detector is the variance of
zk, which is CPC ′ + R. If the attacker can acquire the
parameters of system in (1) and in (2), namely A, C, Q
and R, the variance can be calculated by the attacker. By
solving the following discrete time infinite horizon Riccati
equation

P = APA′ +Q−APC ′(CPC ′ +R)CPA′

to obtain P , the attacker can obtain the desired variance
information about zk.

The above assumption about the resources available to the
attacker is too strong. Simultaneously acquiring knowledge
of A, C, Q and R is not an easy task. In the following
discussion, we will explain that the attacker can still obtain
the variance information after sufficiently long time by
adopting interval estimation technique.

Interval estimation is common in statistics to estimate
the statistic of a random variable by sampling the random
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variable for several times. This estimate gives the probability
of the random variable being in a region.

Suppose a random variable X following normal distri-
bution with unknown variance σ2 has been sampled for n
times, and let the samples be Xi, i = 1, · · · , n. We define
the following compound random variables to facilitate the
expression followed.

X̄ =
1

n

n∑
i=1

Xi,

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2,

where X̄ is the sample mean, and S2 is the sample variance.
We would like to infer the variance of X from the sampled
data. According to knowledge in statistics, we have

(n− 1)S2

σ2
∼ χ2(n− 1),

where χ2(n − 1) stands for a χ2 distribution with n − 1
degrees of freedom. The probability of the variance σ2 falling
into an interval with confidence level 1− β is given by

P

[
(n− 1)S2

χ2
β
2

(n− 1)
< σ2 <

(n− 1)S2

χ2
1− β

2

(n− 1)

]
= 1− β (11)

where χ2
α(n) is the fractile of χ2 distribution and is defined

as

P
[
χ2(n) > χ2

α(n)
]

= α

As we can see in (11), when the size of sampled data
grows, the region will shrink if the confidence level 1 −
β is fixed. That is to say, if the attacker observes zk for
sufficiently long time, he can pinpoint the variance of zk in
a tight neighborhood with high confidence level.

In the above discussion, we analyzed the feasibility of the
proposed deception attack. Furthermore, we show that the
attack can be launched even if the system information, i.e.
A, C, Q and R is absent. The next question is that what
the optimal attack in the set of all feasible attacks is. The
optimality discussed here originates from the perspective of
the attacker. Namely, the optimal attack should maximize the
estimation error covariance of the remote estimator. The next
section gives solution to the optimality problem.

IV. PERFORMANCE ANALYSIS

In this section, we consider the remote estimator under
the proposed attack (10). We first derive the estimation error
covariance propagation equation in the presence of deception
attack. A criterion of whether a strategy can maximize the
estimation error is obtained. This criterion only reflects the
covariance evolution under an attack. Motivated by this
observation, we finally obtain a simple attack strategy, which
simply flips the sign of intercepted innovation zk, and is
capable of providing optimal attack. It is proven that this
simple strategy is powerful enough to meet the goal of
maximizing destruction on the remote estimation.

A. Estimation Error Propagation

The previous section discussed the feasibility of our pro-
posed attack. The remote estimator would receive malicious-
ly modified innovation z̃k and update its estimate of the
system process based on the following equations

x̃−k = Ax̃k−1, (12)

x̃k = x̃−k +Kz̃k, (13)

where K is the steady state Kalman filter gain defined in (9).
Based on the analysis in previous section, it is possible for

an attacker to falsify innovation used to update the remote
estimation and bypass a χ2 detector. Therefore, although the
received innovation may not be the original one, the remote
estimator can still update its estimate according to (12) and
(13). As a result, the estimation gradually deviate from the
real system states. The following lemma illustrates how the
estimation error covariance evolve under the deception attack
of the form (10).

Lemma 1 Given the attack z̃k on the remote estimation
system described in (10), the recursion of the estimation error
covariance at the remote estimator is as follows

P̃−k = AP̃−k−1A
′ +Q+APC ′ΣCPA′

−AΨkΣCPA′ −APC ′ΣΨk
′A′, (14)

where Σ = (CPC ′ +R)−1, Ψk = E
[
(xk − x̃−k )z̃′k

]
.

Proof: Let us assume that the concerned Kalman filter
has entered in steady state before the attack begins.

Denote the a posterior estimation error and the a prior
estimation error as ẽk = xk − x̃k and ẽ−k = xk − x̃−k , then

ẽk = xk − x̃k
= xk − x̃−k −Kz̃k
= ẽ−k −Kz̃k,

and

ẽ−k = xk − x̃−k
= Axk−1 + wk−1 −Ax̃k−1
= Aẽk−1 + wk−1,

where K = PC ′(CP̂C ′ +R)−1 is the steady state Kalman
filter gain.

The a posterior estimation error covariance and the a prior
estimation error covariance are given as

P̃k = P̃−k +K(CPC ′ +R)K ′ −KΨ′k −ΨkK
′, (15)

P̃−k = AP̃k−1A
′ +Q, (16)

where Ψk = E
[
(xk − x̃−k )z̃′k

]
.

Plug (15) in (16), we obtain

P̃−k = AP̃−k−1A
′ +Q+AK(CP̃C ′ +R)K ′A′

−AKΨ′kA
′ −AΨkK

′A′

= AP̃−k−1A
′ +Q+APC ′ΣCPA′

−AΨkΣCPA′ −APC ′ΣΨk
′A′,
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where Σ = (CPC ′ +R)−1.
The closed form of error propagation is derived in this

lemma. In the perspective of an attacker, who is interested
in degrading the performance of the estimation system as
much as possible, the next question is how to maximize the
estimation error in each time step. In next subsection, we
will answer this question. Furthermore, the effect of such an
attack is also be analyzed.

B. Optimal Attack
In this subsection, we first present a lemma in which a

criterion is provided to test whether an attacker can maximize
the effect of its attack. Based on obtained result, we find
the gap between optimal estimation and worst estimation in
presence of a deception attack.

Lemma 2 Consider an attack z̃k on the system described
in (10), the attack can maximize the prior estimation error
covariance P̃−k in each time step if the following condition
is satisfied

Ψk = E[ẽ−k z̃k] = −PC ′. (17)

Proof: Note that when the Kalman filter is applied,
the prior estimation error covariance is minimized [12].
According to the principle of orthogonality,

E[(ẽ−k −Kz̃k)z̃′k] = 0. (18)

By expanding (18), we obtain

Ψk = E[e−k z̃
′
k] = E[Kz̃kz̃

′
k] = K(CPC ′ +R) = PC ′.

(19)

Consequently, when Ψk = PC ′, the a prior estimation er-
ror covariance P̃−k in (14) is minimized, which is equivalent
to the following function being minimized.

f(Ψk) = APC ′ΣCPA′ −AΨkΣCPA′ −APC ′ΣΨ′kA
′.

(20)

Therefore, for any matrix ∆ compatible in dimention, we
have

f(PC ′ + ∆)− f(PC ′) = A∆ΣCPA′ +APC ′Σ∆′A′ ≥ 0.

Following a similar argument, we have

f(−PC ′)− f(−PC ′ −∆)

= A∆ΣCPA′ +APC ′Σ∆′A′ ≥ 0,

which suggests that f(Ψk) is maximized when Ψk = −PC ′.
This is equivalent to (14) being maximized. Thereupon, the
optimal attack should satisfy (17).

By substituting Ψk in (14) with (17), the estimation error
covariance propagates under optimal deception attack is
derived as follows

P̃−k = AP̃−k−1A
′ +Q+ 3APC ′(CPC ′ +R)−1CPA′.

Meanwhile, recall that if z̃k = zk, i.e., the optimal estimation
is used for update in the remote estimator, we will have the
following error covariance propagation instead.

P̃−k = AP̃−k−1A
′ +Q−APC ′(CPC ′ +R)−1CPA′.

As the two iterations differ by 4APC ′(CPC ′+R)−1CPA′,
if the system is stable, the gap between the two iterations will
converge to a constant value. If the system is unstable, the
gap will diverge to infinity.

With Lemma 2, the set of the optimal attack policies
could be characterized. However, we would not derive an
optimal attack policy directly from this criterion. Instead, we
demonstrate that a linear attack strategy is powerful enough
to meet (17) and thus renders the optimal attack.

C. Optimal Attack in a Linear Form

Note that (17) in Lemma 2 is concerned with the covari-
ance of two random variables. The covariance only reflects
the linear properties in random variables. This lead us to
wonder whether a linear attack is capable of providing such
an optimal attack which maximizes the estimation error
covariance in each time step. Consider the set linear attack
strategies of the following form

z̃k = Tkzk.

Then we compute E
[
(xk − x̃−k )z̃′k

]
by comparing it with

equation (25) in [11]. The expression is obtained as follows

E
[
(xk − x̃−k )z̃′k

]
= PC ′T ′k.

Theorem 1 The linear attack policy z̃k = −zk can maxi-
mize the estimation error covariance in each time step.

Proof: Under the attack z̃k = −zk, we have

Tk = −I.

Therefore,

Ψk = E
[
(xk − x̃−k )z̃′k

]
= −PC ′,

which meets the sufficient condition of the optimal attack.

V. NUMERICAL EXAMPLES

To validate the theoretical results obtained in the previous
sections, several numerical simulations are presented in this
section. We compare the impact of the optimal deception
attack with the case when the communication network is
blocked, i.e., the innovation is not available to the remote
estimator. This scenario can also be taken as a DoS attack,
in which the innovation is zero. As a consequence, the a pos-
terior state estimate and its error covariance is equal to those
of the prior estimate. The optimal attack is implemented by
flipping the sign of the innovation. The process we consider
is a stable first-order process whose parameters are A = 0.8,
C = 1, Q = 1 and R = 1.

The simulation starts from the time k = 0 and ends at
k = 100. During the time slot between 20 and 40, the
communication is under the DoS attack. During the time slot
between 60 and 80, the optimal deception attack is launched.
Fig. 2 and 3 present how the remote state estimate and its
corresponding error covariance evolve.

As it is shown in Fig. 2, during the time interval[0, 20], the
system is in normal operation and the remote state estimate
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perfectly follows the estimate of Kalman filter. From the time
slot k = 20, the communication network is blocked and the
remote estimate simply projects its estimate in each time
step. After k = 40, the communication channel is recovered
and the remote estimator gradually bring the state estimate
to the optimal value. During [60, 80], the deception attack
is launched and the remote estimate moves to the opposite
direction with respect to the estimate of the Kalman filter.
After the attack ends, the state estimate gradually recovers
as it does during [40, 60].

In Fig. 3, we observe that the error covariance does not
diverge but shifts to a value much greater than Pk, which
is consistent with our analysis on the gap between Kalman
filter and optimal deception attack. Since P̃k is bounded,
x̃k is also bounded. It is obvious that the impact caused
by optimal deception attack is greater than that of the DoS
attack.

VI. CONCLUSION

We propose a novel class of deception attacks against
remote estimation systems. This type of attack can degrade
the performance of the Kalman filter in a remote estimator
by falsifying the innovation zk sent by sensors. This attack
is able to bypass a χ2-based false data detector by keeping
certain statistical property unchanged. After analyzing the
feasibility of this attack, we study the propagation of the error
covariance of estimation when the innovation-based attack
is launched in the system. A criterion for maximizing the
error covariance is derived from the propogation. We further
provide a simple linear attack which simply flips the sign
of the innovation and is able to meet the criterion obtained.
Future work on this subject might include on how to detect
this type of attacks. Moreover, if the remote estimator is
aware of the potential existence of such attacks, the decision
of how to minimize its estimation error covariance is another
interesting topic.
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