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Abstract— This paper proposes a new notion of stabilization
in probability for discrete-time stochastic systems that may
be with unbounded disturbances and bounded control input.
This new notion builds on two sets: target set and region of
attraction. The target set is a set within which the controller
is able to keep the system state with a certain probability. The
region of attraction is a set from which the controller is able
to drive the system state to the target set with a prescribed
probability. We investigate the probabilistic characterizations
of these two sets for linear stochastic control systems. We
provide sufficient conditions for a compact set to be a target set
with a given horizon and probability level. Given a target set,
we use two methods to characterize the region of attraction:
one is based on the solution to a stochastic optimal first-
entry time problem while the other is based on stochastic
backward reachable sets. For linear scalar systems, we provide
analytic representations for the target set and the region of
attraction. Simulations are given to illustrate the effectiveness
of the theoretical results.

I. INTRODUCTION

Stabilization of a dynamical controlled system is a fun-
damental problem in systems and control. This problem
addresses how to design the control input such that the state
of the dynamical system is stable in some sense. In the
past decades, there have been many research efforts on this
subject [1]. For example, the stabilization of deterministic
nonlinear systems is investigated in [2] and the robust stabi-
lization of uncertain linear systems is studied in [3].

Stochastic modeling of dynamical systems is very impor-
tant in many applications, such as engineering, biology, and
economics. Stabilization of stochastic control systems has
been widely studied by many literatures [4], [5]. Stabilization
in probability is a well-known concept closely related to the
concept of stability in probability. For the interested reader,
please refer to [6] for a more detailed statement of stochastic
stabilization and stability.

In [7], [8], the authors propose a new definition of stabi-
lization in probability for continuous-time nonlinear stochas-
tic systems. This definition consists of region of attraction,
target set, and two probability levels. One probability level
captures the minimal probability that the state remains in the
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target set under some admissible control input after entering
it. The other one provides the minimal probability that the
state is driven to enter the target set from the region of attrac-
tion under some admissible control input within a finite time.
This new definition of stabilization in probability generalizes
the regional stabilization of deterministic dynamical systems
and stands as an intermediate notion between local and global
stabilizations in probability.

In this paper, we extend the notion of stabilization in prob-
ability in [7], [8] for discrete-time stochastic systems, which
also builds on the region of attraction and target set. We
notice that the control input constraints exist in many appli-
cations, e.g., due to the actuator saturation, while the supports
of many stochastic disturbances, e.g., Gaussian noise, are
unbounded. This extension provides a way to establish the
stabilization of systems with unbounded disturbances under
a bounded control input, which is beyond the scope of the
traditional stochastic stabilization. Different from [7], [8], the
focus of this paper is on the characterizations of region of
attraction and target set for linear stochastic control systems.
The main contributions are summarized as follows.

• We show that the target set is consistent with a proba-
bilistic controlled invariant set in our recent work [9],
[10] and derive sufficient conditions for a compact set
to be a target set with a given horizon and a probability
level.

• We provide two methods to characterize the region of
attraction. One is based on the solution of a stochastic
optimal first-entry time problem, which gives an exact
characterization of region of attraction. The other is
based on stochastic backward reachable sets, which
gives an overapproximation of region of attraction.

• For linear scalar systems, we provide analytic represen-
tations for the target set and the region of attraction.

The remainder of this paper is organized as follows.
Section II provides the problem statement. Section III char-
acterizes the target set while Section IV characterizes the
region of attraction. An example in Section V illustrates the
effectiveness of the results. Section VI concludes this paper.

Notation. Let N denote the set of nonnegative integers
and R denote the set of real numbers. For some q, s ∈ N and
q < s, let N≥q and N[q,s] denote the sets {r ∈ N | r ≥ q} and
{r ∈ N | q ≤ r ≤ s}, respectively. Let N̄ = N ∪ {∞}. For
two sets X and Y, X\Y = {x | x ∈ X, x /∈ Y}. When ≤, ≥,
<, and > are applied to vectors, they are interpreted element-
wise. Pr denotes the probability and E the expection. For a
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set X, B(X) denotes the Boreal σ-algebra generated by X.
The indicator function of a set X is denoted by 1X(x), that
is, if x ∈ X, 1X(x) = 1 and otherwise, 1X(x) = 0.

II. PROBLEM FORMULATION

Consider a discrete-time linear control system

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rnx is the state, uk ∈ Rnu the control input,
and wk ∈ Rnx the stochastic disturbance.

We further assume that wk, ∀k ∈ N, are zero-mean
and independent and identically distributed random variables
with density function f(·) and support W. Let the state space
be X = Rnx and the control input space be a compact set
U ⊂ Rnu , i.e., uk ∈ U,∀k ∈ N. Next, we define Markov
policies for the system (1).

Definition 2.1: Given any N ∈ N, a Markov policy µ for
the system (1) is a sequence µ = (µ0, µ1, . . . , µN−1) of
universally measurable maps:

µk : X→ U,∀k ∈ N[0,N−1].

When N = ∞, a Markov policy is a sequence of µ =
(µ̄, µ̄, . . .) of universally measurable map µ̄ : X→ U.

We remark that the Markov policy µ for N = ∞ is
called stationary policy in the literature. LetM be the set of
Markov policies. Given N ∈ N̄, an initial condition x0 and a
Markov policy µ ∈M, one execution generates a sequence
of states (x0, x1, . . . , xN ). In the following, with some abuse
of notation, we also use [0, N ] for N =∞.

Following the definition of stabilization in probability for
continuous-time nonlinear stochastic systems in [7], [8], we
define the stabilization in probability for the discrete-time
system (1).

Definition 2.2: (Stabilization in Probability) Given α, β ∈
(0, 1], N ∈ N̄ and Q,P ∈ B(X) with Q ⊆ P, the system (1)
is said to be (P,Q, N, α, β)-stabilizable in probability if the
following conditions hold:

inf
x0∈Q

sup
µ∈M

Pr{∀k ∈ N[0,N ], xk ∈ Q} ≥ α, (2a)

inf
x0∈P

sup
T∈N

sup
µ∈M

Pr{∃k ∈ N[0,T ], xk ∈ Q} ≥ β. (2b)

Remark 2.1: Different from the definition in [7], [8], a
horizon N is introduced in Definition 2.2. This horizon
captures the time length that the state can be kept in Q
with a given probability α under admissible control inputs.
In particular, the case of the finite horizon N survives the
stabilization of the system (1) when the support set W is
unbounded despite the bounded control inputs, which is
beyond the scope of the traditional stochastic stabilization.

In the above definition, the set Q is called the target set
while the set P is called the region of attraction. The objective
of this paper is to characterize these two sets satisfying
conditions (2b)-(2a) for the given probability levels α, β and
the required horizon N . If Q = P = Rnx , then the system
(1) is always (Rnx ,Rnx , N, α, β)-stabilizable in probability
for any α, β ∈ (0, 1] and N ∈ N̄. To avoid triviality, we

assume that Q ⊆ Rnx is compact. In this paper, we first
solve the following problem.

Problem 2.1: Consider the system (1). Given α ∈ (0, 1]
and N ∈ N̄, determine a compact set Q ∈ B(X) such that
the condition (2a) holds.

After characterizing the set Q, we solve Problem 2.2.
Problem 2.2: Consider the system (1). Given β ∈ (0, 1]

and the target set Q, determine a set P ∈ B(X) such that the
condition (2b) holds.

III. CHARACTERIZATION OF TARGET SET

This section provides an answer to Problem 2.1. We
remark that the target set Q satisfying (2a) is the N -step
probabilistic controlled invariant set in [9], [10]. Introduce
the probability with which the state xk will remain within
Q for all k ∈ N[0,N ] under the policy µ:

pµN,Q(x0) = Pr{∀k ∈ N[0,N ], xk ∈ Q}.

The condition (2a) is equivalent to ∀x0 ∈ Q,

p∗N,Q(x0) , sup
µ∈M

pµN,Q(x0) ≥ α.

To solve Problem 2.1, we consider two cases: N < ∞ and
N =∞.

A. Case 1: N <∞
When N ∈ N, the optimization problem

supµ∈M pµN,Q(x0) is a finite-horizon stochastic optimal
control problem, which can be solved by a dynamic
program.

Lemma 3.1: [11], [12] Define the value function V ∗k,Q :
X→ [0, 1], k ∈ N[0,N ], by the backward recursion:

V ∗k,Q(x) = sup
u∈U

1Q(x)

∫
Q
V ∗k+1,Q(y)f(y −Ax−Bu)dy, (3)

with initialization V ∗N,Q(x) = 1, x ∈ Q. Then,
p∗N,Q(x0) = V ∗0,Q(x). The optimal Markov policy µ∗Q =
(µ∗0,Q, µ

∗
1,Q, . . . , µ

∗
N−1,Q) exists and is given by ∀x ∈ Q,

µ∗k,Q(x) = arg sup
u∈U

1Q(x)

∫
Q
V ∗k+1,Q(y)f(y −Ax−Bu)dy.

Proposition 3.1: For the system (1) and a compact set
Q ∈ B(X), we have that p∗N,Q(x) ≥ α, ∀x ∈ Q, if ∀x ∈ Q,
there exists a u ∈ U such that∫

Q
f(y −Ax−Bu)dy ≥ α 1

N . (4)

Proof: The fact that p∗N,Q(x) ≥ α, ∀x ∈ Q, is
equivalent to that V ∗0,Q(x) ≥ α, ∀x ∈ Q. Let us prove by
induction that

V ∗k,Q(x) ≥ α
N−k
N , ∀x ∈ Q. (5)

From Lemma 3.1, (5) holds when k = N . Assume that (5)
holds for k+1, k ∈ N[0,N−1]. Then, by (3) and (4), it is easy
to show that (5) holds for k. That is, V ∗0,Q(x) ≥ α, ∀x ∈ Q.
The proof is completed.

Corollary 3.1: Consider a scalar system

xk+1 = axk + buk + wk, (6)
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where xk, uk, wk ∈ R, a, b 6= 0, wk ∼ N (0, σ2), and U =
{u ∈ R | |u| ≤ ū} with 0 < ū <∞. For a set Q = {x ∈ R |
|x| ≤ x̄} with x̄ > 0, the fact that p∗N,Q(x) ≥ α, ∀x ∈ Q,
holds if there exists a u satisfying |u| ≤ ū such that

1

2
(erf(

(1− a)x̄− bu
σ
√

2
)− erf(

−(1 + a)x̄− bu
σ
√

2
)) ≥ α 1

N , (7)

where erf(·) is the error function.
Proof: Since wk ∼ N (0, σ2), xk and uk, xk+1 ∼

N (axk + buk, σ
2). The condition (4) is equivalent to ∀x

such that |x| ≤ x̄, there exists a |u| ≤ ū such that

1

2
(erf(

x̄− (ax+ bu)

σ
√

2
)− erf(

−x̄− (ax+ bu)

σ
√

2
)) ≥ α 1

N . (8)

Let z = ax + bu and g(z) = 1
2 (erf( x̄−z

σ
√

2
) − erf(−x̄−z

σ
√

2
)).

Taking derivative with respect to z, we have

dg

dz
= − 1

σ
√

2π
(exp(−(

x̄− z
σ
√

2
)2)− exp(−(

−x̄− z
σ
√

2
)2)).

Considering the monotonicity of the functions exp(−x) and
x2, we have that g(z) is increasing when z ≤ 0 and is
decreasing when z ≥ 0.

Let us prove that ∀x such that |x| ≤ x̄, there exists a u
with |u| ≤ ū such that (8) holds if for any x ∈ {x̄,−x̄},
there exists a u with |u| ≤ ū such that (8) holds. Due to
the symmetry, we only prove the above statement for x = x̄.
Assume that when x = x̄, there exists a u∗ with |u∗| ≤ ū
such that (8) holds. For any all x ∈ [0, x̄], let u(x) = u∗x

x̄ .
Since |xx̄ | ≤ 1, |u(x)| ≤ |u∗| ≤ ū. Furthermore, if ax̄+bu∗ ≥
0,

0 ≤ ax+ bu(x) =
(ax̄+ bu∗)x

x̄
≤ ax̄+ bu∗.

Due to the monotonicity of g(z), we have

g(ax+ bu(x)) ≥ g(ax̄+ bu∗) ≥ α 1
N .

On the other hand, if ax̄+ bu∗ ≤ 0,

0 ≥ ax+ bu(x) =
(ax̄+ bu∗)x

x̄
≥ ax̄+ bu∗.

It follows that

g(ax+ bu(x)) ≥ g(ax̄+ bu∗) ≥ α 1
N .

The proof is completed.

B. Case 2: N =∞
When N = ∞, the problem supµ∈M pµ∞,Q(x0) is an

infinite-horizon stochastic optimal control problem.
Lemma 3.2: Define the value function G∗k,Q : X →

[0, 1], k ∈ N≥0, in the forward recursion:

G∗k+1,Q(x) = sup
u∈U

1Q(x)

∫
Q
G∗k,Q(y)f(y −Ax−Bu)dy, (9)

initialized with G∗0,Q(x) = 1, x ∈ Q. Then, for all x ∈ Q,
the limit G∗∞,Q(x) exists and satisfies

G∗∞,Q(x) = sup
u∈U

1Q(x)

∫
Q
G∗∞,Q(y)f(y −Ax−Bu)dy,

and p∗∞,Q(x) = G∗∞,Q(x). Furthermore, an optimal station-
ary Markov policy µ∗ = (µ̄∗Q, µ̄

∗
Q, . . .) exists and is given

by

µ̄∗Q(x) = arg sup
u∈U

1Q(x)

∫
Q
G∗∞,Q(y)f(y −Ax−Bu)dy.

Proposition 3.2: For the system (1) and a compact set
Q ∈ B(X) and α ∈ (0, 1], p∗∞,Q(x) ≥ α, ∀x ∈ Q, hold
only if the support set W is bounded.

Proof: From (9), we have that ∀x ∈ Q,

0 ≤ G∗∞,Q(x) ≤ · · · ≤ G∗k,Q(x) ≤ · · · ≤ G∗1,Q(x) = 1.

Define λ = supx∈Q supu∈U
∫
Q f(y − Ax − Bu)dy. If the

support set W is unbounded, we have 0 ≤ λ < 1. Define
a new sequence Ĝ∗k,Q = supx∈QG

∗
k,Q(x). Then, it follows

that

Ĝ∗k+1,Q ≤ λĜ∗k,Q, and Ĝ∗∞,Q = lim
k→∞

Ĝ∗k,Q = 0,

which contradicts to the condition (2a) where α > 0. The
proof is completed.

Proposition 3.3: [10] For the system (1) and a compact
set Q ∈ B(X), p∗∞,Q(x) ≥ α, ∀x ∈ Q, hold if there exits
Qf ∈ B(X) with Qf ⊆ Q such that

(i) ∀x ∈ Qf ,∃u ∈ U,
∫
Qf

f(y −Ax−Bu)dy = 1, (10a)

(ii) ∀x ∈ Q \Qf ,∃u ∈ U,
∫
Qf

f(y −Ax−Bu)dy ≥ α.(10b)

Proof: Similar to Theorem 3 in [10].
Corollary 3.2: Consider the scalar system (6) with wk ∼

U(−w̄, w̄) and U = {u ∈ R | |u| ≤ ū}, where 0 < w̄ < ∞
and 0 < ū <∞. For a set Q = {x ∈ R | |x| ≤ x̄}, the fact
that p∗N,Q(x) ≥ α, ∀x ∈ Q, holds if
(i) x̄ ≥ | ba |ū ≥ w̄;

(ii) there exists a u with |u| ≤ ū such that l−l
2w̄ ≥ α, where

l = (ax̄ + bu + w̄) ∧ (| ba |ū) and l = (ax̄ + bu − w̄) ∨
(−| ba |ū)
Proof: If the condition (i) holds, we have that there

exists a set Qf = {x ∈ R | |x| ≤ | ba |ū} such that Qf ⊆ Q
and ∀x ∈ Qf , there exists a u such that ax+ bu = 0 and∫
Qf

f(y −Ax−Bu)dy =

∫ | ba |ū
−| ba |ū

1

2w̄
dy ≥

∫ w̄

−w̄

1

2w̄
dy = 1.

That is, the condition (10a) in Proposition 3.3 holds.
Note that Q\Qf = [−x̄,−| ba |ū)∪( ba |ū|, x̄]. Following the

similar idea in the proof of Corollary 3.1, we can show that
the condition (ii) in Proposition 3.3 holds if when x = x̄,
there exists a u with |u| ≤ ū such that (10b) holds and when
x = −x̄, there exists a u with |u| ≤ ū such that (10b) holds.
This is equivalent to the condition (ii).

The proof is completed.

IV. CHARACTERIZATION OF REGION OF ATTRACTION

After computing the target sets, let us consider Problem
2.2, i.e., how to characterize the region of attraction. We will
provide two methods: one is based on the solution to the
stochastic optimal first-entry time problem while the other is
based on stochastic backward reachable sets.
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A. Characterization by solving a stochastic optimal first-
entry time problem

For the system (1) and a horizon T ∈ N, given an initial
state x0 and a Markov policy µ ∈ M, we can generate a
stochastic process {Xk(x0,µ, T )}Tk=0 with X0 = x0.

Definition 4.1: Given a set Q ∈ B(X), the first entry time
to Q of the stochastic process {Xk(x0,µ)}Tk=0 is defined as

τ(x0,µ, T,Q) = inf{j ≥ 0 | Xj(x0,µ, T ) ∈ Q}.
Let us define the functions J : Rnx → [0, 1] as

J(x0, T,Q) = sup
µ∈M

E{1Q(Xτ̂ (x0,µ, T ))} (11)

where τ̂ = τ(x0,µ, T,Q) ∧ T .
Lemma 4.1: [13], [14] Define the value function Fk,Q :

X→ [0, 1], k ∈ N[0,T ], by the backward recursion:

F ∗k,Q(x) = sup
u∈U
{1X\Q(x)

∫
Q
F ∗k+1,Q(y)f(y −Ax−Bu)dy

+1Q(x)},

with initialization F ∗T,Q(x) = 1, x ∈ Q. Then,
J(x, T,Q) = F ∗0,Q(x). The optimal Markov policy µ∗Q =
(µ∗0,Q, µ

∗
1,Q, . . . , µ

∗
T−1,Q) exists and is given by

µ∗k,Q(x) = arg sup
u∈U
{1X\Q(x)

∫
Q
F ∗k+1,Q(y)f(y −Ax−Bu)dy

+1Q(x)}, x ∈ Q, k ∈ N[0,T−1].
Recall the condition (2b). Given β ∈ (0, 1], define the set

S(T, β,Q) = {x0 ∈ Rnx | J(x0, T,Q) ≥ β}. (12)

Proposition 4.1: Given a target set Q, the region of at-
traction P satisfying (2b) is

P =
⋃
T∈N

S(T, β,Q) (13)

Proof: The condition (2b) is equivalent to that ∀x ∈ P,
there exists a T ∈ N and a corresponding policy µ such that
Pr(∃k ∈ N[0,T ], xk ∈ Q) ≥ β. Then, the result (13) directly
follows from the definitions of (11) and (12).

B. Characterization by stochastic backward reachable sets

This subsection will provide an overapproximation of the
region of attraction by using stochastic backward reachable
sets. For the system (1) and time horizon T ∈ N, given an
initial state x0 and a sequence of control inputs {uk}T−1

k=0 , it
follows that

xk = Akx0 +

k−1∑
i=0

Ak−1−iBui +

k−1∑
i=0

Ak−1−iwi. (14)

Definition 4.2: Given a set Q ∈ B(X) and β ∈ (0, 1], the
T -step β-stochastic backward reachable set Y(T, β,Q) to Q
is defined by

Y(T, β,Q) = {x0 ∈ Rnx | ∃ui ∈ U, i ∈ N[0,T−1],

Pr{xT ∈ Q} ≥ β}, (15)

where xT is defined in (14). The β-stochastic backward
reachable set Ỹ(β,Q) to Q is defined by

Ỹ(β,Q) =
⋃
T∈N

Y(T, β,Q).

Lemma 4.2: For the sets S(T, β,Q) in (12) and
Y(T, β,Q) in (15), we have

S(T, β,Q) ⊆
⋃

k∈N[0,T ]

Y(k, β,Q).

Proof: Define the set U = U× · · ·U , U∞. Then, the
result directly follows that M⊆ U .

Proposition 4.2: Given a target set Q, the β-stochastic
backward reachable set Ỹ(β,Q) provides an overapprox-
imation to the region of attraction P satisfying (2b), i.e.,
P ⊆ Ỹ(β,Q).

Proof: The result directly follows from Lemma 4.2.
Let us consider how to compute the T -step β-stochastic

backward reachable set Y(T, β,Q). For simplicity, let us
assume the target set Q is a polyhedron of the form

Q = {x ∈ Rnx | Hx ≤ h},

where H and h are with appropriate dimensions. Then, the
set Y(T, β,Q) can be rewritten as

Y(T, β,Q) = {x0 ∈ Rnx | H(Akx0 +

T−1∑
i=0

AT−1−iBui)

+h̃ ≤ h, ∀i ∈ N[0,T−1], ui ∈ U}

where h̃ can be computed by a chance-constrained optimiza-
tion problem

min 1T h̃

subject to Pr{
k−1∑
i=0

HAk−1−iwi ≤ h̃} = β.

Please refer to [15], [16] for the numerical methods to solve
the above chance constrained program.

Corollary 4.1: Consider the scalar system (6) with wk ∼
N (0, σ2) and U = {u ∈ R | |u| ≤ ū}, where 0 < ū < ∞.
For a set Q = {x ∈ R | |x| ≤ x̄}, the T -step β-stochastic
backward reachable set Y(T, β,Q) to Q is nonempty if there
exists x̃T ∈ R with x̃T ≥ 0 and a sequence of |ui| ≤ ū,
∀i ∈ N[0,T−1] such that

1

2
(erf(

x̄− xT√
2σ̃T

)− erf(
−x̄− xT√

2σ̃T
)) ≥ β. (16)

where xT = aT x̃T +
∑T−1
i=0 aT−1−ibui and σ̃T =∑T−1

i=0 a2iσ2. Furthermore, [−x̃T , x̃T ] ⊆ Y(T, β,Q).
Proof: The results mainly follows from the fact that

xk ∼ N (aT x̃0 +

k−1∑
i=0

ak−1−ibui, σ̃k).

Then, we can easily derive (16) by translating the definition
of T -step β-stochastic backward reachable set. The result
[−x̃T , x̃T ] ⊆ Y(T, β,Q) can be proved by following the
similar idea of the proof in Corollary 3.1.
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Fig. 1: (a) Probability density function of z ∼ N (0.70, 0.25) over
Q = [−1.8, 1.8]; (b) the probability that z(x̄) ∼ N (z̄, 0.25) lies in
Q = [−x̄, x̄].

V. EXAMPLES

Consider the scalar system (6) with b = 1, wk ∼ N (0, σ2),
and U = {u ∈ R | |u| ≤ 2}, where 0 < ū < ∞. We aim to
characterize the target set Q and the region of attraction P
for the above system such that this system is (P,Q, N, α, β)-
stabilizable in probability.

A. Target set Q
We will first determine the target set Q by Corollary 3.1.

Let a = 1.5 in this following.
• Let σ = 0.5, N = 5 and α = 0.8. Consider a set

Q = [−1.8, 1.8]. In this case, we have 1.8a − bū =
0.70. Let z ∼ N (0.70, 0.25) and its probability density
function over set Q is shown in Fig. 1(a). Since the
probability that z lies in the set Q is 0.9861, greater
than α

1
5 = 0.9564, we have Q = [−1.8, 1.8] is a target

set which satisfies the condition (7).
Consider a family of sets Q = [−x̄, x̄], where x̄ ∈
[1.0087, 2.2902]. Let z(x̄) ∼ N (z̄, 0.25) where z̄ ={

0, if x̄ <= | ba |ū
ax̄+ bū, otherwise

. The corresponding proba-

bility that z(x̄) lies in Q = [−x̄, x̄] is shown in Fig. 1(b)
and is always greater than α

1
5 = 0.9564. Hence, we

conclude that for any x̄ ∈ [1.0087, 2.2902], the set

Q = [−x̄, x̄] is a target set. Furthermore, we can
show that Q = [−1.0087, 1.0087] is the smallest target
set satisfying (7) while Q = [−2.2902, 2.2902] is the
largest target set satisfying (7).

• Note that the characterization of target set depends on
the parameters σ, N , and α. Figs. 2(a)–(c) show how
the largest target set scales with such parameters. We
can see that the largest target set becomes smaller by
choosing larger σ, N , and α.

B. Region of attraction P

Let us characterize the region of attraction P by the
stochastic backward reachable sets. Set σ = 0.5, N = 5,
and α = 0.8. We can show that the set Q = [−1.8, 1.8] is a
target set for all a ∈ [0.5, 1.5].

• Let β = 0.80 and a = 1. The T -step β-stochastic
backward reachable sets are shown in Fig. 3(a). The
maximal T such that the T -step β-stochastic backward
reachable set is nonempty is 7. So the the overapprox-
imation of the region of attraction is Y(7, β,Q) =
[−14.4661, 14.4661]. Fig. 4 shows state trajectories
starting from x0 = 14.4661 under 1000 realization of
disturbances, where the green part is the region of at-
traction and the yellow part is the target set. Under 1000
realizations, 80.3% (close to β) of the state trajectories
enter the target set at time step k = 7 and then they can
stay in the target set for 5 steps with probability greater
than α = 80%.

• Note that the characterization of region of attraction
depends on the parameters a and β. According to Corol-
lary 4.1, Figs. 3(b)–(c) show how the overapproximation
of the region of attraction scales with the parameters a
and β. The region of attraction becomes smaller when
choosing larger a and β. In addition, if |a| ≤ 1, the
region of attraction is the whole real space R.

VI. CONCLUSION

This paper proposed a new notion of stabilization in
probability for discrete-time stochastic systems and studied
the characterizations of region of attraction and target set
used in this definition. Sufficient conditions were derived
such that a compact set is a target set with given horizon
and probability level. Furthermore, given a target set, two
methods were used to characterize the region of attraction.
One was based on the solution of the stochastic optimal first-
entry time problem while the other was based on stochastic
backward reachable sets. Simulations were given to illustrate
the effectiveness of the theoretical results.

One future direction is to apply the proposed definition
of stabilization in probability to safety-critical control and
stochastic predictive control.
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(a) (b) (c)

Fig. 2: The evolution of largest target set over (a) the standard variance σ when setting N = 5 and α = 0.5; (b) the horizon N when setting α = 0.5
and σ = 0.5; (c) the probability level α when setting N = 5 and σ = 0.5.

(a) (b) (c)

Fig. 3: (a) The T -step β-stochastic backward reachable set; (b) the overapproximations of the region of attraction along the system parameter a when
setting β = 0.8; (c) the overapproximations of the region of attraction along the system parameter β when setting a = 1.

Fig. 4: State trajectories under 1000 realization of distur-
bances.
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