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Abstract: We propose models for the decision-making process of human drivers in an overtaking
scenario. First, we mathematically formalize the overtaking problem as a decision problem with
perceptual uncertainty. Then, we propose and numerically analyze risk-agnostic and risk-aware
decision models, which are able to judge whether an overtaking is desirable or not. We show
how a driver’s decision-making time and confidence level can be primarily characterized through
two model parameters, which collectively represent human risk-taking behavior. We detail an
experimental testbed for evaluating the decision-making process in the overtaking scenario.
Finally, we present some preliminary experimental results from two human drivers.
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1. INTRODUCTION

1.1 Motivation

Transportation networks face the mixed-autonomy chal-
lenge wherein automated vehicles, with various degrees of
autonomy, are gradually being introduced into road traffic:
Lazar et al. (2017); Mehr and Horowitz (2019); Wei et al.
(2019). For instance, the first full-sized automated bus will
begin to operate in Singapore in conjunction with regular
traffic this year, see Wei (2019), and automated minibuses
already drive regularly in confined areas in Stockholm:
Löfgren (2017). In these mixed traffic environments, there
are two types of decision-makers: human drivers and au-
tomated vehicles. The safety-level is determined by the
interplay between these two types of agents.

The design of decision strategies for automated vehicles re-
quires a thorough understanding of human driver decision-
making processes. Here, it is important not just to predict
what the human will do, but to find the underlying mecha-
nisms why the human makes the decision. Obtaining these
key mechanisms is important in its own right, but can also
improve decision-making policies for automated vehicles
(e.g., enhancing and guiding model-free human prediction
models) and to advance driver assistance systems (such as
alerting the human driver when an unsafe mode of driving
occurs).

Motivated by these observations, this paper considers the
decision-making process of human drivers in overtaking
scenarios, one of the most dangerous scenarios drivers can
⋆ This work is supported by the Knut and Alice Wallenberg Foun-
dation, the Swedish Strategic Research Foundation, and the Swedish
Research Council.

encounter, e.g., Hegeman et al. (2004); Wang and Knipling
(1994); Barr and Najm (2001). Overtaking scenarios are,
from an experimental point of view, rich in the sense that
the human is making decisions in a dynamic environment
under limited time and subject to risk.

1.2 Contribution

We study the decision-making process of a human driver
in an overtaking scenario as illustrated in Fig. 1. Our
contributions are three-fold:

(1) We introduce a mathematical formulation of the over-
taking problem. In this formulation, an ego vehicle E
driven by a human is on a two-way road stuck behind
a slow-moving vehicle O, and with an approaching vehicle
M in the other direction. E hence has a choice: overtake
or wait. We assume E has perfect perception of O, but
sequentially receives noisy measurements of M , since M is
supposed to be further away.

(2) We propose decision models judging whether E should
overtake or not. Each decision model consists of an esti-
mator and a decision rule to overtake or wait based on
the current estimate. We consider two decision rules: one
risk-agnostic rule that assumes the estimate to be ground-
truth, granting an overtaking if the estimate indicates a
safe overtaking, and one risk-aware rule that only grants
an overtaking if it is confident enough that an overtaking is
safe (based on the confidence of the estimate). We analyze
the behaviors emerging from these decision models.

(3) We introduce an experimental testbed where a human
driver performs overtaking maneuvers in a driving simu-
lator. We explain the setup of the experiment and present
some preliminary results.



Fig. 1. The considered overtaking scenario.

1.3 Related work

Substantial efforts have been dedicated recently to study
and improve the decision-making process of automated
vehicles, see Brechtel et al. (2014); Furda and Vlacic
(2011); Cunningham et al. (2015). Here, the mixed traffic
condition has attracted the use of sophisticated human
prediction models for guiding the automated vehicle, e.g.,
Ziebart et al. (2009); Sadigh et al. (2016); Stefansson et al.
(2019). Even though the expressiveness of these models
varies, the primary focus is on assisting the automated
vehicle by predicting how the human will behave, and not
on understanding the underlying mechanisms yielding the
human decision. Hence, the assumptions made (e.g., the
human has perfect information or knows the automated
vehicle’s objective) are often left unconfirmed from a
human decision-making perspective.

Extensive work has been conducted in the field of psy-
chology to understand the decision-making process of hu-
mans. From a psychological perspective, the overtaking
scenario involves a choice between a certain undesirable
alternative (stay) and a risky alternative (overtake) with
both a desirable outcome (successful) and a highly un-
wanted outcome (unsuccessful). Such choice situations
have long been the fruit fly of behavioral decision-making
research with numerous systematic behaviors observed,
e.g., a general aversion to risky or uncertain alternatives,
see Oppenheimer and Kelso (2015), and related models
such as Prospect Theory and Decision Field Theory, see
Kahneman and Tversky (1979), Busemeyer and Townsend
(1993). Previously, human behavior in overtaking scenarios
has been studied by statistical analysis of experimental re-
sults, see Gray and Regan (2000, 2005); Gordon and Mast
(1970). In contrast, we provide a mathematical model
for human decision-making in overtaking scenarios based
on risk. Finally, the human perception of our model is
based on optimal use of the observed information leading
to a Kalman filter formulation. Speekenbrink and Shanks
(2010) validate human prediction models in dynamic en-
vironments based on Bayesian filters, but focus on non-
interactive stock market predictions and not on driving
scenarios.

1.4 Outline

The paper is organized as follows. The mathematical
formulation of the overtaking problem is described in
Section 2. Our decision models for the overtaking problem
are presented in Section 3. A numerical study of our
decision models is performed in Section 4, followed by the
description of our experiment and its results in Section 5.
Section 6 concludes the paper.
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Fig. 2. The underlying structure of the proposed decision
models.

2. PROBLEM FORMULATION

Consider an ego vehicle E driving on a two-way road as in
Fig. 1, stuck behind a slow-moving vehicle O, and with an
approaching vehicle M in the opposite direction. Having a
higher desired speed than O, E has a choice: stay behind O
or overtake it? This choice should depend on the position
and velocity of M , as well as how accurate E estimates
these variables. For example, if E’s current estimate is
inaccurate, it might decide to stay behind O for some
time, accumulating more information to obtain a better
estimate. However, if E waits too long, M will get too
close, prohibiting an overtaking.

Solutions to this overtaking problem are proposed in
the next section via decision models judging whether an
overtaking is desirable or not. The decision models all
make the following standing assumptions:

(i) E has been tailing O for some time with a constant
distance and a constant speed vo (O’s speed);

(ii) E has an accurate estimate of the relative position
and speed of O;

(iii) E can sequentially obtain noisy measurements of the
relative position and velocity of M .

The dynamics are modelled as a discrete-time system
indexed by t ∈ N (start time t = 0) with state s(t) =
[∆x(t), ∆v(t)]T , where ∆x(t) is the longitudinal distance
between E and M , and ∆v(t) := vo − vm is the corre-
sponding velocity difference. The state evolves with time
step ∆t > 0 according to

s(t+ 1) = Fs(t)

where F = [1,−∆t; 0, 1]. Furthermore, in accordance
with Assumption (iii), at each time t, E obtains noisy
measurements

y(t) = s(t) + η(t),

where η(t) ∼ N (0, R(t)) is Gaussian noise with zero mean
and covariance R(t).

3. DECISION MODELS

This section considers decision models for the overtaking
problem. The considered decision models for the ego
vehicle E have the structure in Fig. 2. At each time step t,
the estimator, potentially initialized by a prior, is updated
with a new (perceptual) measurement of the environment.
The updated estimate is then passed to a decision rule
which evaluates the decision based on the current estimate.
The process ends with an action being taken (overtake or
wait).

3.1 Estimator

The estimator assumes that E takes into account the
obtained perceptual measurements {y(0), . . . , y(t)}, and



uses this information optimally to obtain an estimate of
the current state s(t). Mathematically, let ŝt|t′ denote the
estimate at time t given measurements {y(0), . . . , y(t′)}
(t′ ≤ t), and Pt|t′ = E[(s(t) − ŝt|t′)(s(t) − ŝt|t′)

T ] its cor-
responding covariance error. Our optimality assumption
then states that the estimator ŝt|t should minimize the
covariance error

min
ŝt|t

E[(s(t)− ŝt|t)(s(t)− ŝt|t)
T ]. (1)

For a given initial distribution s(0) ∼ N (µ,Σ), the Kalman
filter estimate ŝt|t minimizes (1), obtained recursively via
the Kalman filter equations with initialization ŝ0|−1 =
µ and P0|−1 = Σ. In practice, the true distribution
s(0) ∼ N (µ,Σ) is unknown to E. The estimator can
then instead have an internal guess (µ0,Σ0) of (µ,Σ),
initializing the Kalman filter with ŝ0|−1 = µ0 and P0|−1 =
Σ0, i.e., using the proxy s(0) ∼ N (µ0,Σ0). For brevity,
we then say that the Kalman filter is initialized with
prior (µ0,Σ0). Alternatively, the estimator does not have
a prior (µ0,Σ0), but, for instance, estimates s(0) with
the first measurements. One such case we consider is the
initialization ŝ0|0 = y(0) and P0|0 = R. We then say that
the Kalman filter is initialized without prior. In both cases,
subsequent estimates are obtained via the Kalman filter
equations.

An important aspect with having a prior (µ0,Σ0) is that it
enables us to capture a priori belief of E, such as bias in the
decision model. Since human actions typically depend on
past experiences (e.g., the human has learned), the prior
serves as a tool to model such features. As an example,
an experienced driver might have a very strong prior that
the meeting car M will appear right after another meeting
vehicle due to previous encounters of similar situations,
while an unexperienced driver might exclusively focus on
what she sees having a very uncertain prior. In Section 4,
we systematically investigate how such priors can affect
the overtaking decision.

We next consider our decision rules: the risk-agnostic and
the risk-aware decision rules.

3.2 Decision Rules

Risk-agnostic decision rule The risk-agnostic decision
rule obtains at each time t an estimate T̂m(t) of the
time Tm(t) when E would meet M during overtaking,
and compares it with the time To it would take E to
overtakeO. It then overtakes if To < T̂m(t). More precisely,
assuming E needs to cover a relative distance ∆xo when
overtaking O, holding a overtaking velocity vto > vo, we
get

To =
∆xo

vto − vo
.

Here, we have assumed that E can change lanes momen-
tarily and velocity momentarily from vo to vto and that vto
is constant throughout the overtaking, yielding a constant
overtaking time To. Furthermore,

Tm(t) =
∆x(t)

vto − vm
=

∆x(t)

∆v(t) + (vto − vo)

yields the estimate T̂m(t) = ∆x̂(t)/[∆v̂(t) + (vto − vo)].
The decision rule is then

D(ŝt|t) =

{

Overtake if To < T̂m(t)

Wait otherwise.

Risk-aware decision rule The risk-agnostic decision rule
overtakes whenever To < T̂m(t), independent of the un-

certainty in T̂m(t). Thus, the decision rule is agnostic to
risk and, hence, is potentially unsafe. To account for the
uncertainty in the current estimate, the risk-aware decision
rule overtakes only when the probability of the event
To < Tm(t) is high, conditioned on the current estimate
ŝt|t. More precisely, the decision rule is

D(ŝt|t) =

{

Overtake if P(To + β < Tm(t) | ŝt|t) > 1− δ

Wait otherwise.
(2)

Here, 0 ≤ δ ≤ 1 is the confidence level of the decision,
and β ≥ 0 prescribes an additional time margin for the
overtaking.

Define the constant row vector and scalar L := [−1, To + β]
and b := −(To + β)(vto − vo). The computation process
for (2) is then:

(1) Obtain jointly Gaussian distribution of [Ls(t), ŝt|t].
(2) Obtain conditional Gaussian distribution Ls(t)|ŝt|t.
(3) Calculate the confidence P(To + β < Tm(t) | ŝt|t) =

P(Ls(t) < b | ŝt|t
)

(using Ls(t)|ŝt|t) and overtake if

and only if it is greater 1− δ. 1

Under the assumption that the Kalman filter is initial-
ized with prior (µ,Σ), the conditional Gaussian distri-
bution Ls(t)|ŝt|t is equal to Ls(t)|y0, . . . , yt. Therefore,
the confidence in (2) is equal to ct := P(To + β <
Tm(t) | ŝt|t) = P(To + β < Tm(t) | y0, . . . , yt), hence
optimal, since there is no performance loss working with
ŝt|t instead of the measurements. One may also ask if the
decision rule is optimal (under certain conditions) given
the current confidence ct. The answer is yes. To see it,
abbreviate the events “overtaking successful”, “overtak-
ing not successful”, and “not overtaking” by OS, ONS,
NO, respectively. Let uE be the utility of E defined by
the triple (uE(OS), uE(ONS), uE(NO)) and E[uE |a] de-
note expected utility with respect to ct given action a ∈
{Overtake,Wait}. That is, E[uE |Overtake] = ctuE(OS) +
(1 − ct)uE(ONS) and E[uE |Wait] = uE(NO). Consider
the decision rule

D(ŝt|t) =

{

Overtake if E
[

uE |Overtake
]

> E[uE |Wait]

Wait otherwise
.

(3)
It is easy to see that (2) coincides with (3) provided

uE(ONS) < uE(NO) < uE(SO)

(1− δ)uE(OS) + δuE(ONS) = uE(NO).

Hence, (2) is in this sense optimal being equivalent to the
solution of an expected utility maximization.

4. NUMERICAL EVALUATIONS

In this section, we numerically investigate the performance
of the decision models. We start with the risk-agnostic

1 Here and throughout this section, we assume that E and M always
travel towards each other: P(∆v(t) > 0) = 1.



Fig. 3. Probability P(To < T̂m(t)) that the risk-agnostic
decision rule with estimator having no prior grants an
overtaking as a function of time in blue, and correct
decision 1{To < Tm(t)} in red.

decision rule, showcasing its shortcomings, and then con-
tinue with the risk-aware decision rule illustrating how the
parameters in the model affect the outcome, in particular
having a prior.

4.1 Risk-agnostic decision rule

We combine the risk-agnostic decision rule with an esti-
mator with no prior. The parameters used are found in
Table 1, assuming, for simplicity, constant noise covariance
R(t) ≡ R. To get some intuition, we plot the probability

P(To < T̂m(t)) that this decision model grants an over-
taking 2 as a function of time (start time zero), seen in
Fig. 3, together with the correct decision 1{To < Tm(t)}.
If the overtaking probability is lower than the correct
decision (i.e., the decision model sometimes does not grant
overtaking when it should), then we have a performance
loss, while if the overtaking probability is higher than the
correct decision (i.e., the decision model sometimes grant
overtaking when it should not), then we have a safety loss.
Since the rule is risk-agnostic, it should not differentiate
between these losses and we hence suspect them to be
within the same order of magnitude. Looking at Fig. 3, we
see that this is also the case. In particular, the safety loss
is a major part of the deviation, which is undesirable.

Table 1.

∆t ∆x(0) ∆v(0) ∆xo vto vo vm R

0.2 550 55 24 30 25 −30 diag(802, 152)

The safety-loss can also be illustrated in an “available
time-decision time”-diagram where the decision time is
the first time the decision rule grants an overtaking and
the available time is the time when M passes E (if
no overtaking). We vary the available time by setting
different initial distances between E and M . Running 50
realizations for each time t ∈ {4, 4 +∆t, 4 + 2∆t, . . . , 15−
∆t, 15}, we obtain a scatter plot seen in Fig. 4, where
the red line marks the border between safe overtakings

2 Here, “grants an overtaking” means that the decision rule consid-
ers it desirable to overtake but does not execute the action.

Fig. 4. Scatter plot for the risk-agnostic decision rule with
estimator having no prior. The red line marks the
border between safe overtakings (To < Tm(t)) and
unsafe overtakings (To > Tm(t)).

(To < Tm(t)) and unsafe overtakings (To > Tm(t)). The
risk-agnostic feature is also here present with a large part
of undesired, unsafe overtakings for small available times.

4.2 Risk-aware decision rule

We start by investigating the risk-aware decision rule with
no prior in the estimator and then continue with the prior
case. The setup in Table 1 is used throughout.

Decision rule without prior We start by illustrating the
typical behavior of the confidence P(To + β < Tm(t) | ŝt|t)
as a function of time t, noting that it fully determines the
output of the decision rule (2). One expects the confidence
to have a “low-high-low” trend due to few measurements
in the beginning (but large amounts of time) and no time
in the end (though many measurements). This is also what
we generally get, with example in Fig 5a for δ = 0.1 and
β = 0. Here, the black line is the average confidence over
1000 realizations while the grey area denotes one standard
deviation, and the correct decision 1{To < Tm(t)}, the
confidence threshold 1 − δ (see (2)), and the desired
decision 1{To + β < Tm(t)} are plotted in red, dashed
green, and dashed orange, respectively. We note that
varying δ simply corresponds to vertically changing the
threshold 1 − δ in dashed green. With δ = 0.1, this
threshold is low and the rule quickly grants overtakings.
The feature is also apparent in a corresponding scatter plot
seen in Fig. 5b, with almost immediate decision times and
a small portion of unsafe overtakings for small available
times. Decreasing δ and thus increasing the threshold 1−δ
(increasing the dashed green line in Fig. 5a) results in more
risk-averse behavior with longer decision times and less
granted overtakings for small available times, as seen in
Fig. 5c with δ = 10−4 and β = 0. In particular, note the
increasing trend in decision time for decreased available
time, due to the fact that a smaller available time needs
more measurements to yield a high confidence.

So far, we set β = 0. Adding a time margin β > 0 is
equivalent to decreasing the available time by β seconds. In
a plot like Fig. 5a, adding β > 0 shifts 1{To + β < Tm(t)}
horizontally to the left by β relative to the correct decision,



(a) 1000 realizations, δ = 0.1 and β = 0 (b) δ = 0.1, β = 0 (c) δ = 10−4, β = 0

Fig. 5. (a) The average confidence P(To + β < Tm(t) | ŝt|t) in black with one standard deviation in grey for 1000
realizations, with δ = 0.1 and β = 0. The correct decision 1{To < Tm(t)}, the desired decision 1{To + β < Tm(t)}
and 1 − δ are plotted in red, dashed orange and dashed green respectively. (b) Scatter plot as in Fig. 4 for the
risk-aware decision rule with no prior in the estimator and δ = 0.1, β = 0. (c) Scatter plot as in Fig. 4 for the
risk-aware decision rule with no prior in the estimator and δ = 10−4, β = 0.

(a) δ = 0.01 and β = 3 (b) prior µ = s(0) and Σ0 (c) prior µ0 = [0,∆v(t)]T and Σ0

Fig. 6. (a) Plot as in Fig. 5a for the risk-aware decision rule with δ = 0.01, β = 3 and no prior in the estimator. (b)
Plot as in Fig. 5a for the risk-aware decision rule with prior µ = s(0) and Σ0 as in (4), and δ = 0.01, β = 0. (c)
Plot as in Fig. 5a for the risk-aware decision rule with prior µ0 = [0,∆v(t)]T and Σ0 as in (4), and δ = 0.01, β = 0.

(a) prior µ0 = [0,∆v(t)]T and Σ0 (b) prior µ0 = [2∆x(0),∆v(t)]T and Σ0 (c) prior µ0 = [2∆x(0),∆v(t)]T and Σ0

Fig. 7. (a) Scatter plot as in Fig. 4 for the risk-aware decision rule with prior µ0 = [0,∆v(t)]T and Σ0 as in (4),
and δ = 0.01, β = 0. (b) Plot as in Fig. 5a for the risk-aware decision rule with prior µ0 = [2∆x(0),∆v(t)]T

and Σ0 as in (4), and δ = 0.01, β = 0. (c) Scatter plot as in Fig. 4 for the risk-aware decision rule with prior
µ0 = [2∆x(0),∆v(t)]T and Σ0 as in (4), and δ = 0.01, β = 0.

with an example in Fig. 6a for δ = 0.01 and β = 3. Here,
the decision rule has less time to make a decision (having
the dashed orange line as the new time limit) with lower
confidence as a result. Also, the variation is larger since the
first measurements play a more crucial role for estimating
if an overtaking is desirable or not. In a scatter plot, the
addition of β just shifts the distribution to the right (by
β) relative to the case β = 0.

Decision rule with prior We now consider the risk-aware
decision rule and an estimator with a prior (µ0,Σ0), fixing
δ = 0.01 and β = 0 throughout. Assuming first a correct
mean in the prior, µ0 = s(0), a very low Σ0 results in
a confidence following the correct decision 1{To < Tm(t)}
closely (due to an accurate initial estimate of s(0)). Higher
values of Σ0 yields more uncertain confidence, though still
more certain than having an estimator with no prior, as



Fig. 8. The experimental setup for the overtaking scenario.

illustrated in Fig. 6b with 3

Σ0 =

[

1002 0
0 202

]

. (4)

The difference is most apparent in the beginning of Fig. 6b
(0-1 s), where the confidence with a prior is higher with
lower variation (due to initial guess of s(0)) than the no-
prior case (having no initial guess). For later times, the two
confidences asymptotically approach similar shapes, as the
measurements become dominant. In the limit Σ0 → ∞, the
two cases become identical.

Consider now the case when we instead have a bias:
µ0 6= s(0). Assume first a pessimistic bias expecting
M to be closer than the true value. A result with µ0 =
[0,∆v(t)]T and Σ0 as in (4) is given in Fig. 6c. Here, the
decision model is initially unsure whether an overtaking is
desired due to the pessimistic prior, but as measurements
accumulate, it approaches the no-prior decision model.
The delay in high confidence is also seen in a scatter plot
depicted in Fig. 7a.

Finally, we conclude with an optimistic bias µ0 =
[2∆x(0),∆v(t)]T and Σ0 as in (4). The result is seen
in Fig. 7b. The decision model is initially highly certain
that an overtaking is desirable, which results in occasional
unsafe overtakings seen in Fig. 7c for small available times.

4.3 Summary

The risk-agnostic decision rule is subject to unsafe over-
taking behavior due to its risk-agnostic feature. The risk-
aware decision rule has safer overtaking with varying be-
havior depending on the parameters δ, β and potential
prior (µ0,Σ0): lower δ yields more certain overtakings
with longer decision times, especially for small available
times (see Fig. 5c); higher β increases the extra marginal
time in overtakings corresponding to horizontally shifted
distributions in the scatter plots. Finally, the risk-aware
decision rule having a prior (µ0,Σ0) with pessimistic bias
yields longer overtaking times due to initial mismatch
while an optimistic bias makes more rush decision with
occasional unsafe overtakings for short available times.

5. EXPERIMENTAL EVALUATION

In this section, we outline the experimental setup that
we developed and designed for collecting data on human
3 That is, 100 meter standard deviation in ∆x(0) and 20 m/s
standard deviation in ∆v(0).
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Fig. 9. The experimental road map with an initial warm up
region and 11 possible regions to setup an overtaking
scenario.

overtaking decision-making processes and present prelim-
inary results from experimental trials on real humans.
This experimental setup will be used for an experimental
campaign, discussed further in Section 6.

5.1 Experimental Setup

The aim of our experimental setup is to provide a realistic
environment in which human drivers end up in scenarios
where they need to decide whether to overtake a slow
vehicle or not.

For our driving simulator, we built a custom driving
environment and API on top of the CARLA simulator
(Dosovitskiy et al. (2017)). We interfaced a Logitech G29
steering wheel and pedals with the simulator. We position
the human driver’s perspective in the simulator relative to
the steering wheel such that the driver feels that she is in
the cabin of the simulated vehicle. An example of a human
driver interacting with the simulator is shown in Fig. 8.

At the beginning of each trial, we first introduce the
subject to the simulator and the task we would like her
to complete. Then, we allow her to use the simulator for
15 minutes while we record several data points on her
interactions.

In Fig. 9, we show the full route of the experiment.
The experiment starts with 2 minutes of warm-up where
the subject gets used to the controls of the simulator
and encounters vehicles in the oncoming direction. Then,
the subject begins to enter the different stages of the
experiment. In each stage, the subject (E in Section 2)
encounters the following entities:

• a slow vehicle (O in Section 2) in front of the subject
in the same lane, which the subject should try to
overtake;

• a line of blocking vehicles in the oncoming direction,
which should prevent the subject from overtaking
the slow vehicle until the subject is tailing the slow
vehicle; 4 and

• a risk vehicle (M in Section 2) following the line of
blocking vehicles at a random distance (serves as our
random initial condition in a scenario).

4 These vehicles are not described in Section 2, but are used in
the experiment to get vehicle E to tail behind vehicle O; see
Assumption (i) in Section 2.



Fig. 10. A series of snapshots from an example overtaking
by a human driver. In the first snapshot, we can see
the blocking line of vehicles on the left. In the second
and third snapshots the slow vehicle is approached
and the overtaking maneuver has begun. In the final
snapshot, we can see the risk vehicle on the left.

The scenario set up on each stage is illustrated in Fig. 10.
There are a total of 11 stages. For each stage, we measure
the positions and velocities of each vehicle. Furthermore,
we measure the lane crossings of the ego vehicle; these time
stamps are used to determine when the human driver made
her overtaking decision.

5.2 Preliminary Results

We present two illustrative human driver results. The
first human driver is an individual with prior knowledge
of the experiment, called Driver A. The second human
driver is an individual with no prior knowledge of the
experiment, called Driver B. For both drivers, we present
their cumulative driving data over all of their interactions
with the driving simulator, in Fig. 11. We visualize each
of the data sets using the same “available time-decision
time”-diagram used in Section 4.

To detect overtakings, we set the start time to be the
time when E passes the last vehicle in the line of blocking
vehicles. We then wait for E to complete an overtaking
maneuver, i.e. first crossing the lane divider into the lane
of opposing traffic and then crossing the lane divider again
at a position longitudinally greater than O’s position. We
let the decision time be the time (relative to the start time)
when E first crosses the lane divider during the overtaking
maneuver. We consider the available time as the time when
E meets M longitudinally. Finally, we estimate To directly

Fig. 11. The “available time-decision time”-diagram for
Driver A (red circles) and Driver B (blue diamonds).
The line for each subject is determined by the corre-
sponding estimated overtaking time To.

by taking the minimum observed overtaking time for the
subject.

We collected data on a total of 72 (60) minutes of driving
time and 27 (25) overtaking decisions from Driver A (B).
We plot the results in red (blue) in Fig. 11, where we
observe the following characteristics about the two driver’s
data sets: 5

• both Driver A and Driver B never make an unsafe
overtaking;

• as available time increases, both Driver A and Driver
B take increasingly more varied time to make a
decision; however, Driver B exhibits a smaller spread;

• the mean decision time remains fairly constant as
available time increases.

We find that the two data sets exhibit phenomenon that
are not completely captured by our decision models. In
particular, there is more variance in the experimental data
at larger available times than in the numerical results.
Also, the fairly constant mean decision time indicates
that the human decision process may not only involve
continuous updates of core variables, but also rely on some
all-or-nothing behaviors. However, to determine whether
these are real phenomena, we will need to collect a more
comprehensive data set. As discussed in the concluding
section, we will begin an experimental campaign to obtain
this statistically meaningful data set to further investigate
the validity of our models.

6. CONCLUSION

This paper considered the decision-making process of hu-
man drivers in overtaking scenarios. The overtaking prob-
lem was mathematically formalised as a decision problem
for the ego vehicle (possibly driven by a human) with per-
ceptual uncertainty concerning an approaching vehicle in
the opposite lane. Based on this formulation, we proposed

5 Note, the available times for each data set vary due to the random
initialization of the position of the risk vehicle in each scenario and
the driving habits of the individual driver (e.g., some drivers may
keep closer to the slow vehicle, some stay further away).



decision models judging whether an overtaking is desirable
or not. Each decision model is composed by an estimator
and a decision rule, where the latter makes the decision
based on an estimate from the former. The estimator is
implemented as a Kalman filter, and two decision rules
were considered: one risk-agnostic rule that assumes the
estimate to be ground-truth, granting an overtaking if the
estimate indicates a safe overtaking, and one risk-aware
rule that only grants an overtaking when its confident
enough that an overtaking is safe (based on the confidence
of the estimate). We also presented a comprehensive anal-
ysis illustrating how the parameters in the decision models
results in different overtaking behavior. Furthermore, we
presented a realistic experimental testbed that we use
as an evaluation platform for human driving overtaking.
Finally, we presented some preliminary results where we
begin to see the type of data our experimental platform
yields.

Future work includes investigating other estimators (e.g.,
particle filters), and see how the covariance R(t) can
be obtained from perceptual studies in psychology. We
will also start an experimental campaign to obtain a
statistically significant driving behavior data set and see
how the result relates to the current decision models; in
particular, we will estimate β and δ in the risk-aware
decision rule from the obtained data set and see how well
the parameters reproduce the result.
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