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CONCLUSIONS
This new textbook is a breath of fresh air in the market
of books devoted to probability and random processes.
The book lives up to its ambition of setting a new stan-
dard for a modern, computer-based treatment of the
subject. Despite the issues discussed above, I fully rec-
ommend its use in undergraduate and first-year gradu-
ate courses. 
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RELAY FEEDBACK:
ANALYSIS, IDENTIFICATION 
AND CONTROL
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Oscillation is a fundamental
property of many technological
systems. Two essential compo-
nents for structurally sustain-
able oscillation are nonlinearity
and feedback. A simple example
of a system that generates a
periodic signal consists of a
relay in feedback with a dynam-
ical system. Since such systems

are easy to implement with analog or digital devices, they
have been widely used in many applications for more than
a century. Analysis of relay feedback systems is therefore a
classical topic in control theory. Early work was motivated
by relays in electromechanical systems and simple models
for dry friction. The classical textbook [1] discusses phase-
plane analysis illustrated by several examples.

Self-oscillating adaptive controllers based on relay
feedback were developed in the 1960s. More recent appli-
cations include �-� modulators for analog-to-digital con-
version, power electronic dc-dc converters, and various
control systems such as variable structure control and
hybrid control. In 1984, an auto-tuner for automatically
tuning proportionl-integral-differential (PID) controllers
through a relay feedback experiment was considered in
[2] and subsequently tested in several industrial applica-
tions [3], [4]. This technique triggered substantial efforts
in developing practical experiments and identification
methods for tuning low-order control laws as well as
interest in the analysis of relay feedback systems [5].

A linear system with relay feedback can be described as

ẋ = Ax + Bu, (1)

y = Cx, (2)

u = −sgn y, (3)

where x is an n-dimensional vector, u and y are scalars,
and A, B, and C are constant matrices. The relay is mod-
eled as

sgn y =
{

1, y > 0,

−1, y < 0.

Since the sign function is discontinuous at y = 0, existence
of solutions does not follow from the theory of ordinary
differential equations. Instead, we rely on an abstract rep-
resentation of (1)–(3) given by the differential inclusion

ẋ ∈ F(x),

where the set-valued right-hand side is

F(x) =



Ax − B, Cx > 0,

Ax + B[−1, 1], Cx = 0,

Ax + B, Cx < 0.

The interpretation of F(x) is that when x belongs to
the switching plane {x : Cx = 0}, the time derivative of x
can take any value in the set {Ax + Bu : u ∈ [−1, 1]}. The
particular choice of ẋ is made in such a way that the
solution x : [0,∞) → Rn has some desirable property,
such as piecewise-continuous differentiability. There is
an extensive literature on the relation between solu-
tions of differential equations with discontinuous
right-hand sides and their corresponding differential
inclusions. A classical reference on these generalized
solutions is [6].
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If the solutions to the differential equation always tra-
verse the switching plane, the solutions can, in many cases,
be considered in the classical sense. However, if the solu-
tions approach the switching plane tangentially, more care
needs to be taken in the definition of the solution [7], [8].
For example, the classical solution of ẋ = −sgn (x) ,
x(0) = 1, does not extend beyond the time instant t when
x(t) = 0. Furthermore, the two-dimensional example

ẋ1 = −sgn (x1) + 2sgn (x2),

ẋ2 = −2sgn (x1) − sgn (x2)

has a classical solution that spirals toward the origin in
finite time [6].

Relay feedback systems often give rise to limit
cycles. The traditional approach to analyzing oscilla-
tions in relay feedback systems is through frequency-
domain or state-space methods [9]. The describing
function approach is a frequency-domain method that
in many cases gives approximate conditions for stable
limit cycles. Rigorous results can be obtained by con-
sidering the Poincaré map, which describes the state
evolution of the system between two consecutive inter-
sections of the switching plane. However, it is well
known that relay feedback systems can exhibit complex
limit cycles that require alternative mathematical tools
[8], [10]–[12].

The frequency and amplitude of the output of a relay
feedback experiment reflects the dynamics of the plant
P(s) = C(sI − A)−1B. For a stable plant P with positive
steady-state gain and damped frequency response, the
oscillation corresponds typically to the first intersection
point of the Nyquist curve P(ω) with the negative real
axis [2]. Although this single point is a crude estimate of
P, it gives information about the system in a frequency
range important for control design. For simple control
laws such as PI and PID controllers, this information is
often sufficient to tune the controller parameters to
obtain adequate closed-loop performance. The auto-
tuner is consequently based on a scheme in which the
controller is first replaced with a relay, the amplitude
and frequency of the oscillation is measured, the con-
troller parameters are derived from these measure-
ments, and, finally, the controller replaces the relay in
the control loop. By inserting a filter in series with the
plant, additional oscillation frequencies can be obtained.
In this way, multiple points on the Nyquist curve can be
identified, and thus a more accurate model of P(ω) is
found. The cost of obtaining a higher fidelity model is
longer experiment time, which may have implications in
practice. For more elaborate control-design schemes, the
excitation signal should be optimized to maximize the
benefit of each experiment. However, many process con-
trol loops in industry can be improved considerably by
the simple auto-tuner with a single relay experiment.

CONTENTS OF THE BOOK
Relay Feedback: Analysis, Identification and Control is an
extensive text covering the analysis of oscillations in
relay feedback systems, system identification based on
relay feedback experiments, and controller design based
on the identified models. The book is divided into three
parts: (I) analysis of relay feedback systems, (II) process
identification from relay feedback tests, and (III) con-
troller design. Each part is divided into four or five
chapters.

Part I presents fundamental properties of single-
input, single-output (SISO) linear systems with relay
feedback. Relay feedback systems that include time
delays and relay hysteresis are also treated. As a result,
the model structure given in (1)–(3) is only a special
case. Chapter 1 discusses the existence of solutions. This
topic is important since relay feedback systems do not
always have solutions in the classical sense. The book
avoids complications resulting from solutions converg-
ing to the switching surface by making appropriate tech-
nical assumptions.

The remaining three chapters of Part I deal with limit
cycles. Specifically, Chapter 2 presents conditions on the
existence of limit cycles, while chapters 3 and 4 give
results on local and global stability of limit cycles. Local
stability is derived through linearization of the Poincaré
map. A global stability result is obtained by applying
the contraction mapping theorem. The presentation in
Part I is well written and easy to follow. Although an
overview is given at the beginning of each chapter, the
rest of the material is quite technical and consists of a
collection of recent results reported by the authors in
various papers. Several examples and figures are also
used to help illustrate the development.

Part II discusses system identification based on relay
feedback experiments. In Chapter 5 the authors review
the basic relay feedback experiment and some of its
variants. The introduction of an extra relay in the feed-
back loop to enhance the excitation of the closed-loop
dynamics is discussed. A decentralized relay experiment
for multivariable plants is briefly introduced as well.
Instead of computing a single point on the Nyquist
curve, a frequency-response analysis is executed directly
on the input and output plant data. The authors discuss
the advantages of this technique in Chapter 6 and also
discuss experimental results on two pilot plants, name-
ly, a water tank laboratory process and a heat exchang-
er. To utilize design methods based on parametric
models of the plant, Chapter 7 discusses methods for
approximating frequency responses with low-order
transfer functions. Chapter 8, the last chapter of Part II,
presents an alternative method for identifying the
closed-loop plant model. The material in Part II is less
technical compared to Part I and should be straightfor-
ward for the practit ioner to apply.  Some more



JUNE 2007 « IEEE CONTROL SYSTEMS MAGAZINE 103

discussion on the relation to the system identification
literature would have been desirable. For example, how
does the presented MIMO identification scheme com-
pare to existing techniques for identification based on
frequency-domain or time-domain data?

Part III focuses on the design of linear controllers. As
pointed out by the authors, there is a vast domain of
applicable techniques, and thus there is no attempt in
the book to cover them all. The text reviews internal
model control (IMC) for SISO systems in Chapter 9 and
MIMO systems in Chapter 10. Chapter 11 discusses a
variant of IMC for unstable plants. Chapter 12 is on
decentralized control. There is no specific link between
Part III and Parts I or II other than the fact that decen-
tralized relay experiments are briefly mentioned at the
end of the last chapter. In fact, the focus on IMC is moti-
vated by the general opinion that it is a popular control
architecture in the process control industry. It would
have been nice to see some further connection with the
material of previous chapters. For example, can the
model uncertainty introduced by a simpler relay experi-
ment be compensated for by closed-loop design? Is there
a tradeoff between experiment time and achievable con-
trol performance?

WHO SHOULD READ THIS BOOK
This book is suitable for both researchers and workers
interested in obtaining an in-depth understanding of
relay feedback systems and their application to automat-
ic tuning of controllers. The book is a research mono-
graph and consists of a detailed survey of recent papers
by the authors on the analysis of relay feedback systems
and their application to identification and control
design. The book does not compare alternative
approaches but rather is focused along a particular line
of research. As a consequence, the book is probably not
suitable as a stand-alone textbook for a graduate control
course. Instead it is better suited as a complement to a
nonlinear control course, a system identification course,
or a course on control design.

For the next edition of this book, it would be desirable
to include some discussion on the limitations of the
approach taken. Although a few related methodologies are
listed in the introduction of each chapter, little discussion
of the relative pros and cons of various methodologies is
presented. For example, the extensive recent literature on
iterative identification and control design [13] is not men-
tioned. Additional questions can also be raised, such as
why relay experiments for MIMO plants, or SISO systems
with multiple relays, are not treated in Part I. For example,
systems with more than one relay can lead to interesting
extensions of the results presented in Part I, with possible
connections to the literature on hybrid systems.

To conclude, the authors have produced a well-writ-
ten and detailed text on relay feedback with applications
to system identification and control design. The book
presents an ambitious project that takes the reader from
advanced mathematical theory on nonsmooth dynami-
cal systems to tuning techniques directly applicable to
industrial control systems. The book appeals to a
diverse audience, from researchers in nonlinear control
to practicing control engineers.
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