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Optimal Privacy-aware Estimation
Ehsan Nekouei, Henrik Sandberg, Mikael Skoglund and Karl H. Johansson

Abstract—This paper studies the design of an optimal privacy-
aware estimator of a public random variable based on noisy
measurements which contain private information. The public
variable carries also non-private information, but, its estimate
will be correlated with the private information due to the
estimation process. The objective is to design an optimal
estimator of the public random variable such that the leakage
of private information, via the estimation process, is kept below
a certain level. The privacy metric is defined as the discrete
conditional entropy of the private variable given the output of
the estimator. We show that the optimal privacy-aware estima-
tor is the solution of a (possibly infinite-dimensional) convex
optimization problem when the estimator has access to either
the measurement or the measurement together with the private
information. We study the optimal perfect-privacy estimation
problem that ensures the estimate of the public variable is
independent of the private information. A necessary and sufficient
condition is derived guaranteeing that an estimator satisfies the
perfect-privacy requirement. It is shown that the optimal perfect-
privacy estimator is the solution of a linear optimization problem.
A sufficient condition for its existence is derived. The impact
of the distribution mismatch on the perfect-privacy condition is
studied. Numerical examples are used to illustrate the privacy-
accuracy trade-off.

I. INTRODUCTION

A. Motivation

Networked systems play major roles in our society by
providing critical services for smart buildings, intelligent
transportations and smart grids. The operation of networked
systems relies on estimation wherein the values of variables are
computed based on noisy measurements collected by sensors.
In certain applications, sensor measurements contain private
information, e.g., the occupancy level of a building which
can be inferred from temperature measurements [1]. Since
an estimator operates on measurements, its output may be
an informative source for inferring private information. For
example, the occupancy level of a building can be inferred
from temperature estimates.

Due to the distributed structure of networked systems, the
output of an estimator is usually shared with untrusted parties,
e.g., a cloud-based controller for temperature regulation in a
smart building application. Hence, it is important to design
privacy-aware estimators which provide accurate estimates of
desired variables and simultaneously ensure that the output
of the estimator is not a reliable source of information for
estimating private data. We refer to the untrusted party with
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access to the output of an estimator as the “user”. The
framework developed in this paper is motivated by the growing
number of applications in which the service providers want
to guarantee that untrusted users do not get access to private
information.

B. Contributions

We consider an estimation problem wherein measurements
contain noisy information about a private random variable and
a public random variable. The estimate of the public variable is
revealed to an untrusted user. In our set-up, the measurement
is modeled as a continuous random variable. The objective
is to design an optimal randomized estimator of the public
random variable subject to a constraint on the privacy level of
the private random variable. The notion of conditional discrete
entropy is used to quantify the leakage of private information
due to the estimation procedure. This privacy metric captures
the uncertainty an untrusted user has about the private random
variable after observing the estimate of the public random
variable.

We study the optimal privacy-aware estimation problem
when the estimator has access to either the discretized mea-
surement or the discretized measurement together with the
private random variable. It is shown that the optimal privacy-
aware estimator is the solution to a convex optimization
problem. Necessary and sufficient optimality conditions are
derived. We also consider the optimal perfect-privacy estima-
tion problem which ensures that the output of the estimator is
independent of the private information. A necessary and suf-
ficient condition for an estimator to achieve perfect-privacy is
derived. It is shown that the optimal perfect-privacy estimator
is the solution of a linear optimization problem. The feasible
set of this optimization problem is non-empty if the dimension
of the null space of a certain matrix is non-zero. The impact
of the distribution mismatch on the perfect-privacy condition
is studied.

Finally, these results are extended to the case that the
estimator has access to the continuous measurement or both
the continuous measurement and private information. Our re-
sults indicate that the optimal privacy-aware (perfect-privacy)
estimation problem is an infinite-dimensional convex (linear)
optimization problem in this case.

C. Related Work

The privacy aspect of hypothesis testing problems with a
private and a public hypothesis has been studied in the liter-
ature, and various privacy-preserving solutions for improving
the privacy level of hypothesis testing problems have been
proposed, e.g., [2], [3], [4], [5]. In [6], the authors considered
a hypothesis test problem with multiple sensors in which
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an eavesdropper intercepts the local decisions of a subset of
sensors. They studied the optimal decision rule minimizing the
Bayes risk at a fusion center subject to a privacy constraint
at the eavesdropper. In [7], the authors considered a similar
set-up to that of [6] and studied the optimal privacy-aware
Neyman-Pearson test with a private hypothesis. The privacy of
electricity consumers against an eavesdropper using demand
management techniques and storage devices was studied in
[8].

Privacy preserving filters, for the state privacy problem in
a cloud-based control application, were studied in [9] using
the notion of directed information as the privacy metric. A
privacy-aware controller design problem for a private Markov
decision process problem in presence of an eavesdropper, with
access to the input and output of the process, was studied
in [10]. The authors of [11] studied the privacy filter design
problem for a public Markov chain, correlated with a private
Markov chain, when both the private and public chains are
directly observable. The interested reader is referred to [12]
for an overview of information-theoretic approaches to privacy
in estimation and control.

The notion of differential privacy has been used to study
privacy-aware estimation, filtering and average consensus
problems. The authors of [13] proposed a filtering scheme for
preserving the privacy of states or measurements of dynamical
systems using the notion of differential privacy. The state
estimation problem in a distribution power network subject to
differential privacy constraints for the consumers was studied
in [14]. The authors of [15] considered a distributed multi-
agent control problem and proposed a differential privacy
scheme for preserving the privacy of the initial state as well as
the preferred target way-points of each agent. Privacy-aware
average consensus algorithms, for preserving the privacy of
initial states of different agents, have been proposed in [16]
and [17].

The authors in [18] studied the optimal trade-off between
the privacy and performance in a database privacy problem
using rate-distortion theory. Akyol, et. al. in [19] considered a
strategic information transmission set-up wherein a transmitter
communicates private information with a receiver over a noisy
channel. They proposed game-theoretic frameworks for the
encode-decoder design problem such that the distortion is
minimized while a certain privacy level is ensured.

Information-theoretic methods for improving data privacy
have been extensively investigated in the literature, e.g., [20],
[21], [22], [23] and references therein. In this line of research,
the objective is to design privacy preserving filters which
operate on a (directly observable) public random variable
correlated with a private random variable. The privacy filter is
designed such that the distortion between the public variable
and its processed version is minimized while a certain level
of privacy is guaranteed. The current manuscript is different
from this line of research in that, in our set up, neither the
public nor the private variables are directly observable, and the
sensor observations contain noisy information about the public
and private variables. Moreover, in an estimation problem,
one is interested in the true value of a variable based on
a noisy observation rather than obtaining a low distortion
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Fig. 1. An estimator of the public random variable Y based on the
measurement Z (a), an estimator of the public random variable Y based
on the measurement Z and the private random variable X (b).

representation of a directly observable random variable.
In [24], the authors considered the problem of adding

stochastic distortion to a public variable, which depends on
private information, such that (i) the mean square error (MSE)
of recovering the original variable from its distorted version
is minimized, and (ii) the minimum MSE of recovering the
private information from the distorted variable stays above
a certain level. The results were extended in [25] under the
Hamming distance as the distortion criterion and the efficiency
of these methods was analysed in [26].

Perfect-privacy filters in the context of data privacy have
been studied in [27]. These results are mainly derived based
on the assumption that the public random variable is directly
observable and takes finite values. Also, the perfect-privacy
condition in [27] requires characterization of the extreme
points of a certain convex polytope which depends on the
null space of a probability transition matrix. Finally, we note
that the relation between the perfect-privacy condition and the
notion of maximal correlation has been studied in [28].

Different from the existing work, we consider the estimation
of a public random variable, i.e., the sensor does not have
direct access to the public random variable. Different from
[27], in our work, the optimal perfect-privacy estimator with
discretized measurement is obtained by solving a linear opti-
mization problem which does not require finding the extreme
points of a convex polytope. In our set-up, the perfect-privacy
condition with discretized measurements depends on the null
space of a matrix with positive and negative entries which
is different from a transition probability matrix. We also
study the impact of distribution mismatch on the perfect-
privacy condition. The optimal privacy-aware estimation and
the optimal perfect-privacy estimation problems are studied,
in our work, when the estimator has access to either (possibly
continuous) measurement or to both the measurement and
private information.

D. Outline of The Paper

The rest of this paper is organized as follows. Our system
model and assumptions are described in the next section.
Section III presents our results on the optimal privacy-aware
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and optimal perfect-privacy estimator design problems when
the estimator has access to the discretized measurement. These
results are extended to the case with the continuous measure-
ment in Section IV. Our numerical results are presented in
Section V, followed by concluding remarks in Section VI.

II. SYSTEM MODEL

Consider the estimation problem in Fig. 1 wherein the mea-
surement Z contains noisy information about two, possibly
correlated, discrete random variables X and Y . The objective
is to estimate Y using either Z or (Z,X). The random variable
Y contains public information, i.e., its estimate is used by pos-
sibly untrusted parties for monitoring or control purposes. The
random variable X carries private information which should
be kept hidden from any untrusted party. Then, the privacy-
aware estimation problem can be stated as follows: Find a
reliable estimate of Y such that the output of the estimator
satisfies a certain privacy level for X . Note that the estimate of
Y is generally correlated with X , thus the estimation process
might result in the leakage of private information. Please see
Subsection II-D for motivating examples of this estimation
problem.

The following notation and assumptions are adopted in the
rest of this paper. The support sets of X , Y and Z are denoted
by X = {x1, . . . , xn}, Y = {y1, . . . , ym} and Z = R,
respectively. The relation between Z and X,Y can be of the
general form Z = f (X,Y,W ) where f(·) is a continuous
map from R3 to R, and W ∈ R denotes the measurement
noise. We assume that the knowledge of the joint distribution
of (X,Y, Z) is available at the estimator. It is assumed that the
random variable Z is absolutely continuous with respect to the
Lebesgue measure on R with the probability density function
pZ (z). In Section III, we discuss the privacy-aware estimator
design problem when the estimator has access to a discretized
version of Z. In Section IV, we study the privacy-aware
estimation when the estimator has access to the continuous
measurement Z.

A. Randomized Estimator Based on Discretized Measurements

In this subsection, the randomized estimation of Y is
discussed when the estimator has access to the discretized
measurement. To this end, let {Bi}Ni=1 denote a partition of R
where B1 and BN are semi-infinite intervals and where Bi,
2 ≤ i ≤ N − 1, are of the form Bi = [ai−1, ai], ai > ai−1.
Here, Bi denotes the ith quantization cell, and ai, ai−1 ∈ R
denote its boundaries. Let Zd denote the discretized version of
Z using {Bi}Ni=1, i.e., Zd is a random variable taking values
in {1, . . . , N} with Zd = l if Z belongs to Bl. A randomized
estimator of Y based on Zd can be defined as

ŶP (Zd) =


y1 w.p. P1l

...
ym w.p. Pml

if Zd = l,

where w.p. stands for “with probability”. Thus, the estimator
selects yi as its output with probability Pil when Zd = l.
Note that an estimator is specified by the randomization
probabilities {Pil}il, where

∑
i Pil = 1 for all l. In the

next section, privacy-aware and perfect-privacy estimators are
designed by optimizing these randomization probabilities.

In certain applications, the estimator may have access to
both Zd and X , see Subsection II-D for more details. In this
case, the randomization probabilities are parametrized by the
values of Zd and X . A randomized estimator of Y based on
(Zd, X) is defined as

ŶP (Zd, X) =


y1 w.p. P1lj

...
ym w.p. Pmlj

if Zd = l,X = xj

with
∑
i Pilj = 1 for all l, j. That is, the estimator selects yi

as its output with probability Pilj given Zd = l and X = xj .

B. Randomized Estimator Based on Continuous Measure-
ments

In this subsection, the structure of a randomized estimator
of Y based on the original continuous Z is described. To
this end, let P (z) = {Pi (z)}mi=1 denote a set of positive
functions where Pi (z) is defined on the support set of Z with∑m
i=1 Pi (z) = 1 for all z ∈ Z . Then, a randomized estimator

of Y based on Z can be expressed as

ŶP (Z) =


y1 w.p. P1 (z)
...
ym w.p. Pm (z)

if Z = z.

According to (1), if the observation Z is equal to z, the
estimator declares yi as the estimate of Y with probability
Pi (z).

Similarly, a randomized estimator of Y based on (Z,X) is
defined as

ŶP (Z,X) =


y1 w.p. P1j (z)
...
ym w.p. Pmj (z)

if Z = z,X = xj ,

where
∑m
i=1 Pij (z) = 1 for all z ∈ Z and j. In this case,

the estimator is specified by the set of positive functions
{Pij (z)}ij .

Remark 1: In real applications, the optimal estimator can be
implemented using a random number generator that randomly
selects an element of Y according to the optimal random-
ization probabilities. A random number generator can be
realized via either a dedicated hardware, e.g., linear feedback
shift registers, or software executed by generic programmable
hardware.

C. Privacy Metric

Since the output of the estimator is usually correlated with
X , revealing ŶP to the user may result in a privacy loss, i.e.,
the user can infer about X by observing ŶP . The privacy level
of a generic estimator ŶP is defined as the conditional discrete
entropy of X given the output of the estimator, denoted by
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H
[
X
∣∣∣ŶP ], see (1) for the definition of the privacy level of

an estimator with access to Zd.

H
[
X
∣∣∣ŶP (Zd)

]
= −

∑
y∈Y

Pr
(
ŶP (Zd) = y

)
×
∑
x∈X

Pr
(
X = x|ŶP (Zd) = y

)
logPr

(
X = x|ŶP (Zd) = y

)
.

(1)

Our choice of privacy metric is motivated by the fact that
H
[
X
∣∣∣ŶP ] captures the ambiguity of the user about X after

observing ŶP . Thus, the privacy loss decreases as H
[
X
∣∣∣ŶP ]

becomes large since the user becomes more uncertain about
the value of X as H

[
X
∣∣∣ŶP ] increases.

Since conditioning reduces entropy [29], we have

0 ≤ H
[
X
∣∣∣ŶP ] ≤ H [X] ,

which implies that the maximum privacy is achieved if
H
[
X
∣∣∣ŶP ] = H [X]. Recall that if X and ŶP are indepen-

dent, ŶP contains no information about X and the user has
maximum ambiguity about X after observing ŶP , i.e., in this
case H

[
X
∣∣∣ŶP ] = H [X].

Another motivation for the choice of the privacy metric in
this paper is the fact that the error probability of estimating
X after observing ŶP can be lower bounded in terms of
H
[
X
∣∣∣ŶP ] using Fano’s inequality [29]:

Pr
(
X 6= X̂

(
ŶP

))
≥

H
[
X
∣∣∣ŶP ]− 1

log |X |
,

where X̂
(
ŶP

)
is an arbitrary estimator of X with access to

ŶP and |X | is the cardinality of the support set of X . Note that
this lower bound is independent of the estimator of X , i.e., it
holds for all possible estimators. Thus, by adjusting the value
of H

[
X
∣∣∣ŶP ], a desired privacy level of the private random

variable can be guaranteed as long as |X | > 2.
Remark 2: In this paper, we assume that the sensor and

the estimator are co-located. Thus, the adversary can only
observe the output of the estimator and does not have access
to the sensor measurements. In certain applications, sensor
measurements are transmitted over a communication network
to a remote estimator. In such applications, an adversary may
attempt to infer the private information by overhearing the
communication between the sensor and the estimator. This
issue can be avoided by securing the information exchange
between the sensor and the estimator using information se-
curity techniques such as secure multi-party computation or
cryptographic techniques.

D. Motivating Examples

In this subsection, we provide three motivating examples of
privacy-aware estimation problems.

1) Temperature Estimation: Consider a building application
in which the objective is to estimate the temperature level
inside an apartment based on noisy sensor measurements.

Here, the binary random variable X represents the absence
or presence of the tenant which is considered as private
information and Y represents the temperature. We assume that
when the tenant is present, the temperature is kept at the set
temperature Ts by the heating ventilation and air-conditioning
(HVAC) system. When the tenant is away, we assume that the
HVAC system is off and the temperature is modeled using a
random variable distributed between the minimum temperature
Tmin and the maximum temperature Tmax. Let the events
X = 0 and X = 1 denote the absence and presence of
the tenant, respectively. Then, the random variable Y can be
expressed as

Y =

{
Ts if X = 1
T if X = 0,

where T is a random variable distributed over [Tmin, Tmax].
The objective is to provide an accurate estimate of temper-

ature based on the noisy temperature measurement Z, for an
untrusted user, e.g., a cloud-based building automation system,
while the dependency of the estimator’s output on X is kept
below a certain level. Note that it is possible to infer the
occupancy information in a building using measurements of
WiFi signal power see [30]. Hence, if this information is
available at the estimator, the temperature can be estimated
using (Z,X) which is a richer information set compared
with Z.

2) Smart Meter Application: Consider a smart meter ap-
plication wherein the objective is to estimate the number of
active smart appliances in a household based on its electricity
consumption level. In this application, the absence/presence of
tenants can be modeled using the binary random variable X ,
which contains private information, Y represents the number
of active smart appliances and Z represents the electricity
consumption level. An estimate Ŷ is provided to an untrusted
party such as a utility company. The objective is to design an
estimator of Y such that the leakage of the private information,
after Ŷ is revealed to the untrusted party, is kept below a
certain level.

3) Vehicle Density Estimation: Consider the problem of
counting vehicles on a road based on position estimates of in-
dividual vehicles. In this application, X represents the velocity
of a vehicle, which is considered as its private information, Y
represents the actual position of the vehicle and Z denotes the
noisy measurement of the position of the vehicle. The position
estimates can be used by a traffic operator, i.e., an untrusted
party, to estimate the number of vehicles on the road at a given
time. In this application, the objective is to design an estimator
of Y based on Z for individual vehicles such that leakage
information about each vehicle’s velocity, after revealing its
corresponding position estimate Ŷ to the traffic operator, is
kept below a certain level.

III. OPTIMAL ESTIMATION USING DISCRETIZED
MEASUREMENTS

In this section, the optimal privacy-aware and the optimal
perfect-privacy estimation problems are studied when the
estimator has access to either to Zd or (Zd, X). We start our
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discussion by introducing the optimal privacy-aware estimator
design problem when only Zd is available at the estimator.

A. Optimal Privacy-aware Estimation Using Zd

In this subsection, we assume that the estimator has access
to the discretized measurement Zd. Let L

(
Y, ŶP (Zd)

)
denote

the estimation loss which penalizes the deviation of the
estimator’s output from the true value of Y . Then, the optimal
privacy-aware estimator is obtained by minimizing the average
estimation loss subject to a lower bound on the privacy of X
given the output of the estimator. That is, the optimal privacy-
aware estimator is the solution of the following optimization
problem

minimize
{Pil}i,l

E
[
L
(
Y, ŶP (Zd)

)]
Pil ≥ 0, ∀i, l∑

i

Pil = 1,∀l

H
[
X
∣∣∣ŶP (Zd)

]
≥ H0, (2)

where H0 ∈ R+ is a design parameter. Note that the pri-
vacy level of the optimal estimator increases as H0 becomes
large. Note that by removing the privacy constraint from
the optimization problem above, its feasible set becomes
the set of all possible estimators. Thus, the solution of the
optimization problem (2) without the privacy constraint will
be a classical optimal estimator which may not respect the
privacy constraint. By imposing the privacy constraint, we
limit the feasible set of the optimization problem to the set
of estimators with the privacy level at least H0, and search for
the optimal estimator within this set.

The next theorem shows that the optimal privacy-aware
estimator with access to the discretized measurement is the
solution of a convex optimization problem.

Theorem 1: The optimal privacy-aware estimator design
problem (2) is a convex optimization problem.

Proof: Theorem 1 is a special case of Theorem 3 and its
proof is skipped to avoid repetition.

The next lemma states the Karush–Kuhn–Tucker (KKT)
necessary and sufficient optimality conditions for the optimiza-
tion problem (2).

Lemma 1: Let P ? denote the optimal solution of the
optimization problem (2). Then, condition (3) holds where
µ? is the dual optimal variable associated with the privacy
constraint and λ? is the vector of dual optimal variables
associated with the equality constraints of (2).

Proof: See Appendix A.

B. Optimal Perfect-privacy Estimation Using Zd

In this subsection, the design of the optimal perfect-privacy
estimator is discussed. To this end, we first define the perfect-
privacy condition, and derive a necessary and sufficient condi-
tion for an estimator to satisfy the perfect-privacy requirement.
Then, we show that the optimal perfect-privacy estimator can
be obtained by solving a linear optimization problem.

The next definition states the perfect-privacy condition.
Definition 1: An estimator of the public random variable Y

is perfectly private if its output Ŷ is independent of the private
random variable X .

Before proceeding with the derivation of the perfect-privacy
condition, we first define the matrix

Φ =

 φ11 · · · φ1N

...
...

φn1 · · · φnN

 ,
where φjl = Pr (Z ∈ Bl|X = xj) − Pr (Z ∈ Bl). Also, the
vector P i is defined as

P i =

 Pi1
...

PiN

 ,
which is the collection of randomization probabilities asso-
ciated with selecting yi as the output of the estimator, for
different bins. Next lemma derives a necessary and sufficient
condition which ensures perfect-privacy.

Lemma 2: An estimator satisfies the perfect-privacy condi-
tion if and only if P i ∈ Null (Φ) for all i ∈ {1, . . . ,m} where
Null (Φ) is the null space of the matrix Φ.

Proof: See Appendix B.
According to this lemma, a randomized estimator satisfies

the perfect-privacy condition if the vector of randomization
probabilities associated with each element of Y , i.e., the sup-
port set of the public random variable, lies in the null space of
the matrix Φ. Note that the perfect-privacy requirement is (in
general) stricter than the privacy constraint in (2) and coincides
with this privacy constraint for H0 = H [X]. Hence, the set
of estimators which satisfy the perfect-privacy condition is
a subset of the set of privacy-aware estimators. The set of
perfect-privacy estimators is a convex ploytope.

We note that some other perfect-privacy conditions have
already appeared in the literature [27], [31]. For example, the
perfect-privacy conditions in [27] require that the dimension
of the null space of certain transition probability matrices to be
non-zero. The perfect-privacy condition in our set-up requires
that the randomization probability vectors P i lie in the null
space of Φ, which is not a transition probability matrix.

We next study the optimal perfect-privacy estimator design
problem, i.e., the optimal estimator among all the estimators
satisfying the perfect-privacy condition. The optimal perfect-
privacy estimator is given by the solution of the following
optimization problem

minimize
{Pil}i,l

E
[
L
(
Y, ŶP (Zd)

)]
Pil ≥ 0,∀i, l∑

i

Pil = 1, ∀l

ΦP i = 0,∀i. (4)

Note that the perfect-privacy condition in (4) is linear in the
decision variables, i.e., the randomization probabilities. Thus,
an important feature of the optimal perfect-privacy estimator
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µ? log
∏
j

(∑
l P

?
hlPr (Z ∈ Bl|X = xj)∑
l P

?
hlPr (Z ∈ Bl)

)Pr(Z∈Bk,X=xj)
 = Pr (Z ∈ Bk|Y = yh)Pr (Y = yh) + λ?k if 0 < P ?hk < 1
≤ Pr (Z ∈ Bk|Y = yh)Pr (Y = yh) + λ?k if P ?hk = 0
≥ Pr (Z ∈ Bk|Y = yh)Pr (Y = yh) + λ?k if P ?hk = 1∑

h

P ?hl = 1∀l

µ? ≥ 0

H
[
X
∣∣∣ŶP ? (Z)

]
≥ H0

µ?
(
H0 − H

[
X
∣∣∣ŶP ? (Z)

])
= 0 (3)

is that it can be obtained by solving a linear optimization
problem. Note that the optimal perfect-privacy estimator can
be computed by solving optimization problem (2) for H0 =
H[X]. However, the privacy constraint in (2) is non-linear
and finding the optimal perfect-privacy estimator using (2) is
more challenging than solving a linear program, especially
in high dimensional problems. From a practical point of
view, a perfect-privacy estimator provides the highest level of
statistical privacy by ensuring that its output is statistically
independent of the private variable, i.e., the output of the
estimator does not contain any private information.

We next derive a sufficient condition which ensures that the
feasible set of the optimization problem (4) is non-empty.

Lemma 3: If the number of discretization bins, i.e., N , is
larger than the size of the support set of the private random
variable X , then the feasible set of (4) is non-empty.

Proof: See Appendix C.

The solution of the optimal perfect-privacy estimator design
problem depends on the joint distribution of X , Y and Zd

which is typically estimated from data. Thus, there might be
a mismatch between the estimated and the true distributions.
We next study the impact of such distribution mismatch on the
perfect-privacy condition. To this end, we use Θ to denote the
collection of random variables Θ = (X,Y, Zd) and pΘ (θ) to
denote the true distribution of Θ. Let pΘ̂ (·) denote the estimate
of pΘ (·) from data. Hence, the perfect-privacy estimator is
designed according to pΘ̂ (θ) which might be different from
the true distribution. Let ŶΘ̂ (Zd) denote the optimal perfect-
privacy estimate derived using pΘ̂ (θ).

Next theorem derives an upper bound on the mutual in-
formation between private information and the output of the
perfect-privacy estimator under distribution mismatch. Before
presenting this result, we define the vectors ε = [ε1, . . . , εN ]

>

and εj = [ε1j , . . . , εNj ]
>, j = 1, . . . ,m, where

εl = PrΘ (Z ∈ Bl)− PrΘ̂ (Z ∈ Bl) ,
εlj = PrΘ (Z ∈ Bl|X = xj)− PrΘ̂ (Z ∈ Bl|X = xj) ,

and PrΘ (A) and PrΘ̂ (A) denote the probability of the event
A calculated using pΘ (θ) and pΘ̂ (θ), respectively. Also, ∆iΘ̂

and ∆ijΘ̂ are defined as

∆iΘ̂ =
∑
l

P ?
ilΘ̂

PrΘ̂ (Z ∈ Bl) ,

∆ijΘ̂ =
∑
l

P ?
ilΘ̂

PrΘ̂ (Z ∈ Bl|X = xj) ,

where P ?
ilΘ̂

is the probability that the optimal perfect-privacy
estimator, designed using pΘ̂ (θ), selects yi as its output when
the measurement belongs to bin l.

Theorem 2: Consider the optimal perfect-privacy estimator
designed using pΘ̂ (θ). Let ŶΘ̂ (Zd) denote the output of
this estimator. Assume that ‖ε‖1 < mini ∆iΘ̂ and ‖εj‖1 <
mini ∆ijΘ̂ where ‖·‖1 denotes the one-norm. Then, we have

I
[
X; ŶΘ̂ (Zd)

]
≤
∑
j

Pr (X = xj)
∑
i

(
∆ijΘ̂ + ‖εj‖1

)
(γij + γi) ,

where I [·; ·] denotes the Shannon mutual-information and

γi =
‖ε‖1

∆iΘ̂ − ‖ε‖1
,

γij =
‖εj‖1

∆ijΘ̂ − ‖εj‖1
.

Proof: See Appendix D.
Theorem 2 establishes an upper bound on the mutual infor-

mation between the private random variable and the output
of the optimal perfect-privacy estimator under distribution
mismatch. According to this theorem, the upper bound on the
mutual information is controlled by the norm of the error vec-
tors ε and εj which capture the mismatch between the true and
the estimated distributions. Thus, the leakage of private infor-
mation under the perfect-privacy estimator, designed according
to pΘ̂ (θ), will be negligible when max

(
‖ε‖1 ,maxj ‖εj‖1

)
is

small and the estimator becomes almost perfectly-private.

C. Optimal Privacy-aware Estimation Using (Zd, X)

In this subsection, we study the optimal privacy-aware and
perfect-privacy estimation problems when the estimator has
access to both the discretized measurement and the private
random variable.
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The optimal privacy-aware estimator based on (Zd, X) is
the solution of the following optimization problem

minimize
{Pilj}i,l,j

E
[
L
(
Y, ŶP (Zd, X)

)]
Pilj ≥ 0, ∀i, l, j∑

i

Pilj = 1,∀l, j

H
[
X
∣∣∣ŶP (Zd, X)

]
≥ H0. (5)

Note that different from the optimization problem (2), the
randomization probabilities depend on both Zd and X in (5).
Thus, the availability of X at the estimator provides more
degrees of freedom in estimating Y and satisfying the privacy
constraint.

The next theorem establishes the convexity of the estimator
design problem in (5).

Theorem 3: The optimal privacy-aware estimator design
problem using (Zd, X) in (5) is a convex optimization prob-
lem.

Proof: See Appendix E.
Note that the expression for objective function and the privacy
constraint in (5) are different from those in (2). Nonetheless,
the optimal privacy-aware estimator design problem remains
convex.

Remark 3: A perfect measurement of the private variable
may not be always available, and the estimator might have
access to an inaccurate measurement of X . If the statistical
structure of the inaccurate measurement is known, the estima-
tor design framework in (5) can be extended to the case that
the estimator has access to Z and an inaccurate measurement
of X . It is straightforward to show that the estimator design
problem, in this case, is also a convex optimization problem.

D. Optimal Perfect-privacy Estimation Using (Zd, X)

We next study the optimal perfect-privacy estimation when
the estimator has access to (Zd, X). To this end, next lemma
derives a necessary and sufficient condition for the perfect-
privacy under the information set (Zd, X).

Lemma 4: An estimator of Y based on the information set
(Zd, X) satisfies the perfect-privacy condition if and only if
we have

ΨP̄ i = 0, 1 ≤ i ≤ m

where P̄ i = [P i1, . . . ,P in]
> denotes the vector concatena-

tion of vectors P ij = [Pi1j , . . . , PiNj ]
> for 1 ≤ i ≤ m and

1 ≤ j ≤ n, and Ψ is an n×Nn matrix defined as

Ψ =
n∑
j=1

Jj ⊗ ηj − Ij ⊗ δj ,

where ⊗ denotes the tensor product, the vectors ηj and δj are
defined as

ηj = [Pr (Z ∈ B1|X = xj) , . . . ,Pr (Z ∈ BN |X = xj)] ,

δj = [Pr (Z ∈ B1, X = xj) , . . . ,Pr (Z ∈ BN , X = xj)] ,

where Ij and Jj are n× n matrices defined as

Ij (u, v) =

{
1 v = j
0 otherwise,

and

Jj (u, v) =

{
1 v = u = j
0 otherwise.

Proof: See Appendix F.
The optimal perfect-privacy estimator is the solution to the

following optimization problem

minimize
{Pilj}i,l,j

E
[
L
(
Y, ŶP (Zd, X)

)]
Pilj ≥ 0, ∀i, l, j∑

i

Pilj = 1,∀l, j

ΨP̄ i = 0, 1 ≤ i ≤ m. (6)

This optimization problem is linear. Following the proof of
Lemma 3, it can be shown that its feasible set is non-empty
for N > n.

IV. OPTIMAL ESTIMATION USING CONTINUOUS
MEASUREMENT

In this section, we study the optimal privacy-aware and
the optimal perfect-privacy estimation problems when the
estimator has either access to Z or (Z,X).

The optimal privacy-aware estimator with access to Z is the
solution to the following optimization problem

minimize
{Pi(z)}mi=1

E
[
L
(
Y, ŶP (Z)

)]
Pi (z) ≥ 0,∀i, z∑

i

Pi (z) = 1,∀z

H
[
X
∣∣∣ŶP (Z)

]
≥ H0. (7)

Different from the privacy-aware estimator design problems
using Zd or (Zd, X), the estimator design problem above is
a functional optimization problem defined on the space of
bounded Borel measurable functions from R to R denoted
by B (R,R). Note that B (R,R) forms a Banach space under
the supremum norm and Pi (z) belongs to the cone of positive
functions in B (R,R) for all i. The next theorem shows that
the optimal privacy-aware estimator design problem in (7) is
a convex optimization problem.

Theorem 4: The optimal privacy-aware estimator design
problem based on Z in (7) is a convex optimization problem.

Proof: See [32].
Next lemma studies the perfect-privacy condition when the

estimator has access to the continuous measurement.
Lemma 5: An estimator of the public random variable Y

using the continuous measurement Z satisfies the perfect-
privacy condition if and only if∫

Pi (z) (pZ (z)− pZ (z |X = xj )) dz = 0,∀i, j.

Proof: See Appendix G.
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Using Lemma 5, the optimal perfect-privacy estimator de-
sign problem with continuous measurements can be written
as

minimize
{Pi(z)}mi=1

E
[
L
(
Y, ŶP (Z)

)]
Pi (z) ≥ 0,∀i, z∑

i

Pi (z) = 1,∀z∫
Pi (z) (pZ (z)− pZ (z |X = xj )) dz = 0∀i, j. (8)

Note that the perfect-privacy constraint in the optimization
problem above is a linear constraint and the objective function
is a linear functional in the optimization variables. We next
study the feasible set of this problem.

Lemma 6: The feasible set of the optimal perfect-privacy
estimator design problem with continuous measurement in (8)
is always non-empty.

Proof: See Appendix H.
Finally, we study the optimal privacy-aware and the optimal

perfect-privacy estimator design problems when the estimator
has access to (Z,X). The optimal privacy-aware estimator
based on (Z,X) is the solution of the following optimization
problem

minimize
{Pij(z)}ij

E
[
L
(
Y, ŶP (Z,X)

)]
Pij (z) ≥ 0, ∀i, j, z∑

i

Pij (z) = 1, ∀z, j

H
[
X
∣∣∣ŶP (Z,X)

]
≥ H0. (9)

It can be shown that this problem is a convex optimization
problem. We skip its proof as it follows similar to the proof
Theorem 4. When the estimator has access to (Z,X), it can
be shown that the perfect-privacy condition can be written as∫
Pij (z) pZ (z |X = xj )−∑

j′

Pr (X = xj′)Pij′ (z) pZ (z |X = xj′ ) dz = 0,∀i, j.

Thus, the optimal perfect-privacy estimator with access to
(Z,X) can be obtained by solving the following optimization
problem

minimize
{Pij(z)}ij

E
[
L
(
Y, ŶP (Z,X)

)]
Pij (z) ≥ 0,∀i, j, z∑

i

Pij (z) = 1,∀z, j∫
Pij (z) pZ (z |X = xj )

−
∑
j′

Pr (X = xj′)Pij′ (z)pZ (z |X = xj′ ) dz = 0,∀i, j.

V. NUMERICAL RESULTS

In this section, we study the performance of the opti-
mal privacy-aware and the optimal perfect-privacy estima-
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P
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Fig. 2. The error probability of the maximum likelihood estimator of X using
the output of the optimal privacy-aware estimator as a function of H0 with
sensor noise variance σ2 = 0.01.

tors for the temperature estimation problem, introduced in
Subsection II-D1. The objective of the temperature estimation
problem is to provide an accurate estimate of the temperature
while the occupancy information is kept private. In our numer-
ical results, we assume that Pr (X = 0) = Pr (X = 1) = 0.5,
Tmin = 20, Tmax = 22 and the temperature is discretized
between Tmin and Tmax with the discretization step equal to
0.2. The sensor noise is assumed to be Gaussian distributed
with zero mean and variance σ2. The estimation loss is
captured using the following binary loss function:

L
(
Y, Ŷ

)
=

{
1 if Y 6= Ŷ

0 if Y = Ŷ

To study the privacy of the occupancy information, X
was estimated from the output of the optimal privacy-aware
estimator using a maximum likelihood estimator. Fig 2 shows
the error probability of the maximum likelihood estimator of
X using Ŷ (Zd) for different values of the privacy level H0

for σ2 = 0.01. Note that in this figure, H0 = 0 corresponds
to the optimal classical estimator, which is privacy oblivious,
and H0 = H [X] corresponds to the optimal perfect-privacy
estimator. According to this figure, the estimate of X is
reliable when H0 is small. However, as H0 becomes large,
the performance of the maximum likelihood estimator in
recovering X from Ŷ (Zd) deteriorates. This is due to the fact
that the mutual information between X and Ŷ (Zd) decreases
when H0 increases.

Fig. 3 shows the average binary (estimation) loss and the
normalized mean square error of the optimal privacy-aware
estimator of Y for different values of H0. Note that when
H0 is equal to zero, the privacy constraint is inactive. Thus,
the optimal classical estimator achieves the best performance.
However, as the desired privacy level increases the perfor-
mance of the optimal estimator in recovering Y drops. This is
due to the fact that the set of estimators satisfying the privacy
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Fig. 3. The average binary loss and the normalized mean square error of the
optimal privacy-aware estimator of Y as a function of H0 with sensor noise
variance σ2 = 0.01.

constraint becomes small when H0 becomes large, i.e., the
privacy constraint becomes tight.

Fig. 4 shows the average binary loss of the optimal estimator
of Y when the estimator has access to Zd or (Zd, X) for
sensor noise variance σ2 = 0.1. According to this figure, the
optimal estimator with access to both Zd and X incurs less
loss in recovering Y , compared with the optimal estimator
with only access to Zd, since the former has more degrees of
freedom in meeting the privacy constraint.

VI. CONCLUSIONS

In this paper, we studied the optimal privacy-aware es-
timation of a public random variable using measurements
which contain private information. It was shown that the
optimal privacy-aware estimator can be obtained by solving
(a possibly infinite-dimensional) convex optimization problem
when the estimator has access to either the measurement or the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

H

0.42

0.43

0.44

0.45

0.46

0.47

0.48

H

Optimal classical  

estimators      

H

Optimal perfect-privacy 

estimators           

Fig. 4. The average binary loss of the optimal privacy-aware estimator of Y
with access to Zd or (Zd, X) as a function of H0 with sensor noise variance
σ2 = 0.1.

measurement as well as private information. It was also shown
that the optimal perfect-privacy estimator can be obtained by
solving a linear optimization problem. The results of this paper
can be extended in multiple directions. An interesting research
direction is to investigate the optimal privacy-aware estima-
tor design problem when the measurements, public variable
and private variable are vector-valued. The optimal encoder-
decoder design for privacy-aware estimation in presence of
a strategic sensor is another important avenue of our future
research.

APPENDIX A
PROOF OF LEMMA 1

Note that the mutual information between X and ŶP (Zd)
can be expanded as (10). Using (10), the Lagrangian of the
optimization problem (2) can be written as (11) where λ is
the vector of Lagrange multipliers associated with the equality
constraints, µ is the Lagrange multiplier associated with the
privacy constraint and P = {Pij}ij .

The partial derivative of the Lagrangian with respect to Phk
can be written as (12) where (a) follows from (13). Note that
the optimization problem (2) is a convex optimization problem
and it is straightforward to show that the Slater’s condition
holds for this problem. Thus, using the necessary and sufficient
Karush–Kuhn–Tucker (KKT) conditions, we have

∂L (P ,λ, µ)

∂Phk
|P ?,λ?,µ?

 = 0 if 0 < P ?hk < 1
≤ 0 if P ?hk = 0
≥ 0 if P ?hk = 1

,

where P ? is the optimal solution, and λ? and µ? are the dual
optimal variables.
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I
[
X; ŶP (Zd)

]
=
∑
j

Pr (X = xj)D
[
pŶP

(y |X = xj )
∥∥∥pŶP

(y)
]

=
∑
j

Pr (X = xj)
∑
i

(∑
l

PilPr (Z ∈ Bl|X = xj)

)
log

∑
l PilPr (Z ∈ Bl|X = xj)∑

l PilPr (Z ∈ Bl)
(10)

L (P ,λ, µ) =
m∑
i=1

N∑
l=1

PilPr (Z ∈ Bl|Y = yi)Pr (Y = yi)

− µ
∑
j

Pr (X = xj)
∑
i

(∑
l

PilPr (Z ∈ Bl|X = xj)

)
log

∑
l PilPr (Z ∈ Bl|X = xj)∑

l PilPr (Z ∈ Bl)

+
∑
l

λl

(∑
i

Pil − 1

)
(11)

∂L (P ,λ, µ)

∂Phk
= Pr (Z ∈ Bk|Y = yh)Pr (Y = yh) + λk

− µ
∑
j

Pr (X = xj)

[
Pr (Z ∈ Bk|X = xj) log

∑
l PhlPr (Z ∈ Bl|X = xj)∑

l PhlPr (Z ∈ Bl)

−

(∑
l

PhlPr (Z ∈ Bl|X = xj)

)(
Pr (Z ∈ Bk|X = xj)∑
l PhlPr (Z ∈ Bl|X = xj)

− Pr (Z ∈ Bk)∑
l PhlPr (Z ∈ Bl)

)]
(a)
= Pr (Z ∈ Bk|Y = yh)Pr (Y = yh) + λk

− µ
∑
j

Pr (X = xj)

[
Pr (Z ∈ Bk|X = xj) log

∑
l PhlPr (Z ∈ Bl|X = xj)∑

l PhlPr (Z ∈ Bl)

]
(12)

∑
j

Pr (X = xj)

(∑
l

PhlPr (Z ∈ Bl|X = xj)

)(
Pr (Z ∈ Bk|X = xj)∑
l PhlPr (Z ∈ Bl|X = xj)

− Pr (Z ∈ Bk)∑
l PhlPr (Z ∈ Bl)

)
= 0 (13)

APPENDIX B
PROOF OF LEMMA 2

To satisfy the perfect-privacy condition, we need to have

Pr
(
Ŷ (Zd) = yi, X = xj

)
= Pr

(
Ŷ (Zd) = yi

)
Pr (X = xj)

for all i, j. Note that Pr
(
Ŷ (Zd) = yi, X = xj

)
and

Pr
(
Ŷ (Zd) = yi

)
can be expanded as

Pr
(
X = xj , Ŷ (Zd) = yi

)
=
∑
l

Pr
(
X = xj , Ŷ (Zd) = yi, Z ∈ Bl

)
= Pr (X = xj)

∑
l

Pr
(
Ŷ (Zd) = yi

∣∣∣Z ∈ Bl)
× Pr (Z ∈ Bl|X = xj)

= Pr (X = xj)
∑
l

PilPr (Z ∈ Bl|X = xj)

and

Pr
(
Ŷ (Zd) = yi

)
=
∑
l

Pr
(
Ŷ (Zd) = yi, Z ∈ Bl

)
=
∑
l

Pr
(
Ŷ (Zd) = yi

∣∣∣Z ∈ Bl)Pr (Z ∈ Bl)

=
∑
l

PilPr (Z ∈ Bl) .

Thus, for Pr (X = xj) 6= 0, the perfect-privacy requirement
can be expressed as∑

l

Pil (Pr (Z ∈ Bl|X = xj)− Pr (Z ∈ Bl)) = 0 ∀i, j.

The condition above can be expressed as

ΦP i = 0, 1 ≤ i ≤ m, (14)

which implies that P i ∈ Null (Φ).
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APPENDIX C
PROOF OF LEMMA 3

Let P = P1×· · ·×PN denote the joint probability simplex
corresponding to the randomization probabilities of bins, i.e.,
for each bin l we have (P1l, · · · , Pml)> ∈ Pl. The feasible
set of the optimization problem (4) is the intersection of the
set P and the perfect-privacy condition. We show that there
are infinity many points in P which satisfy the perfect-privacy
condition if N > n.

Note that for N > n, the null space of Φ is non-empty. Pick
a set of positive real numbers {λi}mi=1 where 0 < λi < 1 for
all i and

∑
i λi = 1. Let (λ1, · · · , λm)

> be the randomization
probability of bin l for all 1 ≤ l ≤ N , i.e., Pil = λi for all
i, l. Thus, we have P i = (λi, · · · , λi). Note that P i belongs
to Null (Φ) as the sum of the elements in each row of Φ is
equal to zero.

APPENDIX D
PROOF OF THEOREM 2

Note that the distribution of ŶΘ̂ (Zd) can be written as

pŶΘ̂
(yi) = PrΘ

(
ŶΘ̂ (Zd) = yi

)
=
∑
l

PrΘ
(
ŶΘ̂ (Zd) = yi, Z ∈ Bl

)
=
∑
l

P ?
ilΘ̂

PrΘ (Z ∈ Bl)

=
∑
l

P ?
ilΘ̂

PrΘ̂ (Z ∈ Bl)︸ ︷︷ ︸
∆iΘ̂

+
∑
l

P ?
ilΘ̂
εl

= ∆iΘ̂ + ε>P ?
iΘ̂
,

where P ?
iΘ̂

is defined as

P ?
iΘ̂

=
[
P ?
i1Θ̂

, · · · , P ?
iNΘ̂

]>
.

Similarly, the conditional distribution of ŶΘ̂ (Zd) given X =
xj can be written as

pŶΘ̂
(yi |X = xj ) = PrΘ

(
ŶΘ̂ (Zd) = yi

∣∣∣X = xj

)
=
∑
l

P ?
ilΘ̂

PrΘ (Z ∈ Bl|X = xj)

=
∑
l

P ?
ilΘ̂

PrΘ̂ (Z ∈ Bl|X = xj)︸ ︷︷ ︸
∆ijΘ̂

+
∑
l

εljP
?
ilΘ̂

= ∆ijΘ̂ + ε>j P
?
iΘ̂
.

The mutual information between X and ŶΘ̂ (Zd) can be
written as

I
[
X; ŶΘ̂ (Zd)

]
=
∑
j

Pr (X = xj)
∑
i

pŶΘ̂
(yi |X = xj ) log

pŶΘ̂
(yi |X = xj )

pŶΘ̂
(yi)

.

Without loss of generality, assume that ∆iΘ̂ > 0 and ∆ijΘ̂ >
0. Using Taylor expansion, we have

log pŶΘ̂
(yi) = log

(
∆iΘ̂

)
+

ε>P ?
iΘ̂

∆iΘ̂ + αiε>P
?
iΘ̂︸ ︷︷ ︸

γi(ε)

= log
(
∆iΘ̂

)
+ γi (ε)

log pŶΘ̂
(yi |X = xj ) = log

(
∆ijΘ̂

)
+

ε>j P
?
iΘ̂

∆ijΘ̂ + αijε>j P
?
iΘ̂︸ ︷︷ ︸

γij(εj)

= log
(

∆ijΘ̂

)
+ γij (εj) ,

where αi, αij ∈ [0, 1]. Thus, I
[
X; ŶΘ̂ (Zd)

]
can be written as

I
[
X; ŶΘ̂ (Zd)

]
=
∑
j

Pr (X = xj)
∑
i

∆ijΘ̂ log
∆ijΘ̂

∆iΘ̂

+
∑
j

Pr (X = xj)
∑
i

ε>j P
?
iΘ̂

(γij (εj)− γi (ε))

+
∑
j

Pr (X = xj)
∑
i

∆ijΘ̂ (γij (εj)− γi (ε)) . (15)

Note that ∆iΘ̂ = ∆ijΘ̂ for all j, i since ŶΘ̂ (Zd) satisfies the
perfect-privacy condition with respect to pΘ̂ (θ). Thus, the first
term in (15) is equal to zero. Moreover, γi (ε) and γij (εij)
can be upper bounded as

γi (ε) ≤
‖ε‖1

∆iΘ̂ − ‖ε‖1
= γi

γij (εij) ≤
‖εj‖1

∆ijΘ̂ − ‖εj‖1
= γij .

Thus, we have

I
[
X; ŶΘ̂ (Zd)

]
≤
∑
j

Pr (X = xj)
∑
i

(
∆ijΘ̂ + ‖εj‖1

)
(γij + γi) .

APPENDIX E
PROOF OF THEOREM 3

The objective function in (5) can be written as

E
[
L
(
Y, ŶP (Zd, X)

)]
=
∑
ik

L (yi, yk)Pr
(
Y = yi, ŶP (Zd, X) = yk

)
.
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Note that the probability of the event(
Y = yi, ŶP (Zd, X) = yk

)
can be expressed as

Pr
(
Y = yi, ŶP (Zd, X) = yk

)
=
∑
lj

Pr
(
Y = yi, ŶP (Zd, X) = yk, Z ∈ Bl, X = xj

)
=
∑
lj

Pr
(
ŶP (Zd, X) = yk

∣∣∣Z ∈ Bl, X = xj , Y = yi

)
× Pr (Z ∈ Bl, Y = yi, X = xj)

=
∑
lj

PkljPr (Z ∈ Bl, Y = yi, X = xj) ,

which implies that the objective function is linear in the
randomization probabilities.

We next show that the privacy constraint is convex. Let
ŶP (Zd, X) denote an estimator of Y based on the random-
ization probabilities {Pilj}ilj . Using the definition of the con-
ditional entropy, the privacy constraint can be written as (16)
where pŶP

(y) and pŶP
(y |X = xj ) denote the probability

mass function of ŶP (Zd, X) and the conditional probability
mass function of ŶP (Zd, X) given X = xj , respectively, and
D [· ‖· ] denotes the Kullback-Leibler (KL) divergence (relative
entropy).

The probability mass functions pŶP
(y) and

pŶP
(y |X = xj ) can be expanded as

pŶP
(yi) = Pr

(
ŶP (Zd, X) = yi

)
=
∑
lj

Pr
(
ŶP (Zd, X) = yi

∣∣∣Z ∈ Bl, X = xj

)
× Pr (Z ∈ Bl, X = xj)

=
∑
lj

PiljPr (Z ∈ Bl, X = xj)

and

pŶP
(yi |X = xj ) = Pr

(
ŶP (Zd, X) = yi

∣∣∣X = xj

)
=
∑
l

Pr
(
ŶP (Zd, X) = yi

∣∣∣Z ∈ Bl, X = xj

)
× Pr (Z ∈ Bl|X = xj)

=
∑
l

PiljPr (Z ∈ Bl|X = xj) ,

respectively. Let YP ′ (Zd, X) denote an estimator of Y using
the randomization probabilities

{
P ′ilj

}
ilj

. Consider an esti-

mator of Y , denoted by ŶP̃ (Zd, X), with the randomization
probabilities

{
P̃ilj

}
ilj

which are a convex combination of

{Pilj}ilj and
{
P ′ilj

}
ilj

, i.e., P̃ilj = αPilj + (1− α)P ′ilj for

all i, l, j. Thus, we have

pŶP̃
(yi) = αpŶP

(yi) + (1− α) pŶP ′
(yi)

pŶP̃
(yi |X = xj ) = αpŶP

(yi |X = xj )

+ (1− α) pŶP ′
(yi |X = xj ) .

Using the convexity of the KL divergence [29],
D
[
pŶP̃

(y |X = xj )
∥∥∥pŶP̃

(y)
]

can be upper bounded as

(17) for 1 ≤ j ≤ n. Thus, H
[
X
∣∣∣ŶP (Zd, X)

]
is concave

in the randomization probabilities which implies that the
privacy constraint, i.e., H

[
X
∣∣∣ŶP (Zd, X)

]
≥ H0, is convex

in {Pilj}ilj .

APPENDIX F
PROOF OF LEMMA 4

The perfect-privacy requirement implies

Pr
(
Ŷ (Zd, X) = yi, X = xj

)
= Pr

(
Ŷ (Zd, X) = yi

)
× Pr (X = xj)∀i, j.

Note that Pr
(
Ŷ (Zd, X) = yi, X = xj

)
and

Pr
(
Ŷ (Zd, X) = yi

)
can be expanded as

Pr
(
X = xj , Ŷ (Zd, X) = yi

)
=
∑
l

Pr
(
X = xj , Ŷ (Zd, X) = yi, Z ∈ Bl

)
= Pr (X = xj)

∑
l

Pr
(
Ŷ (Zd, X) = yi

∣∣∣Z ∈ Bl, X = xj

)
× Pr (Z ∈ Bl|X = xj)

= Pr (X = xj)
∑
l

PiljPr (Z ∈ Bl|X = xj)

and

Pr
(
Ŷ (Zd, X) = yi

)
=
∑
l,j′

Pr
(
Ŷ (Zd, X) = yi, Z ∈ Bl, X = xj′

)
=
∑
l,j′

Pr
(
Ŷ (Zd, X) = yi

∣∣∣Z ∈ Bl, X = xj′
)

× Pr (Z ∈ Bl, X = xj′)

=
∑
l,j′

Pilj′Pr (Z ∈ Bl, X = xj′) .

Thus, for Pr (X = xj) 6= 0, the perfect-privacy requirement
can be expressed as∑

l

PiljPr (Z ∈ Bl|X = xj)

−
∑
l,j′

Pilj′Pr (Z ∈ Bl, X = xj′) = 0

for all i, j. Let P ij = [Pi1j , . . . , PiNj ]
> for 1 ≤ i ≤ m and

1 ≤ j ≤ n and P̄ i = [P i1, . . . ,P in]
>. By direct calculation,

it can be shown that the above condition is equivalent to

ΨP̄ i = 0, 1 ≤ i ≤ m,

which implies that P̄ i ∈ Null (Ψ) for all i.
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H
[
X
∣∣∣ŶP (Zd, X)

]
= H [X]−

∑
j

Pr (X = xj)D
[
pŶP

(y |X = xj )
∥∥∥pŶP

(y)
]

(16)

D
[
pŶP̃

(y |X = xj )
∥∥∥pŶP̃

(y)
]

= D
[
αpŶP

(y |X = xj ) + (1− α) pŶP ′
(y |X = xj )

∥∥∥αpŶP
(y) + (1− α) pŶP ′

(y)
]

≤ αD
[
pŶP

(y |X = xj )
∥∥∥pŶP

(y)
]

+ (1− α)D
[
pŶP ′

(y |X = xj )
∥∥∥pŶP ′

(y)
]

(17)

APPENDIX G
PROOF OF LEMMA 5

According to the perfect-privacy definition, the output of the
estimator, ŶP (Z), satisfies the perfect-privacy requirement if
and only if we have

Pr
(
ŶP (Z) = yi, X = xj

)
= Pr

(
ŶP (Z) = yi

)
Pr (X = xj)

for all i, j. Note that, Pr
(
ŶP (Z) = yi, X = xj

)
and

Pr
(
ŶP (Z) = yi

)
can be written as

Pr
(
ŶP (Z) = yi, X = xj

)
=

∫
Pr
(
ŶP (Z) = yi, X = xj

∣∣∣Z = z
)
pZ(z)dz

= Pr (X = xj)

∫
Pi (z) pZ (z |X = xj ) dz

and

Pr
(
ŶP (Z) = yi

)
=

∫
Pi (z) pZ (z) dz,

respectively. Thus, for Pr (X = xj) 6= 0, the estimator satisfies
the perfect-privacy condition if and only if we have∫

Pi (z) (pZ (z)− pZ (z |X = xj )) dz = 0,∀i, j.

APPENDIX H
PROOF OF LEMMA 6

Pick N > n and {Bi ⊂ R}Ni=1 where Bi are arbitrary
discretization bins. According to Lemma 3, the feasible set of
the optimization problem (4) is non-empty. Let

{
P̄l
}
l

denote
a point in the feasible set of (4) where P̄l = (P1l, · · · , Pml)>
denotes the randomization probabilities corresponding to bin
l. Now, we construct {Pi (z)}i as follows. For z ∈ Bl, let
Pi(z) = Pil for all i. Thus, any feasible solution of (4)
corresponds to a piecewise constant solution of (8) which
satisfies the perfect-privacy requirement.
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