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Abstract—This paper studies the design of an optimal
privacy-aware estimator for a single sensor estimation problem.
The sensor’s measurement is a (possibly non-linear) function of
a private random variable, a public random variable and the
measurement noise. Both public and private random variables
are assumed to be discrete valued, and the measurement noise
is arbitrarily distributed. The sensor provides an estimate of
the public random variable for an untrusted entity, named
the cloud. The objective is to design the estimator of the
public random variable such that a level of privacy for the
private random variable is guaranteed. The privacy metric
is defined as the discrete conditional entropy of the private
random variable given the output of the estimator. A binary loss
function is considered for the estimation of the public random
variable. The optimal estimator design problem is posed as
the minimization of the average loss function subject to a
constraint on the privacy level of the private random variable.
It is shown that the objective function is linear and the privacy
constraint is convex in the optimization variables. Thus, the
optimal privacy-aware estimator can be designed by solving an
infinite dimensional convex optimization problem.

I. INTRODUCTION
A. Motivation

Networked control systems (NCSs) play major roles in
our societies by providing critical services such as intelligent
transportation and the smart grid. Implementation of a NCS
requires substantial computational and storage capabilities
due to the complex optimization, signal processing and con-
trol algorithms, commonly used in NCSs. Cloud computing
technology has been proposed as a promising solution for the
storage and computational requirements of NCSs. However,
the cloud-based operation of a NCS requires sharing infor-
mation, e.g., sensors’ measurements, with the cloud which
might result in the loss of privacy due to the information
sharing.

In NCSs, the sensors’ measurements not only contain
information about the desired variable but also contain in-
formation which might be considered as private information,
e.g., information regarding stochastic evens or unpredictable
disturbances occurring in the sensor’s environment. Hence,
the estimate of the desired variable will be dependent on
the private information which might result in the privacy
loss. Thus, to ensure the privacy of a NCS, it is important
to confine the leakage of private information due to the
estimation process.

B. Contributions

In this paper, we consider an estimation problem in
which the sensor’s measurement is expressed as a general
function of a private random, a public random variable and
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measurement noise. It is assumed that the private and public
random variables take finite values and the measurement
noise is arbitrarily distributed. The sensor estimates the
public random variable using its measurement. The estimate
of the public variable is stored in an untrusted entity, named
cloud, which is assumed to be accessible via a network and
have storage/computational capabilities.

To quantify the privacy loss of the private random variable,
due to the estimation, conditional discrete entropy of the
private random variable given the output of estimator is
considered as the privacy metric. The privacy metric captures
the uncertainty of the cloud regarding the private random
variable after observing the estimate of the public random
variable. The problem of the minimizing the expected value
of (a binary) loss function subject to a privacy level of
the private random variable is studied. It is shown that
the objective function is linear function of the optimization
variables and the privacy constraint is convex.

C. Related Work

The privacy level of hypothesis testing problems with
a private and a public hypothesis has been studied in the
literature, and various privacy-preserving solutions for im-
proving the privacy level of hypothesis test problems have
been proposed, e.g., see [1], [2], [3], [4]. In [5], the authors
considered a hypothesis test problem with multiple sensors
in which an eavesdropper intercepts the local decisions of
a subset of sensors. They studied the optimal decision rule
minimizing the Bayes risk at a fusion center subject to a
privacy constraint at the eavesdropper. In [6], the authors
considered a similar set-up to that of [5] and studied the
optimal privacy-aware Neyman-Pearson test with a private
hypothesis. We note that improving the privacy of electricity
consumers against an eavesdropper using demand manage-
ment techniques and storage devices was studied in [7].

The authors in [8] studied the state estimation problem in
a distribution power network subject to differential privacy
constraints for the consumers. In [9], the authors considered
the problem of adding stochastic distortion to a variable,
which contains private information, such that (¢) the mean
square error (MSE) of recovering the original variable from
its distorted version is minimized, (¢7) the minimum MSE of
recovering the private information from the distorted variable
stays above a certain level. Their results were extend in [10]
under the Hamming distance as the distortion criterion and
the efficiency of these methods was analysed in [11].

Information-theoretic methods for improving data privacy
have also been studied in the literature, e.g., see [12], [13],
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[14], [15] and references therein. In this line of research, the
objective is to process the observations, which contain private
information, such that the distortion between the original
observations and the processed observations is minimized
while a certain level of privacy is guaranteed. However, in
an estimation problem, one is interested in the true value of
a variable based on a noisy observation rather than a low
distortion representation of the observation.

II. PROBLEM FORMULATION

Consider an estimation problem with one sensor in which
the observation of the sensor can be expressed as Z =
f(X,Y,N) where Z is the sensor’s measurement, X and
Y are, possibly correlated, discrete random variables, N is
the measurement noise and independent of X and Y, and
f(-+,-) is a (possibly non-linear) map. The support sets
of X, Y and Z are denoted by X, Y and Z, receptively.
Through this paper, we assume that Z = R and the random
variable Z is absolutely continuous with respect to Lebesgue
measure on R with the probability density function pz (z).

The random variable Y contains public information, and
the sensor provides the estimate of Y to the cloud. The
random variable X carries information which should remain
private. Let Y (Z) denote the estimate of Y by the sensor.
Since Y (Z) is correlated with X, the cloud can infer
information about X by observing Y (Z). Thus, publicly
revealing Y (Z) will result in privacy loss, i.e., the cloud can
infer about X by observing Y (Z). A pictorial representation
of our system model is illustrated in Fig. 1.

Fig. 1. A single sensor estimation set up with a cloud-based storage.

The objective is to design an estimator for the public
random variable Y which minimizes a desired loss function
while the information leakage about the private variable X
is kept below a certain level. Let Y = {y1,-- - , Ym } denote
the support set of Y. An estimator of Y is a (possibly
randomized) map from Z to Y. Let P (z) = [P (2)]i~,
denote a set of positive functions where m = || and P; (2)
is defined on the support set of Z with >, P (z) = 1
for all z € Z. Then, a randomized estimator of Y can be
expressed as

1 wp. Pi(2)

Yp (Z) =

Ym W.p. P (2)
3)
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where w.p. stands for with probability. According to (3), if
the sensor’s measurement is equal to z, the estimator declares
y; as the estimate of Y with probability P; (z).

Let Yp (Z) represent the estimator of Y at the sensor
using the observation Z. The loss of the estimator, i.e.,

L (Y7 Yp (Z )) , is quantified by the binary loss function

{

Thus, the estimator’s loss is equal to 1 if the output of
estimator is different from the true value of Y and there
is no loss if these two values agree.

1 Y #Yp(2)
0 Y=Yp(Z)

L(Y.Yp(2))

A. Privacy Metric

In this paper, we consider the conditional discrete en-
tropy, or equivocation, as the privacy metric. The condi-
tional discrete entropy of X given Yp (Z), denoted by

H [X ‘Yp (Z)}, is defined in (1). Our choice of privacy
metric is motivated by the fact that H [X ’Yp (Z )] captures
the uncertainty in the cloud about X after observing Yp (2).
Since conditioning reduces entropy [16], we have

0<H {X ’YP(Z)} <HI[X]
which implies that the maximum privacy is achieved if
H [X ‘Yp (Z)J = H[X]. Recall that if X and Yp (Z) are

independent, Yp (Z) contains no information about X and
the cloud has maximum ambiguity about X after observing

Y (2), ie., H {X ’Yp (Z)} — H[X].
The other motivation for the choice of privacy metric is the
fact that the error probability of estimating X after observinT

Yp (Z) can be lower bounded in terms of H [X ‘Yp (2)

using Fano inequality [16]:

H [X ‘Yfp (Z)] 1
log | X

(v (7))

where X (}7) is an arbitrary estimator of X (after observing

Yp (Z)) and |X| is the cardinality of the support set of X.
Thus, by adjusting the value of H [X Yp (Z)|, a desired
privacy level of the private random variable, X, 1n the cloud
can be guaranteed as long as |X| > 2. We note that the
application of Fano’s equality in the context of privacy-aware
cloud-based control was discussed in [17].

“4)

III. PRIVACY-AWARE OPTIMAL ESTIMATION

In this section, the design of the optimal privacy-aware
estimator of X is studied. In particular, the estimator design
is posed as an optimization problem and it is shown that
the optimal estimator can be designed by solving a convex
optimization problem. The optimal design of the estimator
subject to the privacy constraint is given by the solution of
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the following optimization problem:

E [L (Y, Vo (Z))}
Pi (Z) > O,Vi

Z Pi(z)=1, Vz

HX |75 (2)] = Ho

minimize
{Pi(2) Y2,

(&)

Based on this optimization problem, the functions
{P; (z)}, are chosen such that the average loss is minimized
and, a certain level of privacy is ensured by keeping the
conditional discrete entropy of X given Yp (Z) above the
desired level Hg.

The optimization problem above is a functional optimiza-
tion problem defined on the space of bounded measurable
functions from R to R, ie, B(R,R). Note that B (R,R)
forms a Banach space under the supremum norm and P; (2)
belongs to the cone of positive functions in B (R, R). Next
lemma derives an expression for the objective function in the
optimization problem (5).

Lemma 1: The objective function in (5) can be written as
1—Z/Pi(z)Pr(Y:yi|Z:z)pz(z)dz

where pz (z) is the probability density function of Z.

Proof: Please see the full manuscript in [18]. |

According to Lemma 1 the objective function is linear in
P (z) = [P; (2)],. Next lemma studies the convexity of the
privacy constraint.

Lemma 2: The the privacy constraint can be written as
(2) where H[X] is the discrete entropy of X, py._ (y) and
Py, (y|X =a;) denote the probability mass function of
Yp (Z) and the conditional probability mass function of
Yp (Z) given X = z;, respectively, and D [- -] denotes the
Kullback-Libeler (KL) divergence. Furthermore, the privacy
constraint is convex in P (z).

Proof: Please see the full manuscript in [18]. |

The objective function in the optimization problem (5) is
linear and the constraint set is convex. Thus, (5) is a convex
optimization problem. This result is formally stated in the
next theorem.

Theorem 1: The optimal privacy-aware estimator of the
public random variable can be designed by solving the
convex optimization problem (5).
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IV. CONCLUSIONS

In this paper, we studied privacy-aware estimation of
a public random variable when the sensor’s measurement
contains noisy information about a public random variable
as well as a private random variable. The optimal estimation
of the public random variable, under a binary loss function,
with a constraint on the privacy level of the private random
variable was studied. The conditional discrete entropy of the
private random variable subject to the output of estimator
was considered as the privacy metric and it was shown that
the optimal estimator can be obtained by solving an infinite
dimensional convex optimization problem.
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