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Abstract— Component-based techniques revolve around com-
posable, reusable software objects that shield the application
level software from the details of the hardware and low-
level software implementation and vice versa. Components
provide many benefits that have led to their wide adoption
in software and middleware developed for embedded systems:
They are well-defined entities that can be replaced without
affecting the rest of the systems, they can be developed and
tested separately and integrated later, and they are reusable.
Clearly such features are important for the design of large-scale
complex systems more generally, beyond software architectures.
We propose the use of a component approach to address
embedded control problems. We outline a general component-
based framework to embedded control and show how it can
be instantiated in specific problems that arise in the control
over/of sensor networks. Building on the middleware compo-
nent framework developed under the European project RUNES,
we develop a number of control-oriented components necessary
for the implementation of control applications and design their
integration. The paper provides the overview of the approach,
discusses a real life application where the approach has been
tested and outlines a number of specific control problems that
arise in this application.

I. INTRODUCTION

Networked embedded systems play an increasingly impor-
tant role and affect many aspects of our lives. By enabling
embedded systems to communicate, new applications are
being developed in areas such as health-care, industrial
automation, power distribution, rescue operations and smart
buildings. Many of these applications will result in a more
efficient, accurate and cost effective solution than previous
ones. The European Integrated Project Reconfigurable Ubiq-
uitous Networked Embedded Systems (RUNES) [8] brings
together 21 industrial and academic teams in an attempt to
enable the creation of large scale, widely distributed, hetero-
geneous networked embedded systems that inter-operate and
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adapt to their environments. The inherent complexity of such
systems must be simplified if the full potential for networked
embedded systems is to be realized. The RUNES project
aims to develop technologies (system architecture, middle-
ware, networking, control etc.) to assist in this direction,
primarily from a software and communications standpoint.

Networked control systems impose additional require-
ments that arise from the need to manipulate the environment
in which the networked systems are embedded. Timing and
predictability constraints inherent in control applications are
difficult to meet in general, due to the variations and un-
certainties introduced by the communication system: delays,
jitter, data rate limitations, packet losses etc. For example, if
a control loop is closed over a wireless link, it should tolerate
lost packets and be able to run in open loop over periods of
time. Resource limitations of wireless networks also have
important implications for the control design process, since
limitations such as energy constraints for network nodes
need to be integrated into the design specifications. The
added complexity and need for re-usability in the design of
control over wireless networks suggests a modular design
framework.

In this paper, we propose a component-based approach
to handle the software complexity of networked control
systems. A general framework is presented and it is shown
how it can be instantiated in specific problems that arise in
control over wireless sensor networks as well as in control
of network and communication resources. The proposed
component framework hides network programming details
from the control system designer. The components are well-
defined entities that can be replaced without affecting the
rest of the systems. It is shown how they can be developed
and tested separately and integrated later. Building on the
middleware component framework of RUNES, we develop
a number of control-oriented components necessary for the
implementation of control applications and design their in-
tegration. The paper provides the overview of the approach,
discusses a real life application where the approach can be
used and outlines a number of specific control problems that
arise in this application. Companion papers [27], [12], [14],
[15] provide the details of the implementation of specific
components to address these control problems, as well as
experimental validation results.

The paper starts by presenting a brief overview of mid-
dleware and component frameworks in general, and those
targeted to networked embedded systems in particular (Sec-
tion II). The RUNES tunnel disaster relief scenario that



serves to focus our work is then described in Section III. An
overview of control problems that arise in the scenario is also
given in the same section: maintaining the connectivity of a
wireless sensor network in an adverse environment, utilizing
the resources of the network itself (e.g., wireless transmission
power control) and those of mobile robots (e.g., to replace
missing nodes). In Section IV we discuss the components
that need to be implemented to address the specific control
problems in the task on physical network reconfiguration; the
details of the development of these components and their ex-
perimental testing are given in the companion papers. Some
examples of general purpose, low-level control components
are also presented in the section. Section V details a security
component framework, which provides an interface to protect
communications among nodes. The hardware and software
integration for the demonstration of the physical network
reconfiguration is given in Section VI. Its validation is shown
in Section VII, which describes both a computer simulation
of the scenario and some preliminary experimental results.
Some concluding remarks are given in Section VIII.

II. MIDDLEWARE AND COMPONENTS

A. Middleware

In a component-based software system, a component is
a system element offering a predefined service and able to
communicate with other components. A component is a unit
of independent deployment and versioning. It is encapsulated
and non-context specific. It follows that components can
interact with other components without knowing much of
their internal structure or their execution environment (for ex-
ample, their operating system or network protocols). Clearly,
devising such an abstract level of interaction is a non-trivial
effort. In many cases, an effective solution can be found
by the judicious application of a software abstraction layer,
known as middleware. Middleware mediates the interactions
of a component with its environment by providing a program-
ming interface transparent to the operating systems and to
the network protocols underneath. A comprehensive survey
of middleware concepts (motivated primarily for networked
embedded systems) can be found in [9]. Important examples
of middleware currently in use are Java Remote Method
Invocation (Java RMI) [5], Microsoft Component Object
Model (COM) [6], and Common Object Request Broker
Architecture (CORBA) [2]. These frameworks, however, are
not specifically targeted to embedded systems or distributed
control systems. The resource constrained implementation
platforms common in embedded and distributed control
systems imply additional, severe requirements on the middle-
ware. To meet these requirements, extensions of general pur-
pose middleware have been developed. One such example is
real-time CORBA [30], which features prioritized scheduling
policies for threads and export some control parameters in the
communication protocols. Even real-time CORBA, however,
has several shortcomings that make its use on demanding
embedded system applications problematic [9].

Several application domains have emphasized the im-
portance of developing software infrastructures specifically

tailored to the needs of the domain. For example, the
automotive industry has formed the development partnership
AUTOSAR [1], to achieve modularity, scalability, transfer-
ability and re-usability of software functions in vehicles.
AUTOSAR strives to provide an open system architecture
for automotive systems based on standardized interfaces for
the different system layers. A precise component definition
and an appropriate composition framework are essential to
answer a variety of questions on system architectures, e.g.,
on synchronization and network protocols [25].

Specific control and real-time requirements on the middle-
ware have also been investigated in recent academic software
prototypes. Etherware [16] is a middleware for networked
control that was recently proposed. This middleware focuses
on the ability to maintain communication channels during
component restarts and upgrades and to recovery from failure
situations. ControlWare [31] is a middleware that utilizes
feedback control for guaranteeing performance in software
systems. Though not specifically targeted to embedded sys-
tems, its usefulness has been demonstrated on web server and
proxy quality of service management. A tutorial overview
of software technologies for reusable and distributed control
systems is given in [23].

Finally, from a theoretical point of view, semantic frame-
works that support composition and abstraction operations
are central to the formal modeling and analysis of such
distributed systems. For embedded systems (where the logic
functions encoded in the computational elements have to
interact with a primarily analog environment) the most
relevant frameworks are those developed in the area of hybrid
systems. Several such frameworks have been proposed in
recent years, to support the modeling, verification, system
development and simulation efforts; for an overview see [29].
Some are general purpose, while others are targeted to
specific application areas [18]. Most are also supported by
simulation, verification or design computer tools. A link
between these theoretical developments and the middleware
frameworks discussed above is just emerging as an exciting
and important research area.

B. Component frameworks for networked embedded systems

The main reason for using component-based approaches
in software development is to enforce re-usability. A new
software application is built from existing well-tested com-
ponents. The components are composed (or assembled) into
applications. It is often possible to aggregate components
together, forming new components.

Component-based software engineering has been success-
fully used in several software development projects, pri-
marily for desktop and eBusiness applications. Within real-
time embedded systems, the use of component techniques
is not well-developed. For desktop applications the COM
technology is most widely used. COM components are often
relatively large in size, each component encompassing a
substantial amount of the application functionality. Another
widely used class of component models are the models that
have their basis in distributed object models. These include



the CORBA Component Model (CCM) [3], Enterprise Java
Beans (EJB) [4], and .NET [7]. The .NET model can be
viewed as an distributed evolution from COM that is espe-
cially interesting due to Common Language Runtime (CLR).
CLR is a virtual machine technology that can be compared to
Java’s Virtual Machine. It is Microsoft’s implementation of
the Common Language Infrastructure (CLI) standard, which
defines an execution environment for program code. The
CLR executes a bytecode format into which several lan-
guages can be compiled, e.g., C# and Visual C++. Through
this it is possible to integrate software components developed
in different programming languages. The drawback with the
approach, compared to, e.g., Java-based approaches, is that
it is operating system dependent, i.e., it is only supported
for Windows-based systems. Components are viewed as
extended objects that can be distributed. However, each indi-
vidual object still resides on a single node in the network. In
these types of component models object-oriented concepts,
such as classes and inheritance, are integral parts.

In component technologies for embedded systems, non-
functional properties such as safety, timeliness, memory
footprint, and dependability are of particular interest. Com-
pared to the desktop component approaches described above
the component models here are much more limited in
functionality. Often the component models are intended for
applications of an algorithmic nature. These applications are
commonly modeled as data- or signal-driven block diagrams.
Another name for this is a pipe and filter architecture.
The individual components are typically smaller than in the
previous component models, and the emphasis on component
aggregation is larger. These component technologies are
frequently inspired by the block diagram approach in Mat-
lab/Simulink, the function block diagrams in the automation
language standard IEC 61131-3, and by ordinary discrete
logic gates. There are still no good examples of commercially
successful component technologies for embedded systems.
However, it is an area where considerable research currently
is being performed.

For sensor network and mobile ad-hoc network applica-
tions, all the component technologies above are, in principle,
applicable. Sensor networks are an example of a severely
resource-constrained distributed implementation platform. If
they are to host sensor fusion and control applications, it is
quite clear that the component technologies developed for
embedded systems are a natural option. Embedded control
systems and sensor network applications, furthermore, have
many similarities. In both cases, a component model centered
around data flows is more natural than the focus on com-
ponent function calls found in desktop component models.
Following this path a possibility would be to develop a set of
generic sensor, data fusion, control and actuator components
or component types; examples along these lines are outlined
in Section IV. The limited battery resources make power-
awareness an important attribute of component models for
sensor networks.

The different characteristics of desktop applications and
sensor/actuator networks do, however, not necessarily imply
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Fig. 1. Comparison of embedded networked component technologies.

that it is not possible to base a component model for
sensor/actuator networks on more conventional component
technologies; the development effort only becomes consider-
ably larger. Rather than having built in support for data flows
in the middleware, it has to be explicitly realized through
component function calls. This is the approach that has been
taken in the RUNES project.

In mobile ad-hoc network applications the resource con-
straints are normally less severe than in wireless sensor net-
works. More powerful CPUs with more memory and battery
resources are often used. Hence, here the desktop-type of
component technologies can be applied. The components of
this type are often more application-oriented than the simpler
and more generic sensor-controller-actuator components. In
a mobile robot setting we may decompose the application
into components for localization, path planning, collision
avoidance, etc. These are the types of components of main
interest the work presented here.

The table in Figure 1 summarizes embedded networked
component technologies by listing their characteristics to-
gether with some advantages and disadvantages.

C. RUNES middleware components

Central to our efforts in developing a component-based
framework for networked control is the RUNES middleware
component model [10]. Even though sensor networks (and
other ad hoc networks) are of central interest to RUNES, the
RUNES middleware component model is closer in spirit to
the desktop model discussed above, than to the embedded
model. One reason for this is that the RUNES components
are not only intended for the sensor nodes, but should also
reside on the gateways and on the back-end computers.
Another reason is that the RUNES components are also
intended as a means for structuring parts of the RUNES
middleware itself.

A component-based framework for networked control
should enable quality of service definitions and negotiation
between the designer of the control application and the



middleware. The solution should combine the appropriate
level of abstraction needed by control applications with a
lightweight and scalable architecture. The middleware should
provide the appropriate support for a wide variety of control
applications, ranging from sensor networks to distributed
control systems. To this end, it is of utmost importance to
keep track of the level of introduced complexity. Memory
consumption and communication latency are examples of
fundamental parameters in the design. Our conclusion is that,
even if some existing proposals attempt to cope with some
of these issues, a middleware based on a comprehensive
evaluation of the multifaceted requirements of networked
control applications is still to come.

The RUNES middleware [10] is illustrated in Figure 2.
The middleware acts as a glue between the sensor, actuator,
gateway and routing devices, operating systems, network
stacks, and applications. It defines standards for implement-
ing software interfaces and functionalities that allow the
development of well-defined and reusable software. The
basic building block of the middleware developed in RUNES
is a software component. From an abstract point of view, a
component is an autonomous software module with well-
defined functionalities that can interact with other compo-
nents only through interfaces and receptacles. Interfaces are
sets of functions, variables and associated data types that are
accessible by other components. Receptacles are required
interfaces by a component and make explicit the inter-
component dependencies. The connection of two components
occurs between a single interface and a single receptacle.
Such association is called binding and is shown in more
detail in Figure 6. Part of the RUNES middleware has
been demonstrated to work well together with the oper-
ating system Contiki [22], which was developed for low-
memory low-computation devices. The implementation of
the component model for Contiki is known as the component
runtime kernel (CRTK). This component framework provides
for instance dynamic run-time bindings of components, i.e.,
during execution it allows components to be substituted with
other components with the same interface.

III. MOTIVATING SCENARIO

This section describes the RUNES tunnel disaster relief
scenario and gives an overview of some of the control
problems that arise within the scenario.

A. Disaster relief scenario

One of the major aims of the RUNES project is to create
a component-based middleware that is capable of reducing
the complexity of application construction for networked
embedded systems of all types. Versions of the component
runtime kernel, which forms the basis of the middleware,
are available for a range of different hardware platforms.
However, the task is a complex one, since the plausible
set of sensing modalities, environmental conditions, and
interaction patterns is very rich. To illustrate one potential
application in greater detail, the project selected a disaster
relief scenario, in which a fire occurs within a tunnel, much

Fig. 2. Overview of the RUNES middleware platform. The component-
based middleware resides between the application and the operating systems
of the individual network nodes.

as happened in the Mont Blanc tunnel in 1999. In this,
the rescue services require information about the developing
scenario both before arrival and during rescue operations,
and such information is provided by a network of sensors,
placed within the tunnel, on robots, and on rescue personnel
themselves. We explore the scenario in more detail below,
but it should be noted this is intended to be representative
of a class of applications in which system robustness is
important and the provision of timely information is crucial.
So, for example, much the same considerations apply in the
prevention of, or response to, Chemical, Biological, Radi-
ological, Nuclear or Explosive (CBRNE) attacks; likewise,
search and rescue operations, and even industrial automation
systems form application domains with similar requirements
for predictability of response given challenging external
conditions.

The fire-in-a-tunnel scenario deals with disaster relief
activities in response to a fire in a road tunnel caused
by an accident, as illustrated in Figure 3. For example,
in the case of Mont Blanc, a very severe fire was caused
as the result of the ignition of a lorry carrying margarine
and flour. The resulting fire burned for two days, trapping
around 40 vehicles in dense, poisonous, smoke, with a death
toll of 37 people. Communications, lighting, and sprinkler
systems failed within minutes of the fire starting with the
result that Christian Comte, fire brigade chief at Chamonix,
is reported to have said: Sur le moment, on n’avait pas
d’informations précises—on ne savait pas ce qui brûlait, ni
à quel endroit, s’il y avait du monde à l’intérieur ou pas.
In other words, there was no precise information about what
was happening: it was not clear what was burning, nor where
it was, nor whether there were people inside the tunnel or
not. As a consequence, firefighters entered the tunnel long
past the time at which they could have made a difference,
and themselves became trapped.

In the RUNES scenario, we project what might happen
in a similar situation if the vision of the US Department
of Homeland Security’s SAFECOM programme becomes



Fig. 3. Illustration of the RUNES tunnel disaster relief scenario.

a reality. The scenario is based around a storyline that
sets out a sequence of events and the desired response of
the system, part of which is as follows. Initially, traffic
flows normally through the road tunnel; then an accident
results in a fire. This is detected by a wired system, which
is part of the tunnel infrastructure, and is reported back
to the Tunnel Control Room. The emergency services are
summoned by Tunnel Control Room personnel. As a result
of the fire, the wired infrastructure is damaged and the link
is lost between fire detection nodes (much as happened in
Mont Blanc). However, using wireless communication as
a backup, information from (for example) fire and smoke
sensors continues to be delivered to the Tunnel Control
Room seamlessly. The first response team arrives from the
fire brigade and rapidly deploys search and rescue robots,
following on foot behind. Each robot and firefighter carries
a wireless communication gateway node, sensors for environ-
mental temperature, chemical and smoke monitoring, and the
robots carry light detectors that help them identify the seat
of the blaze.

The role of the robots in this scenario is twofold: to
help identify hazards and people that need attention, without
exposing the firefighters to danger; and to augment the
communications infrastructure to ensure that both tunnel
sensor nodes and those on firefighters remain in contact
with the command and control systems that the situation
commander uses to make informed decisions about how
best to respond. To accomplish this, the robots are moving
autonomously in the tunnel taking into account information
from tunnel sensors about the state of the environment,
from a human controller about overall mission objectives,
and from received signal strength measurements from the
wireless systems of various nodes about the communication
quality. The robots coordinate their activity with each other
through communication over wireless links. Local backup

controllers allow the robots to behave reasonably in the event
that communication is lost.

B. Overview of control problems

The RUNES work in general and the disaster relief
scenario in particular offer a number of interesting and
challenging problems where control methods can make a
key contribution. One can envision control algorithms being
developed to control infrastructure resources; such as fans
or fire extinguishing devices, control robot motion in order
to localize hazards or localize injured humans and assist
in removing them from the disaster area, and, last but not
least, control network resources to ensure connectivity and
timely delivery of crucial information. Here we will focus
our attention to this last type of control problem, namely
controlling network resources.

The control problem of interest is sketched in Figure 4.
A set of nodes with wireless communication capabilities
are deployed inside the tunnel for monitoring purposes.
As soon as an emergency situation occurs, for example an
accident involving many cars, the nodes need to transmit
data regarding the tunnel conditions to a base station. In
such a scenario, accurate and comprehensive information
must be provided to the base station so that correct counter
measures can be taken. It is of fundamental importance that
the network would maintain connectivity, so that the flow of
critical data to the base station is guaranteed. However, the
network could be partitioned because of a malfunction of the
nodes, caused by a fire, or because the presence of obstacles
that deteriorate or even nullifies metrics of the Quality of
Service.

In such a critical situation, the control application is
responsible for restoring the network connectivity. This is
done by sending a mobile autonomous robot inside the
tunnel, see Figure 4. The robot is equipped with a radio
transmitter–receiver so that it can maintain connectivity with
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Fig. 4. Road tunnel scenario in which part of the deployed wireless
network is disconnected due to two damaged network nodes. A mobile
robot moves into the region of the damaged nodes to relay information
from the unreachable nodes towards the base station.

the base station directly or through the deployed network.
Once the base station determines the network break area, a
target position for the mobile robot is computed. This is done
by the network reconfiguration component. The robot then
needs to navigate inside the tunnel until either it reaches the
target position or it determines that the target position is out
of reach because of obstacles.

Control applications impose additional requirements on
the RUNES platform that arise from the need to manipulate
the networked systems and/or the environment in which they
are embedded. In the rest of the paper we present the orga-
nization of the control system components that need to be
implemented in order to guarantee that network connectivity
is reestablished. The core are the four components: network
reconfiguration, localization, collision avoidance and power
control. Details of the development of these components are
given in the companion papers.

IV. CONTROL COMPONENTS FOR MAINTAINING

NETWORK CONNECTIVITY IN ADVERSE ENVIRONMENTS

This section describes the software architecture for the
control components used for maintaining network connectiv-
ity, together with the functionality of each component. The
control components outlined below follow the RUNES com-
ponent model [10]. The four main control components deal
with network reconfiguration, localization, collision avoid-
ance and power control. Their integration is demonstrated
through the network reconfiguration scenario described next.
The section concludes with a discussion of the low-level
component library containing sensor, data fusion, controller
and actuator components; the higher level components of net-
work reconfiguration, localization, collision avoidance and
power control invoke the low level components in this library
to accomplice their goals. Communication security issues are
addressed by a specialized security component (which in turn
comprises a number of subcomponents); this component is
dealt with separately in Section V.

A. Physical network reconfiguration scenario

Mobile autonomous robots are sent inside the tunnel to
restore connectivity, see Figure 4. The navigation of a robot
inside the tunnel is made possible by two components. The
first is the localization component, that provides the position
and orientation of the robot inside the tunnel and information

Yes

Optimize transmission power

Robot moves to destination

Deploy robot

Network disconnected?

Start

PCC

LoC & CAC

NetReC

NetReC

NetReC

Yes

No

No

Robot at destination?

Fig. 5. Flow chart showing the actions taken in order to reestablish
network connectivity. The acronyms to the left indicate the active control
components.

about the presence of obstacles. The second is the collision
avoidance component that ensures that the robot does not
collide with obstacles or other robots. Once the mobile
robot is in a suitable position it attempts to reconnect the
network, by acting as a relaying node between the nodes
in the disconnected parts of the network. At this stage, a
third component, the power control component, is invoked, to
reduce the energy consumption and lower the packet collision
probability of the nodes at the boundary of the network.
In case the network is not reconnected with the first robot,
additional robots could be deployed in a similar fashion.

The flowchart in Figure 5 details the sequence of tasks in
the reconfiguration scenario. The acronyms in the column to
the left indicate the control component primarily responsible
for the action. The scenario starts by the detection of that the
network is disconnected. The network reconfiguration com-
ponent (NetReC) then makes the decision that the first robot
should be deployed. The robot moves autonomously to the
destination using localization information about its position
provided by the localization component (LoC). In parallel, it
also uses the collision avoidance component (CAC) to avoid
colliding with stationary objects or other moving agents.
When the network reconfiguration component detects that
the robot has reached a suitable goal position (possibly
by adjusting the original destination point based on local
information at the scene), it initializes the power control
component (PCC). The radio transmission power is adjusted
in the robot node and in its neighboring network nodes, in
order to not only preserve battery power but also minimize
interference among nodes. If the network is still disconnected
after the power has been adjusted, the algorithm starts over
and a new robot is deployed.




