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Fast switches in relay feedback systems1
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Scalar linear systems with relay feedback are analyzed. In particular, fast relay switches and various
types of limit cycles are investigated.

Abstract

Relays are common in automatic control systems. Even linear systems with relay feedback are, however, far from fully understood.
New results are given about the behavior of these systems via a state-space approach. It is proved that there exist multiple fast switches
if and only if the sign of the first nonvanishing Markov parameter of the linear system is positive. Fast switches are shown to occur as
part of stable limit cycles. An analysis is developed for these limit cycles that illustrates how they can be predicted. ( 1999 Elssevier
Science Ltd. All rights resesrved.
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1. Introduction

Analysis of relay feedback systems is a classical topic in
control theory. The early work was motivated by relays
in electromechanical systems and simple models for dry
friction. The design of relay controllers in aerospace
applications gave inspiration to the development of the
self-oscillating adaptive controller in the 1960s (Flügge-
Lotz, 1953, 1968). Recently new interest in relay feedback
appeared due to the idea of using relays for tuning simple
controllers in As ström and Hägglund (1984b). By simply
replacing the controller with a relay, measuring the am-
plitude and frequency of the possible oscillation, and
deriving the controller parameters from these, a robust
control design method is obtained. Although this method
is now widely used in industry (As ström and Hägglund,
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1995), there are several issues that need further theoret-
ical analysis. One problem is to characterize those sys-
tems that will give a globally stable limit cycle. This
problem is important because it gives a class of systems,
where relay tuning can be theoretically justified.

The idea to put the plant under relay feedback is also
used in other applications. In Smith and Doyle (1993)
perturbation bounds are estimated for robust control
design and in Lundh and As ström (1994) it is shown how
initialization of adaptive controllers can be done. Quan-
tization in digital control can be analyzed with relay
feedback methods. Limit cycles due to quantizers are
reported in Parker and Hees (1971). Relays are key com-
ponents in variable-structure systems (Utkin, 1987).
More applications of relays in control systems are given
in Tsypkin (1984), As ström (1995), and Johansson (1997).
The monograph Andronov et al. (1965) is an early clas-
sical reference (first edition published in Russian in 1937)
discussing oscillations is relay feedback systems using
phase-plane analysis.

Analysis of linear systems with relay feedback is a non-
trivial task. The major reference about relay control
systems Tsypkin (1984) surveys a number of analysis
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methods and results. In particular, it discusses the earlier
work Anosov (1959), which relates the stability properties
of relay feedback to those of high gain linear feedback.

Other applicable stability results, valid for a more
general class of nonlinearities, are given in Yakubovich
(1964). A nonsmooth Lyapunov stability theory is de-
veloped in Shevitz and Paden (1994). Relay feedback
systems often tend to a limit cycle. Methods for estima-
ting oscillation frequency and amplitude are thoroughly
discussed in Tsypkin (1984); see also Atherton (1975) and
Mees (1981). It is important to note that all these fre-
quency methods are derived under the assumption that
a limit cycle exists. To tell in general if all trajectories of
a relay feedback system actually converges to a periodic
orbit is an open problem. In Yakubovich (1973) a fre-
quency condition is used to give sufficient conditions for
a certain type of oscillations. Holmberg (1991) shows
through phase-plane analysis that some first-order and
second-order systems have a globally stable limit cycle.
Megretski (1996) proves that this also holds for higher-
order systems having an impulse response sufficiently
close, in a certain sense, to a second-order nonminimum
phase system.

Relay feedback systems may exhibit several interesting
behaviors. The main contribution of our work is to
investigate some of these and state a number of new
results to improve the understanding of linear systems
with relay feedback. Particular emphasis is on fast
switches and their properties. It is shown that a necessary
and sufficient condition for multiple fast switches is that
the sign of the first nonvanishing Markov parameter is
positive. This result can be seen as a generalization of the
condition on convergence to a first-order sliding set in
relay feedback systems (Filippov, 1988). The condition
for multiple fast switches in third-order systems was
given in Johansson and Rantzer (1996). Here, the condi-
tion is generalized to systems of arbitrary order. An
application of the result is to predict fast switches as
part of limit cycles. This is done in the latter part of
the paper, where it is also shown how these complic-
ated limit cycles can be analyzed using Utkin’s equiva-
lent control (Utkin, 1987). Further analysis of the limit
cycles is done in Johansson (1997) and Johansson et al.
(1997).

There exist conditions on local stability of limit cyles in
the literature. Two important ones are given in Bala-
subramanian (1981) and As ström and Hägglund (1984a),
respectively. The conditions are rephrased here and it is
shown that they are equivalent if the pole excess of the
linear system is greater than one.

The outline of the paper is as follows. Some notations
and assumptions are given in Section 2. In Section 3 two
conditions for local stability of limit cycles are compared.
The main result on multiple fast switches is given in
Section 4. Some approximate analysis to gain extra in-
sight is done in Section 5. Section 6 presents systems of

various pole excesses that exhibit limit cycles with fast
switches.

2. Preliminaries

Consider a relay feedback system that consists of a lin-
ear system G and a relay defined as follows. The system
G is a strictly proper transfer function with scalar input
u and scalar output y. Let a minimal state-space repre-
sentation of G be given by

xR "Ax#Bu,

y"Cx,
(1)

where x"(x
1
,2 , x

n
)T3Rn. The relay feedback is de-

fined by

u"!sgn y3G
M!1N, y'0,

[!1, 1], y"0,

M1N, y(0.

(2)

The switch plane S is the hyperplane of dimension n!1
where the output vanishes, that is,

S :"Mx :Cx"0N.

On either side of S the feedback system is linear: if
Cx'0 the dynamics are given by xR "Ax!B, and if
Cx(0 we have xR "Ax#B. We also introduce the
notation

S
`

:"Mx3S:CAx!CB'0N.

The linear dynamics on each side of S have fixed points
equal $A~1B (if A is nonsingular), so positive steady-
state gain !CA~1B'0 guarantees the trajectories not
to tend to any of these two fixed points. This thus ensures
a relay switch to occur.

An absolutely continuous function x : [0,R)>Rn is
called a trajectory of Eqs. (1)— (2) if it satisfies (1) and (2)
almost everywhere. Note that a differential equation with
discontinuous right-hand sides may have nonunique tra-
jectories (Filippov, 1988). A limit cycle LLRn in this
paper denotes the set of values attained by a periodic
trajectory, which is isolated and not an equilibrium. The
limit cycle L is symmetric if for every x3L it is also true
that !x3L. For system (1)—(2), the limit cycle is simple
if there exists a trajectory x in L with period ¹ and
a number q5¹/2 such that Cx(t)50 for t3[q, q#¹/2]
and Cx(t)40 for t3[q!¹/2, q]. A limit cycle is then
stable if for each e'0 there exists d'0 such that
DdL(x(0)) D(d implies that dL (x(t) )(e for all t'0.

Assume that A is stable. The Poincaré map
g :S

`
>S

`
for the system (1)—(2) is defined as

g(x)"!eAh(x)x#(eAh(x)!I)A~1B, (3)

where h(x) is the switch time, that is, the minimal time
that gives g(x)3S

`
.
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Intuitively, it seems reasonable to approximate a relay
by a saturation with steep slope. This is done in Tsypkin
(1984). There are, however, subtleties in the limit as the
slope tends to infinity. If this limit is not dealt with
properly, erroneous results may be derived. An illustra-
tion is given in the discussion on Balasubramanian’s
stability condition in Section 3.

3. Stability of limit cycles

An important behavior of relay feedback systems is
that they often have a stable limit cycle. In this section
a sufficient condition for local stability of a limit cycle is
given. The condition was derived in As ström and
Hägglund (1984a) and As ström (1995). It is here compared
to a similar result in the literature.

An obvious question is whether there exist relay feed-
back systems that do not have a unique stable limit cycle.
For higher-order systems this is the case, as shown by the
following example.

Example 1. Let

G(s)"
(s#1)2

(s#0.1)3(s#7)2
.

Depending on the initial conditions, the relay feedback
system tends to either a slow or a fast limit cycle. In Fig. 1
the relay output u is shown for the two cases after the
initial transient has disappeared. Analysis shows that the
limit cycles are locally stable, see Example 3. Describing
function analysis, see Atherton (1975), gives in this case
the correct qualitative result.

If x*3S
`

is the switch plane interssection of a stable
simple limit cycle, then x* is a fixed point of the Poincaré
map g, that is, x*"g(x*). Hence, the solutions of the
equation x"g(x) give candidates for simple limit cycle
intersections with S

`
. If A is nonsingular, the solution is

given by

x"(eAh(x)#I)~1(eAh(x)!I)A~1B. (4)

The following proposition is proved in As ström and
Hägglund (1984a) and As ström (1995) by the classical
approach of studying small perturbations of the Poincaré
map g.

Proposition 1. Consider the relay feedback system (1)—(2)
with nonsingular A. If there exists a simple limit cycle with
period 2h*, then

f (h* ) :"C(eAh*#I)~1(eAh*!I)A~1B"0. (5)

Fig. 1. Two stable limit cycles for the system in Example 1.

¹he limit cycle is stable if all eigenvalues of

¼
a
:"AI!

wC

CwB eAh*, w"2(eAh*#I)~1eAh*B (6)

are in the open unit disc. ¹he limit cycle is unstable if at
least one eigenvalue is outside the unit disc.

Note that f (0)"0, so the trivial solution h*"0 al-
ways satisfies the necessary condition (5). It is easy to
show that this is the only solution for first-order systems
and for second-order systems with no zeros. Hence, these
systems exhibit no simple limit cycles under relay feed-
back. The assumption that A is nonsingular can be easily
removed, (As ström, 1995).

Stability of limit cycles was also studied in Bala-
subramanian (1981). The relay feedback system is rewrit-
ten as a periodically time-varying linear system, which
gives the following result.

Proposition 2. Consider the relay feedback system (1)—(2)
with CB"0. A simple limit cycle with period 2h* is stable
if one eigenvalue of

¼
b
:"expA!

2BC

Cw B exp(Ah*),

w"2(eAh*#I)~1eAh*B

is on the unit circle and the others are in the open unit disc.
¹he limit cycle is unstable if at least one eigenvalue is
outside the unit disc.

From Eq. (4) it follows that Cw"CAx*#CB,
where x*3S

`
corresponds to the switch plane interssec-

tions of the limit cycle. If CBO0, the output y possesses
a discontinuity at the relay switches. It was suggested in
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Balasubramanian (1981) that a simiar result to Proposi-
tison 2 holds for CBO0, if ¼

b
is replaced by

Wª
b
"exp (BC[(Ce~Ah*w)~1!(Cw)~1]) exp(Ah*).

See also Wadey and Atherton (1986) and Atherton
(1993). Note that w is the velocity immediately prior to
the switch. The expression for ¼K

b
is obtained simply by

replacing (Cw)~1 by the harmonic mean immediately
before and after the switches. The criterion is, however,
not correct. See the following example.

Example 2. Consider the system

G(s)"
bs#1

(s#1)(s#2)

with state-space representation

xR "C
0

1

!2

!3 D x#C
1

bD u,

y"[0 1]x,

and relay feedback. Let b"!1. Eq. (5) has only one
positive solution h*"1.76. The eigenvalues of ¼

a
are

0 and !0.03 for h*, so a locally stable limit cycle is
predicted. In contrast, the eigenvalues of ¼K

b
are !0.02

and !31.38. It is possible to show that the system has
a globally stable limit cycle, for example, see Holmberg
(1991). Hence, ¼K

b
erroneously predicts an unstable limit

cycle.

Next, we show that Propositions 1 and 2 are equiva-
lent if CB"0. First, note that if CB"0, then

expA!
2BC

Cw B"
=
+
k/0

(!2)k

k! (Cw)k
(BC)k"I!

2BC

Cw
,

so that

¼
b
"A I!

2BC

Cw B eAh*. (7)

Proposition 3. Consider ¼
a
and ¼

b
as previously defined

and assume CB"0. ¹hen, ¼
a
has one eigenvalue equal to

0 and ¼
b
has one eigenvalue equal to !1. Furthermore,

jNM!1, 0N is an eigenvalue of ¼
a
if and only if j is also an

eigenvalue of ¼
b
.

Proof. Combining Eqs. (6) and (7), straightforward cal-
culations give

¼
b
"¼

a
!e~Ah*

wC

Cw
eAh*.

From the equalities

¼
a
e~Ah*w"0,

(8)
(¼

b
#I)e~Ah*w"0,

it follows that e~Ah*w is an eigenvector of ¼
a

corre-
sponding to the eigenvalue 0 and an eigenvector of
¼

b
corresponding to the eigenvalue !1.

Assume that v is left eigenvector of ¼
a
corresponding

to an eigenvalue jO0. Then,

vT¼
b
"vT¼

a
!vTe~Ah*

wC

Cw
eAh*

"vT¼
a
!j~1vT¼

a
e~Ah*

wC

Cw
eAh*

"vT¼
a
,

where the last equality follows from Eq. (8). Hence,
vT¼

b
"jvT, so j is also an eigenvalue of ¼

b
. Next,

assume instead that v is a left eigenvector of ¼
b

corre-
sponding to an eigenvalue jO!1. Then, similar to
above,

vT¼
a
"vT¼

b
#vTe~Ah*

wC

Cw
eAh*

"vT¼
b
#(j#1)~1vT(¼

b
#I )e~Ah*

wC

Cw
eAh*

"vT¼
b

"jvT

and the proof is complete. K

Proposition 3 thus shows that if CB"0, the stabil-
ity criteria in Propositions 1 and 2 are equivalent.
Note, however, that Proposition 1 is applicable even if
CBO0.

Example 3. Consider the relay that feedback system in
Example 1. Fig. 2 shows the function f in Eq. (5) as

Fig. 2. The solutions of the equation f (h)"0, given in Eq. (5), yield
possible limit cycle periods. For the system in Example 3 there exist
three solutions (excluding h"0).
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a function of h. The zero-crossings for h'0 are at
0.66, 3.32, and 12.80, so these are candidates for limit
cycle periods. The eigenvalues with maximum magni-
tude of ¼

a
and ¼

b
(excluding the eigenvalue in !1 of

¼
b
) for the three cases are 0.60, 1.42, and 0.64, respec-

tively. Only the first and the third zero-crossings
thus come from a locally stable limit cycle. Note that
we cannot draw any conclusions about global con-
vergence.

4. Existence of fast switches

Relay switches with short switch times are studied in
this section. A necessary and sufficient condition for
a system to have consecutive fast relay switches is shown.
Further insight is given in next section, where the de-
pendency of the fast behavior on the pole excess is also
investigated.

Let h ( ) ) be the switch time as defined in Eq. (3). The
relay feedback system (1)— (2) is said to have multiple fast
switches near x if for ever e'0 there exists x

0
3S

`
such

that h(x
0
)#h (g (x

0
))(e and Dx

0
!xL D(E.

A sliding mode is the part of a trajectory that belongs
to the switch plane: x (t) is a sliding mode for t3(t

1
, t

2
)

with t
1
'0 if Cx(t)"0 for all t3(t

1
, t

2
). Sliding modes

are treated thoroughly in Filippov (1988). Let
r3M1,2 , n!1N be the pole excess of C(sI!A)~1B, so
that CAr~1BO0 but CAkB"0 for k"0,2 , r!2.
Then the set Mx :Cx"CAx"2"CAr~1x"0N is
called the rth-order sliding set, compare Fridman and
Levant (1996). A sliding mode that belongs to an rth-
order sliding set is an rth-order sliding mode.

The behavior of first-order sliding modes can easily
be determined from studying yR "CAx$CB close
to the switch plane S. We see that depending on the sign
of CB, a classification of the directions of the trajectories
divide the switch plane into two or three regions. We call
the set U :"Mx3S: DCAx D(DCBDN attractive, if for every
x3U there exists a neighborhood B U x such that every
trajectory that starts in B stays there until it hits U. We
illustrate with a second-order example.

Example 4. Consider the same system as in Example 2,
that is,

G(s)"
bs#1

(s#1)(s#2)

with state-space representation

xR "C
0

1

!2

!3 D x#C
1

bD u,

y"[0 1] x,

Fig. 3. Switch plane S and trajectories close to S for second-order
system with CBO0. The points p

`
and p

~
indicate where the trajecto-

ries change directions. The region between p
`

and p
~

is attractive if
CB'0 but not if CB(0.

and relay feedback. Then S equals the x
1
-axis, see Fig. 3.

Let p
`

, p
~
3S be the solutions of the equations

CAp
`
#CB"0, CAp

~
!CB"0,

respectively. These are the points where the trajectories
change directions, and they are given by p

`
"(!b, 0)

and p
~
"(b, 0). For CB"b'0 the set between p

`
and

p
~

is attractive, whereas for CB(0 the region is
repelling. The region vanishes if CB"0.

The condition in the example for the set Mx3S:
DCAx D(DCB DN to be attractive directly generalizes to
systems of order n'2. Then p

`
and p

~
denote hyper-

planes of dimension n!2, which still divide the switch
plane into two or three regions. We can hence con-
clude that for the relay feedback system (1)—(2) with
order n52 the set Mx3S: DCAxD(DCB DN is attractive
if CB'0 but not if CB(0. We also notice that if
CB(0 then the system does not have multiple fast
switches.

Next, we consider systems with CB"0. Fig. 4 shows
trajectories close to the second-order sliding set Mx3S:
CAx"0N for a third-order system with CAB'0 and
CAB(0, respectively. The tick marks indicate solutions
to the equations

CA2s
~
!CAB"0, CA2s

`
#CAB"0,

that is, the points x on the line Mx3S: CAx"0N such
that the second derivative of the output y is zero. Solid
trajectories are above the switch plane (Cx'0) and
dashed under (Cx(0). The figure suggests that con-
secutive switch times h ( ) ) can be arbitrarily short if and
only if CAB'0. A proof will be given next that for
systems of arbitrary order to have multiple fast switches,
it is necessary and sufficient for the first nonvanishing
Markov parameter to be positive.
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Fig. 4. The sign of the first non-vanishing Markov parameter deter-
mines the existence of multiple fast switches. Here the trajectories close
to the second-order sliding set Mx3S : CAx"0N for a third-order
system with CB"0 are shown. We have Cx'0 above the switch plane
and CAx'0 to the right of the line. Multiple fast switches occur if and
only if CAB'0.

Theorem 1. Consider the relay feedback system (1)—(2)
with order n53. Define k3M1,2 , n!2N such that
CAlB"0 for l"0,2, k!1 and CAkBO0. ¹he system
has multiple fast switches if and only if CAkB'0.

Proof. Let /
x
(t), t'0, denote the trajectory of

xR "Ax!B that starts in x at time t"0. For x3S
`

,
Taylor expansion gives

C/
x
(t)"CAxt#2#CAkx

tk

k !

#(CAk`1x!CAkB)
tk`1

(k#1)!
#O (tk`2). (9)

Sufficiency: Assume CAkB'0. Then,

C/
0
(t
0
)"!CAkB

tk`1
0

(k#1)!
#O(tk`2

0
)(0,

for t
0
'0 sufficiently small. For a fixed such t

0
, we have

C/
xJ
(t
0
)(0 for all xJ 3S

`
with DxJ D sufficiently small.

Consider a fixed such xJ . Then, there exists a small
t3(0, t

0
) such that C/

x
(t)'0, because CAxJ '0. In be-

tween t and t
0

a switch thus occurs. Hence, we have that
h(x)P0 as xP0 in S

`
and therefore also g(x)P0. The

same type of argument gives that h(g(x))P0.

Necessity: If the system has multiple fast switches,
there exists a bounded sequence Mx

m
N=
m/1

, x
m
3S

`
, such

that h(x
m
)#h (g (x

m
)P0 as mPR. After replacing

Mx
m
N=
m/1

with a suitable subsequene, we can assume that
there exists xL 3S with CAxL "0 such that x

m
PxL . It is

obvious that g(x
m
)P!xL . Now, assume CA2xL '0.

Then, there exists t
1
'0 such that

C/
xL
(t)"CA2xL

t2

2
#O(t3)'0,

for t3(0, t
1
). Hence, C/

xm
(t)'0 for all t3(0, t

1
) and

m sufficiently large. However, this contradicts that
h(x

m
)P0 as mPR and C/

xm
(h(x

m
)"0. Hence,

CA2xL 40. A similar argument for g(x
m
) gives CA2xL 50,

so we have CA2xL "0. In the same way, CAlxL "0 for
every l3M1,2 , kN. The same argument applied to term
k#1 in Eq. (9) gives

CAk`1xL !CAkB40, CAk`1g(xL )!CAkB40,

or equivalently

CAk`1xL 4CAkB, !CAk`1xL 4CAkB.

Hence, CAkB'0 and the result follows. K

Remark 1. It follows from the proof that multiple fast
switches only occur close to Mx3S: CAlx"0,
l"1,2 , kN in the region DCAk`1xD(CAkB.

The following example illustrates multiple fast
switches in a third-order system.

Example 5. Consider the system

G(s)"
f!s

f(s#1)3

with state-space representation

xR "C
!3 1 0

!3 0 1

!1 0 0 D x#C
0

!1/f

1 D u,

y"[1 0 0]x,

and relay feedback. Fig. 5 shows two trajectories that
start close to the origin for f"!4 and f"1, respective-
ly. As predicted by Theorem 1, multiple fast switches
occur when CAB"!1/f'0 but not when CAB(0.
Compare Figs. 4 and 5.

The trajectories tend to a limit cycle for both systems.
Fig. 6 shows the limit cycle period 2h as a function of the
zero f. The dashed line corresponds to the limit cycle for
the system 1/(s#1)3. The origin is globally stable for the
relay feedback system if f3(!3, 0), so in that case there
will be no limit cycle. Local analysis around the limit
cycle, as described in Section 3, gives in agreement with
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Fig. 5. Clockwise trajectories with initial conditions close to the origin
for the third-order system in Example 5. Multiple fast switches exist if
CB"0 and CAB'0 (f(0). The system performs a large number of
fast switches with slowly growing amplitude. If CB"0 and CAB(0
(f'0) there are no fast switches. Both trajectories converge to a limit
cycle.

Fig. 5 that the convergence is faster if f"!4 than if
f"1.

5. Nature of fast switches

Having established that the sign of the first nonvanish-
ing Markov parameter determines if there will be mul-
tiple fast switches, we will now investigate the nature of
the fast switches in more detail. It turns out that the
behavior is given by the pole excess and one or two of the
first nonvanishing Markov parameters. The first-order
sliding set, which is present for systems with pole excess
one, was discussed in connection to Example 4. In this
section, we study the nature of fast switches for systems
with pole excess two, pole excess three, and higher-order
pole excess. Anosov (1959) showed that systems with pole
excess two may have a large number of fast switches. He
also showed that this is not the case for systems with pole
excess greater than two.

Fig. 6. The limit cycle period as a function of zero location in
Example 5.

5.1. Pole excess two — many fast switches

There exist initial conditions that give a large number
of fast switches if CB"0 and CAB'0. The fast re-
sponse of a system with pole excess two is approximately
described by a double integrator

xR "C
0

0

1

0D x#C
0

1D u,

y"[1 0]x.

Assume the trajectory of this system with relay feedback
passes the switch plane at time t"0 at

x(0)"[0 x
20

]T, x
20
'0.

Then, until next switch

x
1
(t)"x

20
t!t2/2,

x
2
(t)"x

20
!t.

The first equation gives that the first switch occurs at
h
1
"2x

20
. Between the first and the second switch we

have

x
1
(h

1
#t)"x

20
t!h

1
t#t2/2,

x
2
(h

1
#t)"x

20
!h

1
#t,

so the second switch time is h
2
"2(h

1
!x

20
)"2x

20
.

Hence, h
k
"2x

20
for all k'0, so a double integrator

with relay feedback has a limit cycle with any period.
Next, consider the system

G(s)"K/s(s#a), K'0,

and let the relay be approximated with a steep slope.
Then, a root-locus argument predicts fast oscillations
with increasing amplitude if a(0 and fast oscillations
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with decreasing amplitude if a'0. The double integrator
with a neutral stable oscillation corresponds to a"0.

A higher-order system with zeros Mz
i
N, poles Mp

i
N, and

pole excess two can be written as

G(s)"K
<n~2

i/1
(s!z

i
)

<n
i/1

(s!p
i
)
"K

<n~2
i/1

(1!z
i
/s)

s2 <n
i/1

(1!p
i
/s)

.

A series expansion in 1/s gives the terms that dominate
the behavior of the system for high frequencies. Hence,

G(s)+
K

s(s#a)
, (10)

where

a"
n~2
+
i/1

z
i
!

n
+
i/1

p
i
.

The behavior of the system is thus governed by the sign
of the parameter a"CA2B/K. The oscillations are un-
stable for a(0, neutral for a"0, and damped for a'0.
We illustrate with a simulation.

Example 6. Consider the system in Example 5:

G(s)"
f!s

f(s#1)3
.

Here, a"f#3. Fig. 7 shows the output y for
a"!1, 0, 1 and initial condition x(0) close to the origin.

5.2. Pole excess three — few fast switches

Systems of pole excess higher than two cannot have
fast oscillations as the ones shown in Fig. 7. A triple
integrator represents the fast behavior in systems of pole
excess three. Therefore, consider the system

xR "C
0 1 0

0 0 1

0 0 0 D x#C
0

0

1 D u,

y"[1 0 0]x,

with relay feedback. Assume the trajectory of the system
passes the switch plane at time t"0 at

x(0)"[0 x
20

x
30

]T, x
20
'0.

Then, until next switch

x
1
(t)"x

20
t#x

30
t2/2!t3/6,

x
2
(t)"x

20
#x

30
t!t2/2,

x
3
(t)"x

30
!t.

Fig. 7. Fast oscillations for systems with pole excess two. The oscilla-
tions are unstable, neutral, or damped, depending on the parameter a in
Eq. (10).

Because x
1
(h

1
)"0, the first switch time fulfills the equation

h2
1
!3x

30
h
1
!6x

20
"0.

Continued evaluation of the state-space system gives at
the second switch instant, where x

1
(h

1
#h

2
)"0, that

h2
2
#3(x

30
!h

1
)h

2
#6x

20
#6x

30
h
1
!3h2

1
"0.

By solving for x
20

and x
30

in these two equations, we get

x
20
"h

1

h2
2
!h2

1
!2h

1
h
2

6(h
1
#h

2
)

,

x
30
"

2h2
1
!h2

2
#3h

1
h
2

3(h
1
#h

2
)

.

Becausse x
20
'0, we have h2

2
!h2

1
!2h

1
h
2
'0 and thus

h
2
'(1#J2)h

1
. Repeated evaluation yields

h
k
'(1#J2)h~1h

1
.

This estimate gets tighter as the initial state approaches the
origin. We can conclude that there is a substantial increase
in switch time after each interaction for a triple integrator.

Higher-order systems with pole excess three can be
analyzed via a series expansion similar to the one in
previous section. At high frequencies, these systems re-
spond as a triple integrator:

G(s)+K/s3, K'0.

From a root-locus argument, we see that any fast
behavior is unstable.

5.3. Higher-order pole excess — fewer fast switches

The increase in switch time after each fast relay switch
is even higher for systems with pole excess larger than
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three. Consider an integrator of order n

xR "

0 1 0 2 0

0 0 1 0

F } F

0 0 0 1

0 0 0 2 0

x#

0

0

F

0

1

u,

y"[1 0 0 2 0] x,

and introduce the partitioned matrices

C
1

0

D
D
D
a(t)

»(t)D :"

eAt"

1 t 1
2
t2 2 1

(n~1) !
tn~1

0 1 t 2 1
(n~2) !

tn~2

F } F

0 0 0 t

0 0 0 2 1

and

C
b (t)

c(t) D :"P
t

0

eAqBdq"

1
n !tn

1
(n~1) !

tn~1

F

1
2
t2

t

.

Let the initial state

x(0)"C
0

m0D
lie on the switch plane and assume m0

1
'0, so that the

trajectory passes through S
`

. Then, we have

x(t)"C
a(t)m0!b(t)

»(t)m0!c(t)D , 0(t(h
1
,

where h
1

is the first switch time. Hence,

a(h
1
)m0"b(h

1
),

(11)
m1"» (h

1
)m0!c(h

1
).

Furthermore, for the second switch time h
2
,

a(h
2
)m1"!b(h

2
),

m2"»(h
2
)m1#c(h

2
),

so that

a(h
2
)» (h

1
)m0"a (h

2
)c (h

1
)!b(h

2
). (12)

Continued evaluation gives

a(h
k
)»(h

k~1
)2» (h

1
)m0

"a (h
k
)» (h

k~1
)2» (h

2
)c (h

1
)

!a(h
k
)»(h

k~2
)2»(h

3
)c(h

2
)#2

!(!1)ka(h
k
)»(h

k~1
)c (h

k~2
)#(!1)ka(h

k
)c(h

k~1
)

!(!1)kb(h
k
).

Stacking n!1 of these equations yields a linear equation
in m0. An analysis similar to the preceding for the triple
integrator is therefore possible. It results in lower bounds
on the switch times h

k
. The analysis is particular simple if

we assume the initial condition m0"(m0
1
,2, 0). Then,

Eq. (11) gives h
1
m0
1
"hn

1
/n! or h

1
"n !n~1Jm0

1
.

Hence, for small initial states, the switch time increases
considerably with the number of integrators n. Further-
more, Eq. (12) gives after some calculations

A1#
h
1

h
2
B
n
"2#A

h
1

h
2
B
n~1

#A
h
1

h
2
B
n
.

Therefore, for h
1

much smaller than h
2
, we have the

formula

h
2
+( nJ2!1)~1h

1
.

Analysis that gives similar results can be done assuming
other initial states m0.

The fast behavior in systems with pole excess greater
than or equal to three is thus unstable. The number of
fast switches following a given initial state decreases with
increasing pole excess.

5.4. Summary

The pole excess is important to characterize the solu-
tions in relay feedback systems. With pole excess one
there can be an attractive subset of the first-order sliding
set. For the system 1/s2 there will be limit cycles of
arbitrary period. The limit cycles are not asymp-
totically stable. For systems of higher order with
pole excess two, the behavior can be understood from
a series expansion. In a similar way, the fast switches
in any system of pole excess k'0 can be analyzed
by studying an integrator of order k. There is, how-
ever, a fundamental difference between fast switches
for systems with pole excess two and systems with pole
excess three and higher. Only systems with pole
excess one and two can have an attractive sliding set in
the sense that an open set of trajectories tend to the
sliding set. Note that the dimension of the sliding set is
equal to the pole excess.
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6. Fast switches in limit cycles

Sliding modes and multiple fast switches can be part of
stable limit cycles. Next we analyze these limit cycles and
show some examples. It is the pole excess of the system
that determines the kind of fast behavior the limit cycle
will contain. The limit cycles presented here are further
analyzed in Johansson (1997) and Johansson et al. (1997).

6.1. Pole excess one — limit cycles with first-order sliding
modes

Consider a relay feedback system (1)— (2) with CB'0.
The discussion in connection to Example 4 indicated that
there exists an attractive subset of the first-order sliding
set. The corresponding sliding mode can be part of
a stable limit cycle.

Suppose that there exists a limit cycle and that the
limit cycle consists of one ‘‘smooth’’ part, which is the
part outside the switch plane, and one sliding mode part.
Furthermore, suppose that the part outside the switch
plane starts at time t"0 in x0"x (0) with CAx0"CB.
The trajectory of the system will then follow the dynam-
ics xR "Ax!B. Assume that the trajectory hits the
switch plane at t"t

4.
in x1"x(t

4.
) with DCAx1 D(CB,

where t
4.

is the time it takes for the smooth part. The
sliding mode can then be derived in the following way.
Replace u in Eq. (1) with

uN "!CAx/CB,

such that CxR "CAx#CBuN "0. The variable uN is called
the equivalent control (Utkin, 1987). The dynamics of the
sliding mode are given by

xR "PAx, (13)

where

P :"I!BC/CB (14)

is a projection matrix fulfilling CP"0 and PB"0. The
projection is such that Cx(t)"0 until CAx(t)"!CB. If
the limit cycle is symmetric and simple, it leaves the switch
plane at time t

4.
#t

4-
at x(t

4.
#t

4-
)"!x0, where t

4-
is

the time for the sliding mode part. We have the following
necessary condition for the described limit cycle.

Proposition 4. Consider the relay feedback (1)—(2) with
CB'0. If there exists a simple symmetric limit cycle with
a first-order sliding mode and period time 2h*, then

f
1
(t
4.

, t
4-
) :"C(eAt4.ePAt4I#I)~1(eAt4.!I)A~1B"0,

f
2
(t
4.

, t
4-
) :"CA(ePAt4-eAt4.#I)~1ePAt4- (eAt4.!I)A~1B

#CB"0,

where h*"t
4.
#t

4-
. Here, t

4.
is the time for the part of

the trajectory outside the switch plane and t
4-

is the sliding
mode time.

Proof. Using the notation introduced above, we have
that

x1"eAt4.x0!(eAt4.!I)A~1B,

!x0"ePAt4-x1.

Solving for x1 gives

x1"(eAt4.ePAt4-#I)~1(eAt4.!I )A~1B, (15)

so f
1
(t
4.

, t
4-
)"0 follows from Cx1"0. Furthermore,

x0"!ePAt4-(eAt4.ePAt4-#I)~1(eAt4.!I)A~1B

"!(ePAt4-eAt4.#I)~1ePAt4-(eAt4.!I)A~1B, (16)

so f
2
(t
4.

, t
4-
)"0 follows from CAx0"CB. K

Remark 2. The points where a limit cycle hits and leaves
the switch plane are given by Eqs. (15) and (16), respec-
tively.

Remark 3. Using Cx0"0 instead of Cx1"0 in the
proof, gives an equivalent condition. This follows be-
cause CePAt4-"C and thus

CePAt4-(eAt4.ePAt4-#I)~1"C(eAt4.ePAt4-#I)~1.

The solutions of the equations f
1
(t
1
, t

2
)"0 and

f
2
(t
1
, t

2
)"0 give candidates for switch times. This is

illustrated in Exampe 7, compare Example 3 in Section 3.

To get some more insight, we adopt the state-space
representation

xR "

!a
1

1 0 2 0

!a
2

0 1 0

F } F

!a
n~1

0 0 1

!a
n

0 0 2 0

x#

1

b
2

F

b
n~1

b
n

u,

y"[1 0 0 2 0] x, (17)

where we normalized such that CB"1'0. Note that
Cx"x

1
and that x3S implies CAx"x

2
. Moreover,

PA"

0 0 0 2 0

b
2
a
1
!a

2
!b

2
1 0

F } F

b
n~1

a
1
!a

n~1
!b

n~1
0 1

b
n
a
1
!a

n
!b

n
0 2 0

,
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so the sliding dynamics

zR"

!b
2

1 2 0

F F

!b
n~1

0 1

!b
n

0 2 0

z,

z :"[x
2

2 x
n
]T

are unstable if and only if the polynomial

b(s)"sn~1#b
2
sn~2#2#b

n~1
s#b

n

is unstable. The sliding mode time t
4-

depends on the
zeros of b.

Example 7. Consider

G(s)"
(s!f)2
(s#1)3

, f'0 (18)

with state-space representation

xR "C
!3 1 0

!3 0 1

!1 0 0 D x#C
1

!2f

f2 D u,

y"[1 0 0] x.

Then, b (s)"(s!f)2 has an unstable zero in f. Let f"1.
The equations f

1
(t
4.

, t
4-
)"0 and f

2
(t
4.

, t
4-
)"0 in

Proposition 4 have the solution (t
4.

, t
4-
)"(4.04, 0.39).

This corresponds to

x0"C
0.00

1.00

3.35 D , x1"C
0.00

0.47

!3.42 D ,

and agrees with the simulated (clockwise) limit cycle
shown in Fig. 8. The sliding dynamics are given by

zR"C
2f

!f2
1

0D z.

The sliding time t
4-

decreases as f increasess.

There exists no stable system of lower order than three
that gives a limit cycle with a first-order sliding mode.
Stability of limit cycles with sliding modes are derived in
Johansson (1997) and Johansson et al. (1997). For
example, it is shown that the limit cycle in Example 7 is

Fig. 8. Clockwise limit cycle with sliding mode. The dashed line in the
switch plane illustrates the line Mx3S: CAx"0N and the solid lines
illustrate Mx3S: DCAx D"CBN. Note the points $x0 and $x1, where
the limit cycle leaves and hits the switch plane, respectively.

stable. Limit cycles with sliding modes are also reported
in Atherton et al. (1985) and Atherton (1993).

6.2. Pole excess two — limit cycles with many fast switches

Theorem 1 gives that systems with pole excess two
have multiple fast switches if and only if CAB'0. Next,
it is shown that these systems may have a limit cycle,
where part of the limit cycle is such fast switches. The fast
relay switches give a temporary fast oscillation in the
state variables.

Let CB"0 and CAB'0. The second-order sliding
mode can be derived by replacing u in the original equa-
tion with uN "!CA2xN /CAB. Then,

xR "AI!
BCA

CABBAx.

Adopting the state-space representation (17) but with

B"[0 1 b
3

2 b
n
]T,

it is easy to see that this second-order sliding mode
evolves in a subspace of dimension n!2. It is close to
this subspace the fast oscillations, imposed by the fast
relay switches, appear. The sliding mode is stable if the
zeros of the linear system are stable. We have from
Remark 1 of Theorem 1 that the fast behavior can only
persist as long as DCA2xD(CAB. Similar to the analysis
of limit cycles with first-order sliding modes, the length of
the time period with fast relay switches can be estimated.
We illustrate with an example.

Example 8. Consider

G(s)"
(s!f)2
(s#1)4

, f'0
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with state-space representation

xR "

!4 1 0 0

!6 0 1 0

!4 0 0 1

!1 0 0 0

x#

0

1

!2f

f2

u,

y"[1 0 0 0] x.

Let f"0.2. Fig. 9 shows the limit cycle in the subspace
(x

1
x
2
, x

3
). The previous sliding mode analysis gives that

the fast oscillations should be close to the two-dimen-
sional subspace (x

1
, x

2
). This is illustrated in Fig. 10,

where the fast oscillations around the line Mx3S:
CAx"0N"Mx: x

1
"x

2
"0N are shown. Fig. 11 shows

the four states during the fast switches. In agreement with
the preceding analysis, the fast relay switches start when
CA2x"!CAB and end when CA2x"CAB, that is, at
x
3
"!1 and x

3
"1, respectively. The state x

4
is ap-

proximately constant during the period of fast relay
switches.

Formal conditions for stability of a limit cycle with fast
switches as in Example 8 are given in Johansson (1997)
and Johansson et al. (1997).

6.3. Pole excess three — limit cycles with few fast switches

The analysis done for systems of pole excess one and
two also carries over to systems of higher-order pole
excess. Next, we show an example of a system with pole
excess three, which has a limit cycle with few extra
switches each period.

Example 9. Consider

G(s)"(s!f)2/(s#1)5, f'0

Fig. 9. Limit cycle with many fast relay switches for system with pole
excess two. The two loops are clockwise. The dashed line in the switch
plane illustrates the second-order sliding set Mx3S : CAx"0N.

Fig. 10. A closer look at the fast oscillations in the limit cycle. The
dashed line is the second-order sliding set Mx3S: CAx"0N.

Fig. 11. Fast relay switches in a limit cycle for system with pole excess
two. The fast oscillations start at x

3
"!1 and end at x

3
"1.

with state-space representation

xR "

!5 1 0 0 0

!10 0 1 0 0

!10 0 0 1 0

!5 0 0 0 1

!1 0 0 0 0

x#

0

0

1

!2f

f2

u,

y"[1 0 0 0 0] x.

Let f"0.12 and x(0)"(0, 1, 0, 0, 0)T. The convergence
to the stable limit cyle is complicated as shown in Figs. 12
and 13.

The limit cycle characteristics can, however, be pre-
dicted also in this case. Fig. 14 shows x

1
,2, x

4
during

the limit cycle. Because the pole excess is three, there will
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Fig. 12. Convergence to a limit cycle for a system with pole excess
three. The output y"x

1
of the linear system and the output u of the

relay are shown.

Fig. 13. The state variables x
2
,2, x

5
converging to a limit cycle for

a system with pole excess three.

not be a large number of fast relay switches. Only eigh-
teen switches occur each period of the limit cycle. Note,
as we may expect, it is the points where DCA3xD"CA2B
that determines when the fast switching starts and ends.
In this example they correspond to x

4
"$1. The state

x
5

is approximately constant during the period of extra
relay switches.

7. Conclusions

The problem of characterizing behaviors in relay feed-
back systems has been addressed. It was motivated by
a number of examples from the literature, where one was
the automatic tuning procedure for PID controllers using
relay feedback by As ström and Hägglund. Another mo-

Fig. 14. A few fast switches occur each period of the limit cycle. These
start and stop at x

4
"$1, that is, when DCA2x D"CA2B. (The state

x
5

is not shown here, but it is approximately constant during the fast
switches.)

tivation for the study of relay feedback systems is their
connection to hybrid systems (Morse, 1995). The system
we have considered can be viewed as a simple hybrid
system that consists of only one discrete state.

The main result of the paper was a complete character-
ization of all relay feedback systems that have multiple
fast switches. It was shown that multiple fast switches
exist if and only if the first nonvanishing Markov param-
eter is positive. The nature of the fast behavior was
further investigated. It was shown that there is a funda-
mental difference between systems of pole excess one,
pole excess two, and pole excess greater than two. The
fast behavior of these systems can be studied via relay
feedback of an integrator, double integrator, and a high-
er-order integrator. The results on fast switches were
applied to analysis of limit cycles, where part of the limit
cycle consists of a sliding mode or a number of fast
switches. Ongoing work includes stability analysis of
these limit cycles (Johnasson et al., 1997). Local stability
analysis of limit cycles without fast switches was also
done. It was proved that two conditions in the literature
are equivalent in most cases.
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