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Abstract: Structural robustness of limit cycles in relay feedback systems is studied.
Motivated by a recent discovery of a novel class of bifurcations in these systems, it
is illustrated through numerical simulation that small relay perturbations may change
the appearance of closed orbits dramatically. It is shown analytically that certain stable
periodic solutions in relay feedback systems are robust to relay perturbations.
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1. INTRODUCTION

Relay feedback systems and, in general, nonsmooth
feedback systems tend to self-oscillate (Tsypkin, 1984).
Namely, the system evolution tends asymptotically
towards stable periodic orbits or limit cycles. Re-
cently, it has been shown that such solutions can un-
dergo abrupt transitions when the system parameters
are varied. This led to the discovery of an entirely
novel class of bifurcations, involving the interaction
between periodic solutions of the system and its dis-
continuity sets. Despite their widespread use in appli-
cations (Flügge–Lotz, 1953; Andronovet al., 1965;
Tsypkin, 1984; Åström and Hägglund, 1995; Nor-
sworthy et al., 1997), there are few analytical tools
to characterize oscillations in relay feedback systems.

1 Corresponding author.

For example, methods to assess their existence and
stability properties are still the subject of much ongo-
ing research (Åström, 1995; Megretski, 1996; Johans-
sonet al., 1997; Johanssonet al., 1999; di Bernardoet
al., 2000; Georgiou and Smith, 2000; Varigonda and
Georgiou, 2001; Gonçalveset al., 2001).

An interesting issue for the considered class of nons-
mooth dynamical systems is the robustness properties
of the solutions. Due to the discontinuous vector field,
classical continuity results for smooth systems are not
applicable. Still, it is important in applications to un-
derstand if a given solution is robust to unmodeled
dynamics, external perturbations, and noise. While
there are many results dealing with the robustness of
smooth dynamical systems (e.g.,(Wiggins, 1990; Mur-
dock, 1991; Kokotovíc et al., 1999)), few papers seem
to address this issue in the case of systems with
nonsmooth vector fields. In the case of relay feed-
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back systems, the available results deal with a quite
restrictive class of systems where the transfer func-
tion is either close to an integrator (Georgiou and
Smith, 2000) or to a second-order nonminimum phase
system (Megretski, 1996). Singular perturbations for
the smooth part of the system have also been stud-
ied (Fridman and Levant, 1996).

In this paper we are interested in the robustness of
periodic solutions in relay feedback systems. In partic-
ular, we study the case when a system with an ideal re-
lay exhibits an asymptotically stable periodic solution.
Then we ask the question if a system with an imperfect
implementation of the relay (modeled by a parameter
ε � 0) will also have an asymptotically stable peri-
odic solution. The considered relay implementations
include relay with hysteresis, with finite gain (satura-
tion), and with delayed switching. The problem is not
trivial, especially, due to the nonsmooth characteristic
of the relay. As an illustration, consider the approach,
often suggested in the literature, of analyzing relay
systems by approximating the relay by a continuous
function. There are subtleties when taking the limit as
the function tends to the characteristics of the relay.
It was recently shown (Johanssonet al., 1999) that
erroneous results have been derived in the literature
when this limit is not dealt with properly. All proofs
are presented in (di Bernardoet al., 2002).

The paper is outlined as follows. Relay feedback sys-
tems and the perturbations studied in the paper are
introduced in Section 2. A motivating example is dis-
cussed in Section 3, where it is shown that several
interesting bifurcation scenarios appear due to sudden
loss of structural stability. Section 4 presents results on
perturbations of relay feedback systems. It is shown
that if a nominal system exhibits a stable periodic
solution, then so will anε-perturbed system under cer-
tain structures of the perturbation. Some concluding
remarks and a discussion on future work are presented
in Section 5.

2. RELAY FEEDBACK SYSTEMS

Consider a nominal relay feedback system

Σ0 :

���
��

ẋ � Ax�Bu

y �Cx

u ��sgny�

where�A�B�C� defines a SISO linear time-invariant
system of ordern � 1. The relay, defined by the
sign function, allows for sliding modes by the set-
valued assignment sgn0� ��1�1� and the interpreta-
tion of solutions (trajectories) in the sense of Filip-
pov (Filippov, 1988). A solutionx : �0�∞� � �

n of
Σ0 is periodic if there exists a (smallest) period time
T � 0 such thatx�t�T � � x�t� for all t � 0. It is called
symmetric if x�t � T�2� � �x�t� for all t � 0. The
switching plane is defined asS � �x � �n : Cx � 0�.
A periodic solutionx is called simple if the closed

orbit L � �z � �n : �t � 0�z � x�t�� (i) intersects
S only twice and (ii) is transversal toS at the inter-
section points. Note that the condition on transversal
intersections is not fulfilled for so called sliding or-
bits (di Bernardoet al., 2000). The following result
gives conditions for existence and stability of peri-
odic solutions (Åström, 1995; Varigonda and Geor-
giou, 2001). Note that stability refers to exponential
stability throughout the paper.

Lemma 2.1. The systemΣ0 has a simple symmetric
periodic solution with half-periodt � if and only if

f �t�� 0� 0� t � t�

f �t�� � 0�
d f
dt

�0�� 0�
d f
dt

�t��� 0�

where

f �t� �CeAtx��CA�1�eAt � I�B

x� � �eAt� � I��1A�1�eAt� � I�B�

Moreover, it is stable if all eigenvalues of the Jacobian

W �

�
I�

wC
Cw

�
eAt� � w � �eAt� � I��1eAt�B

are in the open unit disc.

Note that the pointx� is the intersection point with the
switching plane. Extensions of the result are discussed
in (Johanssonet al., 1997; Johanssonet al., 1999; di
Bernardoet al., 2000; Varigonda and Georgiou, 2001).

Next we introduce the three alternative relay perturba-
tions that we study in the paper.

(1) A relay feedback system with hysteresisε � 0 is
denoted

ΣH
ε :

���
��

ẋ � Ax�Bu

y �Cx

u ��sgnH
ε y�

where the relay is defined as
u�t� ��sgnH

ε y�t�

�

�
�1� y�t�� ε or

�
� ε � y�t� � ε� u�t�� ��1

�
1� y�t���ε or

�
� ε � y�t�� ε� u�t�� � 1

�
�

(2) A relay feedback system with the relay replaced
by a saturation with steep slope 1�ε � 0 is given
by

ΣS
ε :

���
��

ẋ � Ax�Bu

y �Cx

u ��sgnS
ε y�

where the relay is defined as

u�t� ��sgnS
ε y�t� �

���
��
�1� if y�t�� ε
�y�t��ε� if � ε � y�t�� ε
1� if y�t���ε�

(3) A relay feedback system with switching delayed
ε � 0 amount of time is defined as

ΣD
ε :

���
��

ẋ � Ax�Bu

y �Cx

u ��sgnD
ε y�
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Fig. 1. Oscillations of the third-order relay systems
Σ0 (a and b) andΣH

ε (c and d). The parameter
values areζ � 0�05�λ � ρ � �σ � 1 and(a)
ω� 10�3,ε � 0, (b) ω� 12,ε � 0, (c) ω� 10�3,
ε � 1�1000,(d) ω � 10�3, ε � 1�100.

where the relay is simply

u�t� ��sgnD
ε y�t� ��sgny�t� ε��

It should be noticed that the definitions for periodic
solutions forΣ0 directly generalize to the perturbed
systemsΣD

ε , ΣH
ε , andΣS

ε .

3. MOTIVATING EXAMPLES

A third-order relay feedback system recently stud-
ied in (di Bernardoet al., 2000; Kowalczyk and di
Bernardo, 2001a; Kowalczyk and di Bernardo, 2001b)
is now used as a representative example. The linear
dynamics is given by

A �

�
� ��2ζω�λ � 1 0
��2ζωλ �ω2� 0 1

�λω2 0 0

�
	 � B �

�
� 1

2σρ
ρ2

�
	

C �


1 0 0

�
�

which corresponds to the transfer function

C�sI�A��1B �
s2�2σρs�ρ2

�s2�2ζωs�ω2��s�λ �
�

This system has been shown to undergo several bi-
furcation phenomena, which can lead to the occur-
rence of deterministic chaos (see (Kowalczyk and di
Bernardo, 2001b) for a complete description of the
bifurcation diagram). This would seem to indicate that
periodic solutions of relay systems are sensitive to
parameter variations and external disturbances.

In the simplest case, a change in the topology of
the solution ofΣ0 can be observed as the parame-
ters are varied. An example is shown in Figs. 1(a)–
(b), where the transition is depicted from a periodic
solution characterized by two segments of sliding mo-
tion each half-period to one containing three sections
of sliding. More complex scenarios are also possi-
ble corresponding to a sudden loss of structural sta-
bility. The system can for example exhibit so-called
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Fig. 2. Oscillations of perturbed third-order relay sys-
tem ΣS

ε with the same parameters as in Fig. 1.
The perturbation is(a) ε � 0, (b) ε � 1�500,(c)
ε � 1�250,(d) ε � 1�100.

period-doubling cascades to chaos (Kowalczyk and di
Bernardo, 2001b) or in some cases an abrupt tran-
sition from regular to chaotic motion (Verghese and
Banerjee, 2001). The occurrence of these phenomena
has been recently explained in the literature as due to
the occurrence of new bifurcations, unique to nons-
mooth systems. The formation of periodic solutions
with sliding (orsliding orbits), for example, has been
explained by identifying so-called sliding bifurcations
(di Bernardoet al., 2000). These are due to interac-
tions between periodic orbits of the system and re-
gions on the discontinuity set where sliding is possi-
ble. The existence of unexpected transitions involving
self-oscillations of relay feedback systems motivates
the study of how persistent periodic solutions are. We
restrict our attention to the effects of perturbations to
the relay characteristics. Our numerics seem to sug-
gest that oscillations in relay feedback systems are
unexpectedly robust to perturbations of the relay char-
acteristic. Fig. 1(c) shows, for instance, that the orbit
characterized by two sections of sliding motion forΣ0
depicted in Fig. 1(a) is robust to a small hysteresis (ΣH

ε
with ε � 1�1000). We see, though, that as the pertur-
bation is increased the effects of the hysteresis cannot
be neglected (Fig. 1(d)). Nevertheless, the influence
of the underlying unperturbed orbit remains clearly
visible.

Similar effects as in Fig. 1 are shown in Fig. 2 but for
ΣS

ε , in which case the system is perturbed by substi-
tuting the relay element with a finite gain saturation.
Again we see that for relatively small value of the per-
turbation (high value of the gain), the perturbed orbits
(Fig. 2(b)–(c)) stay close to the unperturbed one (Fig.
2(a)). Lower values of the gain though cause the tran-
sition to the different orbit depicted in Fig. 2(d). Note
that the persistence observed in the system is quite
remarkable. Substituting the relay with a saturation
prevents the occurrence of sliding mode without caus-
ing a destruction of the unperturbed solution structure.
This structural robustness is also observed in the case
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Fig. 3. Oscillations of the delayed relay systemΣD
ε for

the same parameter values as in Fig. 1.(a) ε � 0,
(b) ε � 1�200,(c) ε � 1�125,(d) ε � 1�100.
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Fig. 4. Oscillations of perturbed third-order relay
system ΣS

ε with parametersζ � �0�07�λ �
0�05�ρ � �σ � 1 andω � 10. (a) ε � 0, (b)
ε � 1�200,(c) ε � 1�100,(d) ε � 1�50.

of ΣD
ε , where the relay is perturbed by adding a small

delay. Fig. 3 shows how the periodic orbit under inves-
tigation varies as the delay is increased. Despite the
onset of high-frequency oscillations, the structure of
the unperturbed orbit is still preserved. More dramatic
effects are observed when the robustness of a more
complex dynamical behavior is investigated. When the
chaotic attractor shown in Fig. 4(a) is perturbed by
substitution of the relay with a high gain saturation,
its topology changes to the one shown in Fig. 4(b)
(characterized by a lower number of lobes). Further
variation of the gain, causes a further reduction of the
lobes (Fig. 4(c)) followed by the appearance of a sta-
ble asymmetric periodic solution (Fig. 4(d)). The ef-
fects of a small hysteresis on the same chaotic attractor
are even more evident as shown in Fig. 5, whereΣH

ε .
Here we see the attractor structure changing rapidly as
the perturbation is increased.

The simulations reported above highlight the need for
appropriate theoretical tools to systematically carry
out the robustness analysis of oscillations in relay
systems. In what follows, perturbation analysis of so-
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Fig. 5. Oscillations of the hysteresis perturbed relay
systemΣH

ε for the same parameter values as in
Fig. 4, but with (a) ε � 0, (b) ε � 1�100, (c)
ε � 1�20,(d) ε � 1�10.

called simple periodic solutions is discussed. These in-
tersect the switching plane transversally, which make
them easier to analyze using classical Poincaré tech-
niques. Note that it seems that tangential intersections
plays an important role in some of the bifurcation
phenomena illustrated above, cf., bifurcation analysis
in (di Bernardoet al., 2000). The robustness analysis
of periodic solution that hits or leaves the switching
plan tangentially will be studied in future work.

4. PERTURBATION ANALYSIS

In this section we study different perturbations of the
nominal relay feedback systemΣ0. Given some rather
non-restrictive assumptions, we will see that a stable
periodic solution ofΣ0 is persistent, in the sense that
the perturbed systemΣP

ε also has a stable periodic
solution regardless of the perturbationP � �H�S�D�.
The following theorem summarizes the result of the
section.

Theorem 4.1. Suppose the relay feedback systemΣ0
has a simple symmetric periodic solution with a
strictly stable Jacobian (as defined in Lemma 2.1).
Then, there existsε0 � 0 such that for eachε � �0�ε0�
the perturbed relay feedback systemsΣH

ε , ΣS
ε , andΣD

ε
all have simple symmetric stable periodic solutions.

The proof uses three lemmas which state sufficient
conditions forΣH

ε , ΣS
ε , andΣD

ε , respectively, to exhibit
periodic solutions. The lemmas, which are presented
next, are derived using techniques from the recent
literature on relay feedback systems, e.g., (Åström,
1995). The main contribution of Theorem 4.1 is how-
ever on how to connect the existence of a periodic so-
lution for Σ0 with the existence of a periodic solution
for a perturbed system. It turns out that it is easy to
make the connection forΣH

ε andΣD
ε , whileΣS

ε requires
some more analysis. The proofs are presented in (di
Bernardoet al., 2002).



Throughout the section, we make the following stand-
ing assumption.

Assumption 4.1. The relay feedback systemΣ0 has a
simple symmetric periodic solution with half-period
t�. All eigenvalues ofW (defined in Lemma 2.1) are
inside the unit disk.

Consider the relay feedback system with hysteresis
ΣH

ε . We note that with a straightforward modification
of Lemma 2.1 the following result holds, cf., (Åström,
1995).

Lemma 4.1. The systemΣH
ε has a stable simple sym-

metric periodic solution with half-periodτ if (i)

f H�t�ε�� 0� 0� t � τ

f H�τ �ε� � 0�
d f H

dt
�0�ε�� 0�

d f H

dt
�τ �ε� � 0

where

f H�t�ε� �CeAtz��CA�1�eAt � I�B� ε
z� � �eAτ � I��1A�1�eAτ � I�B�

and (ii) all eigenvalues of the Jacobian

W H�ε� �
�

I�
wHC
CwH

�
eAτ

wH�ε� � �eAτ � I��1eAτ B

are in the open unit disc.

If the nominal systemΣ0 generates a closed orbit as
specified in Lemma 2.1, one can now show that also
ΣH

ε generates one ifε � 0 is small using the Implicit
Function Theorem.

Consider the perturbed relay feedback systemΣS
ε ,

where the relay is replaced by a saturation with steep
slope. Introduce the notationφ� for the flow of ẋ �
Ax�B, φ

�
for the flow of ẋ � Ax�B, andφε for the

flow of ẋ � �A�BC�ε�x. The following result similar
to Lemma 2.1 then holds.

Lemma 4.2. The systemΣS
ε has a stable simple sym-

metric periodic solution with half-periodτ 1� τ2� τ3
if (i)

0� f S
1 �t�ε�� ε� 0� t � τ1

ε � f S
2 �t�ε�� 0� t � τ2

0� f S
3 �t�ε�� ε� 0� t � τ3

f S
1 �τ1�ε� � ε� f S

2 �τ2�ε� � ε� f S
3 �τ3�ε� � 0

d f S
1

dt
�0�ε�� 0�

d f S
1

dt
�τ1�ε�� 0

d f S
2

dt
�0�ε�� 0�

d f S
2

dt
�τ2�ε�� 0

d f S
3

dt
�0�ε�� 0�

d f S
3

dt
�τ3�ε�� 0

where

f S
1 �t�ε� �Cφε�t�z

��� f S
2 �t�ε� �Cφ

�
�t�z�1�

f S
3 �t�ε� �Cφε�t�z

�

2�

z� ��φε�τ3�z
�

2�� z�1 � φε �τ1�z
��

z�2 � φ
�
�τ2�z

�

1��

and (ii) all eigenvalues of the Jacobian

W S�ε� �W S
3 �ε�W

S
2 �ε�W

S
1 �ε�

are in the open unit disc with

W S
1 �ε� �

�
I�

M1Az�C

CM1Az�

�
M1

W S
2 �ε� �

�
I�

wSC
CwS

�
eAτ2

W S
3 �ε� �

�
I�

M3Az�2C

CM3Az�2

�
M3

M1 � eAτ1� M3 � eAτ3

wS�ε� � eAτ2�Az�1�B��

The robustness result can now be shown also forΣS
ε ,

where the proof is based on a contraction mapping
argument together with thatW S�ε� will be close toW
for smallε.

Consider the perturbed relay feedback systemΣD
ε ,

where the switching is delayed a short amount of time.

Lemma 4.3. The systemΣD
ε has a stable simple sym-

metric periodic solution with half-periodτ � ε if (i)

f D
1 �t�ε�� 0� 0� t � ε

f D
2 �t�ε�� 0� 0� t � τ

f D
2 �τ �ε� � 0�

d f D
1

dt
�0�ε�� 0�

d f D
2

dt
�τ �ε� � 0�

where

f D
1 �t�ε� �Cφ��t�z

��

f D
2 �t�ε� �Cφ

�
�t�φ��ε�z

���

z� � �eA�τ�ε�� I��1A�1�2eAτ � eA�τ�ε�� I�B�

and (ii) all eigenvalues of the Jacobian

W D�ε� �W D
2 �ε�W D

1 �ε�

are in the open unit disc with

W D
1 �ε� � eAε � W D

2 �ε� �
�

I�
wDC
CwD

�
eAτ

wD�ε� � eAτ �Aφ��ε�z���B��

The robustness result follows similarly to the proof for
ΣS

ε , but with application of Lemma 4.3.

5. CONCLUSIONS AND FUTURE WORK

Perturbation analysis in relay feedback systems was
discussed. It was shown that stable simple symmetric



periodic solutions are persistent under small varia-
tions in the relay characteristic. Simulations showed
that if the orbits are not simple (i.e., do not intersect
the switching plane transversally twice per period),
then sensitive solutions may appear. Examples of this
include so-called sliding orbits. Future work include
studying perturbations of sliding orbits in detail. Bi-
furcation phenomena can cause a sudden loss of struc-
tural stability, which recently was analytically investi-
gated (di Bernardoet al., n.d.).

The robustness result in this paper can be extended
to more general piecewise affine systems. It is inter-
esting to consider relay feedback systems with other
imperfections, such as model errors in the linear dy-
namics and unmodeled dynamics. It is straightfor-
ward to extend Theorem 4.1 to a class of systemΣM

ε ,
which has an ideal relay but the linear system is re-
placed by smooth functionsA�ε��B�ε��C�ε�, such that
�A�0��B�0��C�0�� � �A�B�C�.
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