
Ensuring safety for vehicle parking tasks using
Hamilton-Jacobi reachability analysis

Frank J. Jiang1, Yulong Gao1,2, Lihua Xie2, Karl H. Johansson1

Abstract— In this paper, we propose an approach for ensur-
ing the safety of a vehicle throughout a parking task, even when
the vehicle is being operated at varying levels of automation. We
start by specifying a vehicle parking task using linear temporal
logic formulae that can be model checked for feasibility. The
model-checking is facilitated by the construction of a temporal
logic tree via Hamilton-Jacobi reachability analysis. Once we
know the parking task is feasible for our vehicle model, we
utilize the constructed temporal logic tree to directly synthesize
control sets. Our approach synthesizes control sets that are
least-restrictive in the context of the specification, since they
permit any control inputs that are guaranteed not to violate the
specification. This least-restrictive characteristic allows for the
application of our approach to vehicles under different modes
of operation (e.g., human-in-the-loop shared autonomy or fully-
automated schemes). Implementing in both simulation and on
hardware, we demonstrate the approach’s potential for ensuring
the safety of vehicles throughout parking tasks, whether they
are operated by humans or automated driving systems.

I. INTRODUCTION

Vehicle parking is one of the most time-consuming and
safety-critical tasks that drivers perform daily. According
to statistics reported in [1], drivers in the U.S., U.K. and
Germany wasted 17, 44, and 41 hours a year, respectively;
in total costing 72.7 billion dollars, 23.3 billion pounds,
and 40.4 billion euros a year. In addition to being an
unsustainable (due to wasted fuel) and economically wasteful
task, vehicle parking is also often a dangerous and straining
task for drivers that involves complex maneuvering into tight
spaces with many chaotic safety constraints. Motivated by
these issues, researchers have recently spent significant effort
in advancing parking guidance and management technology.

In the literature, researchers devote most of their effort into
solving the problem of generating obstacle-free trajectories
for vehicles in tight parking environments. Nonlinear vehicle
dynamics and non-convex environments make this problem
difficult to solve in real time. For example, a distributed
model predictive control formulation improves parking ef-
ficiency and helps ensure collision avoidance by taking into
account human behavior prediction and vehicle coordination
in [2]. In [3], authors decouple an automated parking problem

This work is supported by the Swedish Strategic Research Foundation, the
Swedish Research Council, and the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

1F. J. Jiang, Y. Gao, and K. H. Johansson are with the Divi-
sion of Decision and Control Systems, EECS, KTH Royal Institute of
Technology, Malvinas väg 10, 10044 Stockholm, Sweden {frankji,
yulongg@kth.se, kallej}@kth.se

2Y. Gao and L. Xie are with the School of Electrical and Elec-
tronic Engineering, Nanyang Technological University, 639798, Singapore
ygao009@ntu.edu.sg, elhxie@ntu.edu.sg

into a centralized parking spot allocation and path generation
problem, and a decentralized collision avoidance control
problem. Although these approaches yield important results,
the formulations are not suitable for checking whether the
parking task is feasible in the first place, since checking
the feasibility of a non-convex optimization problem is
challenging.

Additionally, to the extent of the authors’ knowledge,
shared autonomy-based parking receives little attention in
the research community, despite the fact that many of the
current parking technologies rely on the presence of a human
supervisor to perform the parking maneuver [4], [5]. Many
have proposed the use of remote human operators as a
layer of operations management and exception-handling for
connected vehicles in general [6]. In the well-known report
by the Society of Automative Engineers (SAE) that describes
the “levels of driving automation”, the authors even designate
levels ≤3 as the levels that require the availability of a remote
driver (if an on-board driver is not present) and level 4 as
the level where a remote driver is an optional part of the
operation of a vehicle [7]. These proposals and designations
motivate the need for vehicle parking solutions that safely
allow for varying levels of automation, be it full automation
or partial, human-supported automation.

The main contribution of this paper is a unified solution for
handling vehicle parking which can be used for varying lev-
els of automation, ranging from Level ≤4, shared autonomy
setups to Level 5, fully automated setups. Specifically, the
contributions of this paper can be summarized as follows:
(1) we specify the parking task for an ego vehicle with
a linear temporal logic (LTL) formula and use Hamilton-
Jacobi (HJ) reachability analysis to construct a temporal logic
tree (TLT) from this LTL formula, which enables the real-
time synthesis of feasible, least-restrictive control sets; (2)
based on this formulation, we utilize an optimal controller
in conjunction with the least-restrictive control sets that can
be used for semi-automated or fully-automated parking and
demonstrate their effectiveness in simulation and hardware-
based experiments.

II. PRELIMINARIES

In this section, we will briefly introduce the required
background material for this work.

A. Plant model

Consider a continuous-time dynamic control system

dx

dt
, ẋ = f(x, u, w), (1)

Fig. 1. Illustration of our motivating parking example, where the ego
vehicle is drawn on the bottom left corner. Furthermore, we annotate the
parking scenario with the XY projections of the important state sets in our
problem formulation.

where x ∈ Rnx is the system state, u ∈ Rnu is the control
input, w ∈ Rnw is the disturbance, and f : Rnx × Rnu ×
Rnw → Rnx are the dynamics. At each time instant t, the
control input u(t) is constrained by a set U ⊂ Rnu and the
disturbance w(t) belongs to a compact set W ⊂ Rnw . We
assume that the control function u(·) is measurable and if for
all t, u(t) ∈ U, we write u(·) ∈ U where U is the function
space containing all admissible control functions. We also
write w(·) ∈ W in the same fashion.

We assume that the system function f is uniformly con-
tinuous, bounded, and Lipschitz continuous in x for fixed u
and w. As shown in [8], given measurable control and distur-
bance functions u(·) and w(·), there exists a unique trajectory
solving (1). With ζ(·;x0, t0, u(·), w(·)), we denote the trajec-
tory starting from an initial state ζ(t0;x0, t0, u(·), w(·)) = x0

under u(·) and w(·). For the rest of the paper, we will
sometimes write ζ(·) to denote a trajectory for notational
simplicity.

We will utilize atomic propositions to encode spatial
invariances for system (1). Each proposition pi is defined
as an inequality in Rnx :

[pi] , {x ∈ Rnx | Gi(x) ≤ gi}, Gi : Rnx → Rni , gi ∈ Rni ,

where ni is the number of inequalities in the ith atomic
proposition. Let AP be a finite set of atomic propositions,
i.e., AP = {pi}NAi=1.

B. Reachability Analysis

Reachability analysis-based approaches are used in many
applications in order to provide formal guarantees on the
safety of vehicles [9], [10]. For example, a reachability
analysis-based approach is presented in [11], where authors
use reachability analysis to compute least-restrictive control
sets from signal temporal logic formula, which inspired the
development the work in [12]. In this subsection, we intro-
duce the definitions of reachable sets and control invariant
sets used in our approach.

Definition 2.1: For the system (1), the reachable set from
Ω1 ⊆ Rnx to Ω2 ⊆ Rnx is defined as

R(Ω1,Ω2) = {x : ∃u(·) ∈ U ,∀w(·) ∈ W,

∃s > 0, ζ(s;x, 0, u(·), w(·)) ∈ Ω2, x ∈ Ω1}. (2)
Definition 2.2: For the system (1), Ωf ⊆ Rnx is said to

be a robust control invariant set (RCIS) if for any x ∈ Ωf
at time t there exists a u(·) ∈ U such that ∀w(·) ∈ W and
∀s > t, ζ(s;x, t, u(·), w(·)) ∈ Ωf .

Definition 2.3: For a set Ω ⊆ Rnx ,RCI(Ω) ⊆ Rnx is the
largest RCIS in Ω if every RCIS Ωf ⊆ Ω satisfies Ωf ⊆
RCI(Ω).

C. Linear temporal logic

LTL is a convenient formalism for expressing time-related
invariances for automated systems [13], [14] and, specif-
ically, for automated driving systems [15], [16]. An LTL
formula is defined over a finite set of atomic propositions
AP with both logic and temporal operators. In order to
apply our method to continuous-time systems, we consider
the fragment “LTL minus next step” where the operator ©
is not included. Its syntax can be described with:

ϕ ::= true | p ∈ AP | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2,

where U denotes the “until” operators. By using the negation
operator and the conjunction operator, we can define disjunc-
tion, ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2). Then, by employing the until
operator, we can define: (1) eventually, ♦ϕ = true ∪ ϕ and
(2) always, �ϕ = ¬♦¬ϕ.

Definition 2.4: (LTL semantics) For an LTL formula ϕ,
a trajectory ζ(·), and a time instant t ≥ t0, the satisfaction
relation (ζ(·), t) � ϕ is defined as

(ζ(·), t) � p ∈ AP ⇔ ζ(t) ∈ p,
(ζ(·), t) � ¬ϕ⇔ (ζ(·), t) 2 ϕ,
(ζ(·), t) � ϕ1 ∧ ϕ2 ⇔ (ζ(·), t) � ϕ1 ∧ (ζ(·), t) � ϕ2,

(ζ(·), t) � ϕ1 ∨ ϕ2 ⇔ (ζ(·), t) � ϕ1 ∨ (ζ(·), t) � ϕ2,

(ζ(·), t) � ϕ1Uϕ2 ⇔ ∃t1 ∈ [t,∞) s.t.{
(ζ(·), t1) � ϕ2,

∀t2 ∈ [t, t1), (ζ(·), t2) � ϕ1,

(ζ(·), t) � ♦ϕ⇔ ∃t1 ∈ [t,∞), s.t. (ζ(·), t1) � ϕ,

(ζ(·), t) � �ϕ⇔ ∀t1 ∈ [t,∞), s.t. (ζ(·), t1) � ϕ.

D. Temporal Logic Tree

A typical approach to model-checking and synthesizing
control from LTL formulae utilizes automata [17], [18].
While automaton-based approaches are useful and important,
there are several limitations in their applications to vehicles.
First, automaton-based approaches are difficult to apply to
infinite systems with uncertainty without using LTL frag-
ments such as bounded-time LTL [19] or co-safe LTL [20].
Second, authors show in [21]–[23] that performing control
synthesis from LTL formulae using such approaches is, in
general, nontrivial. Lastly, automaton-based approaches are
usually designed to be offline approaches, meaning that they

cannot easily handle changes to LTL specifications in real-
time.

In this work, we utilize a novel computational structure
called TLTs that can be applied to infinite systems with
uncertainty (e.g. bounded disturbance or additive noise) and
to scenarios where our LTL specification may change over
time (e.g. vehicle parking). For extensive details regarding
TLTs, we refer readers to [12]. In this subsection, we
introduce basic definitions and propositions for temporal
logic trees that we will need later on in this work.

Definition 2.5: A TLT is a tree for which
• each node is either a set node, a subset of Rnx , or an

operator node, from {∧,∨,U,�};
• the root node and the leaf nodes are set nodes;
• if a set node is not a leaf node, its unique child is an

operator node;
• the children of any operator node are set nodes.
Proposition 2.1: As shown in [12], for system (1), a TLT

can be constructed from any LTL formula ϕ via reachability
analysis.

In this work, we will use HJ reachability analysis to
construct TLTs from LTL formulae, allowing us to apply
our approach to nonlinear systems. We call this constructed
TLT the controlled TLT. A useful result in [12] is that the
control synthesis can be performed using the controlled TLT,
instead of the LTL formula, and the resulting trajectory still
satisfies the LTL formula since the controlled TLT under-
approximates the LTL formula. For an illustrative example
of a controlled TLT constructed for the parking scenario we
will study in this paper, see Fig. 2.

III. SAFE PARKING FORMULATION

In most cases, road vehicles are considered safety-critical
systems, since they often share space with humans and carry
humans while carrying out tasks. In order to prove and
derive safety guarantees for automated road vehicles, the
tasks they carry out need to be formalized. For example,
we will formalize the parking task shown in Fig. 1.

In Fig. 1, Vego is the vehicle that needs to park in the
parking lot. Let x = [px, py, θ, v] be the state, where
px, py , θ, and v are Vego’s x-position, y-position, heading,
and velocity, respectively. Then, let u = [δ, a] be the input,
where δ and a are the steering and acceleration inputs into
Vego, respectively. Explicitly, we write the dynamics as

f(x, u, w) =

ṗx
ṗy
θ̇
v̇

 =

v cos θ
v sin θ
v tan δ
L
a

+ w, (3)

where L is the wheel-base length of Vego. Here, u ∈ U ⊂ R2

and w ∈W ⊂ R4.
To define the parking task of the vehicle, we introduce

notation for the domain and subdomains of the parking
scenario. Let the full set of possible states in our problem
domain be dom ⊆ R4. We call the set of possible states
in the parking lot P ⊂ R4, which excludes the block in
the middle of the parking lot. Denote the sets of indices

Fig. 2. An illustration of the constructed TLT for our LTL-specified parking
task (4).

corresponding to full and empty parking spots as F and E ,
respectively. Then, we let ps ⊂ R4 be the parking spots and
further denote the full spots as psi∈F and the empty spots
as psi∈E . Finally, we introduce the set of states within every
psi∈E that correspond to an accurate and correct parking job
as acci∈E ⊂ R4. In our example, we define accurate parking
as parking in a precise location and with a precise heading.
Informally, we can describe the overall parking task as: if
there is one or more psi∈E , then park in one of them while
staying safe.

IV. OUR APPROACH

For our approach, we start by defining an LTL formula that
formalizes the parking task outlined in the previous section.
Then, using the LTL specification, we use HJ reachability
analysis to construct a controlled TLT. By constructing the
TLT, we can model-check the LTL specification and design
feasible feedback control sets that guarantee the specification
is respected.

A. LTL specification for Safe Parking

For the example parking task, the controller needs to first
guide Vego from the road into the parking lot and keep Vego
in the parking lot. Using LTL, we can write this objective as
a stability formula: ϕP = ♦�P . In other words, xego should
eventually always be in P . Next, the controller should ensure
that Vego never collides with a full parking spot. We can
write this objective using LTL as a safety formula: ϕS =
∧i∈F �¬psi. Finally, the controller needs to perform the
final parking job that should eventually guide Vego into one
of the accurate parking spots. We can write this specification
in a way that accounts for all available empty parking spots:
ϕR = ∨i∈E (dom U psi U � acci). In other words, xego
should, sequentially, be: (1) in dom until it has entered into
a psi where i ∈ E , (2) in psi until it is in acci∈E , (3) always
in acci∈E . We define the full parking task with the following
conjunction:

ϕ = ϕP ∧ ϕS ∧ ϕR, (4)

or explicitly,

ϕ = ♦�P∧(∧i∈F �¬psi)∧(∨i∈E (dom U psi U � acci)).

B. Constructing TLTs using HJ Reachability Analysis

In [12], we construct the TLT corresponding to an LTL
formula using reachable sets. In this work, we will use HJ
reachability analysis to compute the required reachable sets
for our TLT construction in order to handle the nonlinear
dynamics of Vego. Upon constructing the TLT, we use results
from [12] to model-check and synthesize control sets from
the LTL formula.

For performing HJ reachability analysis, we utilize a sim-
ilar formulation and numerical method to the ones described
in [24]; thus for more details, we refer readers to this
work. We start by defining two state sets Ω1 and Ω2 as
the zero superlevel sets of bounded, Lipschitz continuous
functions hΩ1

: R4 → R and hΩ1
: R4 → R. Namely,

Ω1 = {x | hΩ1
(x) ≥ 0} and Ω2 = {x | hΩ2

(x) ≥ 0}. Then,
we solve for the value function VΩ1,Ω2

(x, τ) that satisfies the
following Hamilton-Jacobi-Isaacs variational inequality (HJI
VI):

min{∂VΩ1,Ω2
(x, τ)

∂τ
+H(VΩ1,Ω2

(x, τ), f(x, u, w)),

hΩ1(x)− VΩ1,Ω2(x, τ)} = 0, (5)
VΩ1,Ω2(x, 0) = hΩ2(x), τ ≤ 0, (6)

where the Hamiltonian is given by

H(VΩ1,Ω2
(x, τ), f(x, u, w)) =

max
u∈U

min
w∈W

∇VΩ1,Ω2
(x, τ) · f(x, u, w). (7)

Once the value function VΩ1,Ω2
(x, τ) is computed, let

V ∗Ω1,Ω2
(x) = limτ→−∞ VΩ1,Ω2(x, τ). After recalling Defi-

nition 2.1, we can compute the R(Ω1,Ω2) as

R(Ω1,Ω2) = {x | V ∗Ω1,Ω2
(x) ≥ 0}. (8)

As a special case where Ω1 = Ω2 = Ω, the reachable
set R(Ω,Ω) is the largest RCIS within Ω, i.e., RCI(Ω) =
R(Ω,Ω); to see this, please refer to Proposition 2.5 in [25].

Recall the parking scenario in Section III. Define the
sets Ȳ = R(dom,RCI(P)), Y2,i = R(psi,RCI(acci)),
and Y1,i = R(dom,Y2,i). Now, to construct the TLT
corresponding to our LTL formula, we start with the atomic
propositions that will be the leaves of the TLT, and progres-
sively construct the TLT bottom-up, operator-by-operator. By
following Theorem 5.1 in [12], we can construct a controlled
TLT corresponding to (4), as shown in Fig. 2. We denote the
root node as

Root = Ȳ ∩ (∩i∈FRCI(¬psi) ∩ (∪i∈EY1,i).

According to the HJ reachability analysis, we can rep-
resent each set node in the controlled TLT in the form of
value functions. In particularly, we denote by G∗Ȳ(x) =
V ∗Ȳ,RCI(P)

(x), G∗RCI(P)(x) = V ∗P,P(x), G∗RCI(¬psi)(x) =

V¬psi,¬psi(x, τ), G∗Y1,i
(x) = V ∗Y1,i,Y2,i

(x), G∗Y2,i
(x, τ) =

V ∗Y2,i,RCI(acci)
(x), and G∗RCI(acci)

(x) = V ∗acci,acci(x) the
corresponding value functions of the set nodes Ȳ , RCI(P),
RCI(¬psi), Y1,i, Y2,i, and RCI(acci), respectively.

C. Controller Synthesis

In this subsection, we detail the feedback control de-
sign we use for our parking task. Given the state x,
for each set node X ∈ {RCI(P), Ȳ,RCI(¬psi),∀i ∈
F ,Y2,j ,Y1,j ,RCI(accj),∀j ∈ E}, we compute the corre-
sponding control set. Instead of computing the control set
based on the current time step, we compute it based on the
next sampled time step:

UX(x) = {u ∈ U | G∗X(x)−min
w∈W

δ∇G∗X(x)·f(x, u, w) ≥ 0},

where δ is a small sampling period. We design the control set
computation around the near future to ensure that the chosen
control input will guarantee the specification is not violated
in consequence of that input.

Following the control synthesis algorithm in [12], we can
compute the feasible feedback control set:

Uf (x) =
(
URCI(P)(x) ∪ UȲ(x)

)
∩
(
∩i∈FURCI(¬psi)(x)

)
∩
(
∪i∈E

(
UY1,i(x) ∪ UY2,i(x) ∪ URCI(acci)(x)

))
.

The set Uf is a least-restrictive feedback control set that
guarantees we satisfy (4). This means that during operation,
we can choose any control policy that satisfies Uf to guar-
antee that the corresponding specification will be satisfied.
In our parking scenario, we choose to utilize a time-optimal
control policy as an example. We can compute the time-
optimal control policy for reaching a target set at no extra
computational cost. Define the set of the state set pairs as
Π = {(Ȳ,RCI(P)), (Y1,i,Y2,i), (Y2,i,RCI(acci)), i ∈ E}.
This set will be used to define the optimal controller derived
from the minimum time-to-reach (TTR).

If the current state x ∈ RCI(acci) for some i ∈ E , it
implies that the parking specification is satisfied. In this case,
the optimal controller is defined as

u∗(x) = arg max
u∈Uf (x)

min
w∈W

∇G∗RCI(acci)
(x) · f(x, u, w). (9)

Otherwise, we first define the minimum TTR as

τ∗ = max
(Ω1,Ω2)∈Π

{τ | τ < 0, VΩ1,Ω2
(x, τ) ≥ 0} (10)

and let (Ω∗1,Ω
∗
2) be the optimal solution. The time-optimal

controller is defined as

u∗(x) = arg max
u∈Uf (x)

min
w∈W

∇VΩ∗1 ,Ω
∗
2
(x, τ∗) ·f(x, u, w). (11)

We will utilize (11) for our fully-automated vehicle that
performs parking maneuvers in a time-optimal fashion. Ad-
ditionally, we also make (11) available to the human operator
in our shared-automation example. We further emphasize that
any other control policy that satisfies Uf can be used instead
of (11); we choose to use a time-optimal control policy as a
useful example.

Fig. 3. Shown are three different snapshots in our “handling specification changes” example. The blue rectangle is Vego, the gray rectangles sample the
past trajectory of Vego, parking spots with red rectangles have indices in F , spots with yellow rectangles have indices in E , and the small green circles
are the accurate state sets. The green curves are the XY projections of the current reachable set. In this example, there are no empty spots initially, and
only around t = 7 seconds do empty spots appear. When this happens, the vehicle stops waiting, and goes to the empty spot that is most time-optimal
from it’s position when the spots appear.

V. RESULTS

We present an example in simulation and experimental
results on the Small Vehicles for Autonomy (SVEA) platform
in the Smart Mobility Lab at the KTH Royal Intitute of
Technology. To compute the reachable sets required in our
implementation, we use the MATLAB Level Set Method
Toolbox [26].

A. Handling specification changes

In our simulated example (illustrated in Fig. 3), we
investigate a scenario where Vego, starts on the road, and
then navigates into P , where there are no available parking
spots. Inside RCI(P), the vehicle just waits for a parking
spot to open up. At time t = 7 seconds, two spots open
up. By implementing (11), Vego is guided to the spot that
is more time-optimal. Here, we are able to observe one of
the benefits of using TLTs for performing control synthesis
from an LTL specification. Despite the changes in the LTL
specification (the change of two full parking spots to empty
parking spots), our controller is able to adapt online and
utilize offline computations to recompute Uf .

Remark 5.1: Note, we do not consider the presence of
physical vehicles in the parking lot. Since our approach
computes the least-restrictive control sets for the parking
task, dynamic constraints like other physical vehicles can
be handled with additional controllers (i.e. model predictive
control) on top of our approach. In other words, similar
to (11), more sophisticated approaches can be used for
choosing the control inputs that satisfy Uf .

B. Hardware Experiments

In our implementation on the SVEA vehicles, we overview
both practical applications and considerations of our ap-
proach for two different levels of autonomy. We demonstrate
how our approach ensures the safety for a Level 5 automated
vehicle, which performs the parking maneuver optimally.
Then, we show a shared-autonomy setup where we ensure
the safety for a vehicle with level 2 driving automation that is
being remotely parked by a human operator. The videos for
both cases can be found online at [https://bit.ly/HJLTLpark].

Our experimental setup is as follows. All real-time compu-
tations happen on the SVEA’s onboard computer, which is an
NVIDIA Jetson TX2 embedded computer. The state of Vego
is given by a Qualisys motion capture system. The chassis of
the SVEA vehicle has the control bounds of δ ∈ [−π/5, π/5]
rad and a ∈ [−1.5, 1.5] m/s2. To handle model errors caused
by phenomenon such as the friction between the ground and
the SVEA’s wheels, let wmax = [0.05, 0.05, π/60, 0.1] with
units [m, m, rad, m/s2], and we then set w ∈ [−wmax, wmax].
The required reachable sets are computed offline beforehand,
and loaded onto the SVEA’s TX2 for real-time computation
of (9) and (11).

1) (Level 5) Full Automation: For the full automation
case, we implement our control synthesis approach on the
SVEA and leave the system to complete the task on it’s
own. As can be seen from the video provided, the maneuver
can be completed accurately and satisfy the original specified
task. Furthermore, at the end of the maneuver, we can see
the advantage of using a richer nonlinear vehicle model, as
the SVEA makes full utilization of its dynamics to maneuver
into the parking spot accurately.

2) (Level 2) Shared Automation: An important benefit
of our approach is that we compute the least-restrictive
control sets for satisfying an LTL formula. Much like in [10],
by generating least-restrictive control sets instead of single
control policies, our approach is more suitable for human-
in-the-loop control formulations, since the human is given
the largest acceptable degree of control freedom. To illus-
trate this, we set up a shared-autonomy example where we
enable the SVEA vehicle with level 2 automation and put a
human operator in control. Specifically, we enable the SVEA
vehicle with the same automation capabilities as the Level 5
automation example, but require an engaged, remote human
supervisor for the vehicle’s operation. As can be seen from
the video link provided, the human operator drives the Vego
while Vego continues to satisfy the parking specification,
and arrives to just before the desired parking spot. In our
particular implementation, we enable the driver to turn on
and off the optimal controller used in previous examples.
Since the parking spot can be hard to park in efficiently and
accurately, the human operator uses the optimal controller

Fig. 4. Time-lapse images from our two experiment examples. Video link: https://bit.ly/HJLTLpark.

to do the final parking maneuver. This application provides
flexibility for the human to fully utilize their situational
awareness whenever is needed. Furthermore, the setup allows
the operator to decide when she wants to use automation to
reduce strain and perform parts of the specified task more
efficiently.

VI. CONCLUSION

In general, guaranteeing safety for automated vehicles over
their entire operation is difficult, but remains as an important
problem we need to solve. We show in this paper how
one might specify parking missions formally and how to
compute least-restrictive control sets from the specification.
By leveraging HJ reachability, we can compute the control
sets for nonlinear systems and provide strong guarantees that
the specification will be satisfied by the vehicle through-
out the parking maneuver. We show applications in both
simulation and on hardware of the resulting least-restrictive
control sets for ensuring safety for both fully-automated
and partially automated vehicle parking. For future work,
we will continue to apply our method to different vehicle
tasks. By formalizing more vehicle tasks, we will be able
to compose more complex missions and apply our unified
control framework to guarantee the missions both can and
will be completed.

ACKNOWLEDGMENT
The authors would like to thank Alessandro Abate for

providing insightful comments about this work.

REFERENCES

[1] INRIX, “The impact of parking pain in the us, uk and germany,”
Tech. Rep., 2017. [Online]. Available: http://www2.inrix.com/
research-parking-2017

[2] Y. Li, K. H. Johansson, and J. Mårtensson, “A hierarchical control
system for smart parking lots with automated vehicles: improve
efficiency by leveraging prediction of human drivers,” in Proceedings
of 18th European Control Conference, 2019, pp. 2675–2681.

[3] X. Shen, X. Zhang, and F. Borrelli, “Autonomous parking of
vehicle fleet in tight environments,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.02349

[4] D. AG. (2020) Innovative parking solutions. convenient, customer-
oriented and efficient. [Online]. Available: https://www.daimler.com/
innovation/parking.html

[5] B. AG. (2018) Intelligent parking. [Online].
Available: https://www.bmw.co.uk/bmw-ownership/connecteddrive/
driver-assistance/intelligent-parking#gref

[6] Wired. (2020) The war to remotely control self-driving
cars heats up. [Online]. Available: https://www.wired.com/story/
designated-driver-teleoperations-self-driving-cars/

[7] SAE On-Road Automated Vehicle Standards Committee, “Taxonomy
and definitions for terms related to on-road motor vehicle automated
driving systems,” SAE International, Tech. Rep., 2018.

[8] E. A. Coddington and N. Levinson, Theory of ordinary differential
equations. McGraw-Hill, 1955.

[9] E. Coelingh, L. Jakobsson, H. Lind, and M. Lindman, “Collision
warning with auto brake: a real-life safety perspective,” Innovations
for Safety: Opportunities and Challenges, Tech. Rep., 2007.

[10] K. Leung, E. Schmerling, M. Chen, J. Talbot, J. C. Gerdes, and
M. Pavone, “On infusing reachability-based safety assurance within
probabilistic planning frameworks for human-robot vehicle inter-
actions,” in International Symposium on Experimental Robotics.
Springer, 2018, pp. 561–574.

[11] M. Chen, Q. Tam, S. Livingston, and M. Pavone., “Signal temporal
logic meets Hamilton-Jacobi reachability: connections and applica-
tions,” in Proceedings of International Workshop on the Algorithmic
Foundations of Robotics, 2018.

[12] Y. Gao, A. Abate, F. J. Jiang, M. Giacobbe, L. Xie, and K. H. Johans-
son, “Temporal logic trees for model checking and control synthesis
of uncertain discrete-time systems,” arXiv preprint arXiv:2007.02271,
2020.

[13] M. Huth and M. Ryan, Logic in computer science: modelling and
reasoning about systems. Cambridge University Press, 2004.

[14] G. Fainekos, H. Kress-Gazit, and G. Pappas., “Temporal logic motion
planning for mobile robots,” in Proceedings of IEEE International
Conference on Robotics and Automation, 2005, pp. 2020–2025.

[15] Y. Gao, F. J. Jiang, X. Ren, L. Xie, and K. H. Johansson,
“Reachability-based human-in-the-loop control with uncertain spec-
ifications,” in Proceedings of 21st IFAC World Congress, 2020.

[16] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W.
Grizzle, N. Ozay, H. Peng, and P. Tabuada, “Correct-by-construction
adaptive cruise control: Two approaches,” IEEE Transactions on
Control Systems Technology, vol. 24, no. 4, pp. 1294–1307, 2016.

[17] C. Baier and J. Katoen, Principles of model checking. MIT Press,
2008.

[18] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[19] P. G. Sessa, D. Frick, T. A. Wood, and M. Kamgarpour, “From
uncertainty data to robust policies for temporal logic planning,” in
Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control, 2018, p. 157–166.

[20] K. Hashimoto and D. Dimarogonas, “Resource-aware networked
control systems under temporal logic specifications,” Discrete Event
Dynamic Systems, 09 2019.

[21] P. Tabuada and G. Pappas, “Linear time logic control of discrete-time
linear systems,” IEEE Transactions on Automatic Control, vol. 51,
no. 12, pp. 1862–1877, 2006.

[22] P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer, 2009.

[23] C. Belta, B. Yordanov, and E. Gol, Formal methods for discrete-time
dynamical systems. Springer, 2017.

[24] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi
Reachability : A Brief Overview and Recent Advances,” in IEEE 56th
Annual Conference on Decision and Control, 2017, pp. 2242–2253.

[25] J. Fernandez Fisac, “Game-theoretic safety assurance for human-
centered robotic systems,” Ph.D. dissertation, UC Berkeley, 2019.

[26] I. M. Mitchell, “A Toolbox of Level Set Methods,” Tech. Rep., 2007.

