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Abstract

A recent multivariable laboratory process is presented
together with its use in a graduate control course.
The process is called the Quadruple-Tank Process and
demonstrates a multivariable level control problem.
The multivariable zero dynamics of the system can be
made both minimumphase and nonminimumphase by
simply changing a valve. This makes the Quadruple-
Tank Process suitable for illustrating many concepts
in linear and nonlinear multivariable control. In this
paper some of these are described together with the
basic setup of the process. Two computer exercises and
one laboratory exercise have been developed as part of
a course in multivariable and nonlinear control. These
are detailed and some experience from the course is
presented.

1 Introduction

Multivariable control is today taught in most control
curricula. This includes both linear and nonlinear de-
sign methods. Recently it has been an increased interest
in emphasizing the limitations the process imposes on
control designs [5, 3, 19]. This is natural since new tech-
nologies have opened possibilities for integrated solu-
tions, where old control con�gurations may be changed
to achieve an enhanced overall performance. A good
control engineering course should be accompanied by
hands-on experiments [2, 13, 1]. It is, however, not
trivial to �nd pedagogical examples to illustrate multi-
variable performance limitations in feedback systems.
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There exists only a handful of multivariable laboratory
processes, available frommanufactures such as Quanser
Consulting, Educational Control Products, Feedback
Instruments, and TecQuipment. None of these illus-
trate the e�ect of multivariable zeros on the closed-loop
control performance.

In this paper we describe a laboratory process, which
was designed to illustrate the importance of multi-
variable zeros and how the zeros may change due to
variations in the process. The process is called the
Quadruple-Tank Process [8, 11, 10] and is a level con-
trol problem based on four interconnected water tanks
and two pumps. The inputs to the process are the volt-
ages to the two pumps and the outputs are the wa-
ter levels in the lower two tanks. The Quadruple-Tank
Process can easily be built by using standard equip-
ment available in many control laboratories. The setup
is thus simple, but still the process can illustrate several
interesting multivariable phenomena. One of its main
features is that the zero dynamics can be made min-
imum phase or nonminimum phase by simply chang-
ing a valve. For the linearized model of the process,
both the zero location and the zero direction have
direct physical interpretations. Also the relative gain
array has a straightforward meaning for the process.
The Quadruple-Tank Process is thus suitable to use in
teaching fundamentals of multivariable control.

The Quadruple-Tank Process was developed and built
1996 at Lund Institute of Technology, Sweden, in or-
der to illustrate the importance of multivariable zero
location for control design [8]. Since then it has been
used extensively in the control curriculum in Lund. A
number of student projects as part of courses in adap-
tive control, system identi�cation, and real-time con-
trol have been performed on the Quadruple-Tank Pro-
cess. These projects consist of modeling from physi-
cal or experimental data, control design, simulation,
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implementation, and evaluation together with a short
written and oral presentation. The Quadruple-Tank
Process has also been the topic for master thesis
projects. Nunes [17] demonstrated decentralized PID
control. Automatic tuning of multivariable PID con-
trollers based on relay feedback was studied by Re-
cica [18]. As a CalTech summer project, Grebeck [7]
investigated what performance that was achievable for
the Quadruple-Tank Process using various optimal con-
trol methods. He concluded that in the minimum-
phase setting for the process there was no advantage
of using centralized multivariable control, while in the
nonminimum-phase setting H1 control gave better re-
sponses. The Quadruple-Tank Process is also used in
the education at the Royal Institute of Technology in
Stockholm, as described in the paper, and at Univer-
sity of Delaware. Other research institutes are currently
copying the design and there is also ongoing commer-
cial development.

The outline of the paper is as follows. A nonlinear
model for the Quadruple-Tank Process based on phys-
ical data is derived in Section 2. The location and the
direction of a multivariable zero of the linearized model
are derived in Section 3. It is shown that the valve po-
sitions of the process uniquely determine if the system
is minimum phase or nonminimumphase. The relative
gain array is discussed in Section 4. Section 5 gives
an overview of our experiences in using the Quadruple-
Tank Process in teaching. Some concluding remarks are
given in Section 6. More details on the Quadruple-Tank
Process are found in [10], see also [8, 11, 9].

2 The Quadruple-Tank Process

In this section we derive a physical model for the
Quadruple-Tank Process. A schematic diagram of the
process is shown in Figure 1. The target is to control the
level in the lower two tanks with two pumps. The pro-
cess inputs are v1 and v2 (input voltages to the pumps)
and the outputs are y1 and y2 (voltages from level mea-
surement devices). Mass balances and Bernoulli's law
yield

dh1
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= �
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A1

p
2gh1 +

a3
A1

p
2gh3 +

1k1
A1

v1;

dh2
dt

= �
a2
A2
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where Ai is the cross-section area of Tank i, ai the
cross-section area of the outlet hole, and hi the water
level. The voltage applied to Pump i is vi and the cor-
responding ow is kivi. The parameters 1; 2 2 [0; 1]

v1 v2

y1 y2
Tank 1 Tank 2

Tank 3 Tank 4

Pump 1 Pump 2

Figure 1: Schematic diagram of the Quadruple-Tank Pro-
cess. The water levels in Tank 1 and Tank 2 are
controlled by two pumps. The positions of the
valves determine the location of a multivariable
zero for the linearized model. The zero can be
put in either the left or the right half-plane.

are determined from how the valves are set prior to an
experiment. The ow to Tank 1 is 1k1v1 and the ow
to Tank 4 is (1� 1)k1v1 and similarly for Tank 2 and
Tank 3. The acceleration of gravity is denoted g. The
measured level signals are y1 = kch1 and y2 = kch2.

The transfer matrix of the linearized system is

G(s) =

2664
1c1

1 + sT1

(1� 2)c1
(1 + sT3)(1 + sT1)

(1� 1)c2
(1 + sT4)(1 + sT2)

2c2
1 + sT2

3775 ;
(1)

where the time constants are

Ti =
Ai

ai

s
2h0

i

g
; i = 1; : : : ; 4;

c1 = T1k1kc=A1, and c2 = T2k2kc=A2. Note the way
the parameters 1 and 2 enter the transfer matrix.
Particularly, we see that if either 1 = 1 or 2 = 1,
the transfer matrix is triangular and has no �nite ze-
ros. This corresponds to that the ow through one of
the valves are directed only to the corresponding lower
tank. Physical data for the process are given in [10].
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3 Physical Interpretation of Zero

The zero locations and their directions of the trans-
fer matrix (1) are considered in this section. It is
shown that they have intuitive physical interpretations
in terms of how the valves 1 and 2 are set.

Zero location

The zeros of G are the zeros of the numerator polyno-
mial of the rational function

detG(s) =
c1c2

12
Q

4

i=1
(1 + sTi)

�

�
(1 + sT3)(1 + sT4) �

(1� 1)(1� 2)

12

�
:

It follows that the system is nonminimum phase for

0 < 1 + 2 < 1

and minimum phase for

1 < 1 + 2 < 2:

The multivariable zero being in the left or in right half-
plane has a straightforward physical interpretation. Let
qi denote the ow through Pump i and assume that
q1 = q2. Then the sum of the ows to the upper tanks
is [2 � (1 + 2)]q1 and the sum of the ows to the
lower tanks is (1 + 2)q1. Hence, the ow to the lower
tanks is greater than the ow to the upper tanks if
the system is minimum phase. The ow to the lower
tanks is smaller than the ow to the upper tanks if the
system is nonminimumphase. It is intuitively easier to
control y1 with v1 and y2 with v2, if most of the ows
goes directly to the lower tanks. There is thus an im-
mediate connection between zero location and physical
intuition. The control problem is particularly hard if
the total ow going to the left tanks (Tanks 1 and 3) is
approximately equal to the total ow going to the right
tanks (Tanks 2 and 4). This corresponds to 1+2 � 1,
i.e., a multivariable zero close to the origin.

Zero direction

An important di�erence between scalar systems and
multivariable systems is that not only the location of
a multivariable zero is important but also its direction.
We de�ne the (output) direction of a zero z as a vector
 2 R2 of unit length such as  TG(z) = 0. If  is equal
to a unit vector, then the zero is only associated with
one output. If this is not the case, then the e�ect of a
right half-plane zero may be distributed between both
outputs. In that sense, a multivariable right half-plane
zero must not deteriorate the performance as much as
a corresponding scalar zero. For the transfer matrix G
in (1), the zero direction of a zero z > 0 is given by

 = ( 1;  2)T such that

 T

2664
1c1

1 + zT1

(1� 2)c1
(1 + zT3)(1 + zT1)

(1� 1)c2
(1 + zT4)(1 + zT2)

2c2
1 + zT2

3775 = 0:

Note that it follows from this equation that  1;  2 6= 0,
so the zero is never associated with only one output.
If we solve the equation for 2 and simplify, it follows
that

 1
 2

= �
1� 1
1

�
c2(1 + zT1)

c1(1 + zT4)(1 + zT2)
:

From this equation it is possible to conclude that if 1 is
small, then z is mostly associated with the �rst output.
If 1 is close to one, then z is mostly associated with
the second output. Hence, for a given zero location, the
relative size of 1 and 2 determines which output the
right half-plane zero is related to.

The relation between 1 and 2 and the zero location z
and the zero direction ( 1;  2)T can be described as a
map (1; 2) 7! (z;  1= 2). Each valve position (1; 2)
de�nes a unique zero con�guration (z;  1= 2). In this
way, any zero location and direction can be tested, or
equivalently one valve knob can be used to choose zero
location and the other zero direction.

4 Relative Gain Array

The relative gain array (RGA) was introduced by Bris-
tol [4] as a measure of interaction in multivariable con-
trol systems. The RGA � is de�ned as � = G(0) �
G�T (0), where the asterisk denotes the Schur product
(element-by-element matrixmultiplication) and �T in-
verse transpose. It is possible to show that the elements
of each row and column of � sum up to one, so for a 2�2
system the RGA is determined by the scalar � = �11.
The RGA is used as a tool mainly in the process indus-
try to decide on control structure issues such as input{
output pairing for decentralized controllers [16, 12, 20].
McAvoy [14] proposed that one should strive for a pair-
ing with 0:67 < � < 1:50. The system is particularly
hard to control if � < 0.

The RGA of the Quadruple-Tank Process is easily de-
rived to be given by

� =
12

1 + 2 � 1
: (2)

Note that the RGA is only depending on the valve set-
tings. Figure 2 shows a contour plot of � as a function
of 1 and 2. The edges of the box 1; 2 2 [0; 1] cor-
responds to � = 0 and � = 1, respectively, as is shown
in the �gure. The magnitude of � increases as 1 + 2
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Figure 2: Contour plot of the RGA � as a function of the
valve parameters 1 and 2. The plot is drawn
for � = �10;�9; : : : ; 10. We have � � 0 below
the straight line between (0; 1) and (1; 0) and
� � 1 above the line. Close to the line, j�j is
large.

becomes close to one. There are no 1; 2 2 (0; 1) so
that � 2 (0; 1). From (2) we see for instance that � < 0
if 1 + 2 < 1, which corresponds to the nonminimum-
phase setting discussed previously.

If the valves of the quadruple-tank process are set such
that 1 + 2 < 1, then the RGA analysis suggests that
the input{output pairing v1{y2 and v2{y1 should be
chosen for decentralized control. Let

eG =

�
G21 G22

G11 G12

�
be the linearized model with y1 and y2 permuted. The
RGA for eG is

e� = (1� 1)(1 � 2)

1� 1 � 2
:

Hence, if 1 + 2 < 1 then e� > 0 so a decentralized
control structure corresponding to eG is preferable ac-
cording to the RGA. This is intuitive from physical
considerations, because 1 + 2 < 1 means that more
water is owing to the upper tanks than directly to the
lower ones. Decentralized control is then easier using
v1 to control y2 and v2 to control y1, than vice versa.

5 Teaching Experiences

Recently a control course in multivariable and non-
linear control was developed at the Royal Institute of
Technology, where the Quadruple-Tank Process is used

extensively throughout the course. The prerequisites is
a basic course in control. The recent textbook [6], which
covers both linear and nonlinear control techniques, is
used. Two computer exercises and a laboratory exer-
cise based on the Quadruple-Tank Process are part of
the course. They are described next.

Computer Exercise 1

In the �rst computer exercise the process dynam-
ics is investigated by computing the poles and zeros
of the system. The singular value frequency response
is investigated as well as the RGA. Step responses
are conducted in order to verify the coupling pre-
dicted by the RGA. Comparisons are made between the
minimum-phase case and the nonminimum-phase case.
The conclusion is that the coupling is severe for the
nonminimum-phase case. Then decentralized PI control
is investigated. A design is made by pairing the inputs
and outputs of the process as suggested by the RGA.
The PI controller is tuned such that for the minimum-
phase case the cross-over frequency is 0.1 rad/sec with
a phase margin of 80� and for the nonminimum-phase
case 0.006 rad/sec with 60�. The singular values of the
sensitivity and complementary sensitivity functions are
plotted in order to verify performance and robustness.
The designs are further evaluated in simulations and
the coupling between the loops are investigated. It is
seen that the interaction is large for the nonminimum-
phase case.

Computer Exercise 2

In the second computer exercise PI controller designs
based on decoupling are investigated followed by the
method of Glover-McFarlane [15] to robustify a nomi-
nal design. Both static and dynamic decoupling are in-
vestigated. It is noticed that dynamic decoupling is su-
perior for the minimum-phase case. The reason for this
is that the static decoupling is poor for frequencies close
to the desired cross-over frequency of the loop transfer
function. For the nonminimum-phase case static de-
coupling is superior, because the static decoupling is
good enough for the lower bandwidth. At the end of the
second computer exercise Glover-McFarlane's method
is used to robustify the design. Plotting the singular
values of the sensitivity and complementary sensitiv-
ity functions veri�es the improvement, see Figure 3.
The �gure shows the sensitivity and the complementary
sensitivity functions for both the minimum-phase and
the nonminimum-phase setting. Statically decoupled
PI control as well as the robusti�ed Glover-McFarlane
design are presented. Only the maximum singular val-
ues are shown. The minimum-phase setting is almost a
magnitude faster than the nonminimum-phase setting.
(Note the di�erent frequency scales.) This illustrates
the limitation on closed-loop bandwidth that a multi-
variable right half-plane zero imposes.
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Figure 3: Sensitivity functions and complementary sensi-
tivity functions for the minimum-phase setting
(upper diagram) and the nonminimum-phase
setting (lower diagram). PI control designs
with static decoupling (dashed) and Glover-
McFarlane designs (solid) are shown. Note that
the bandwidth for the nonminimum-phase case
is almost a magnitude lower than for the
minimum-phase case. This is due to the perfor-
mance limitation that the multivariable right
half-plane zero imposes.

Laboratory Exercise

In the laboratory exercise the students are asked to
verify the theoretical results of this paper. Then exper-
iments are performed in order to determine the physi-
cal parameters of the process, such as the valve settings
and the proportional constants relating the pump volt-
ages to the water ows. Then the designs from the com-
puter exercises are redone using the identi�ed physical
model of the process. Manual control is investigated as
well as decentralized and statically decoupled PI con-
trol. Both the minimum-phase and the nonminimum-
phase cases are considered. As an example, Figure 4
shows experiments for both these cases when statically
decoupled PI control is applied. Note how much slower
the responses for the nonminimum-phase process are
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Figure 4: Experiments for the minimum-phase (upper
diagram) and nonminimum-phase (lower dia-
gram) process controlled by statically decou-
pled PI controllers. The levels y2 of Tank 2
(upper curves) and y1 of Tank 1 (lower curves)
are shown together with their setpoints. Tank
levels equal to one correspond to full tanks.

as compared to the minimum-phase process.

The experiments illustrate for the students that multi-
variable control is important if process limitations such
as right half-plane zeros are present. They also show
that if there are no tight limitations, then scalar PI
control in each loop is su�cient. Added to these, the
exercise clarify that there might be fundamental con-
straints due to the process design that no linear feed-
back controller can remove.

6 Conclusions

The Quadruple-Tank Process has been presented. It is
a recent laboratory process that was designed in order
to illustrate various concepts in multivariable control.
In particular, it is suited to demonstrate performance
limitations in multivariable control design caused by
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right half-plane zeros. This follows from that the pro-
cess has a multivariable zero that in a direct way is
connected to the physical positions of two valves. The
positions are given by the parameters 1; 2 2 (0; 1).
It was shown in the paper that 1 + 2 determines the
location of the zero, so that if 1 + 2 < 1 the system
is nonminimum phase and if 1 + 2 > 1 the system
is minimum phase. The quotient 1=2 gives the zero
direction.

Some examples of how the Quadruple-Tank Process
has been used in teaching have also been presented.
The conclusion of the teaching experiences is that the
Quadruple-Tank Process is very well suited for demon-
strating both the e�ects of coupling and performance
limitations in multivariable control systems. A particu-
lar course on multivariable control was described. Com-
puter exercises were shown to be a good preparation for
a laboratory exercise. A remark on the laboratory ex-
periments is that since the closed loop bandwidth for
the nonminimum-phase case is low, the experiments
take a relatively long time to conduct. It is there-
fore crucial to implement the controllers such that the
transfer between manual and automatic mode is bump-
less. We also found it important to inform the students
about the time the di�erent response experiments take.
Prior to that some of the students thought that some-
thing was wrong with their design and thus interrupted
the experiments to start to trouble shooting, although
they were only experiencing the large di�erence be-
tween setpoint response times for minimum-phase and
nonminimum-phase processes.
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