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Power Grid AC-Based State Estimation:
Vulnerability Analysis Against Cyber Attacks

Ming Jin , Javad Lavaei , and Karl Henrik Johansson

Abstract—To ensure grid efficiency and reliability, power
system operators continuously monitor the operational
characteristics of the grid through a critical process called
state estimation (SE), which performs the task by filtering
and fusing various measurements collected from grid sen-
sors. This study analyzes the vulnerability of the key oper-
ation module, namely ac-based SE, against potential cyber
attacks on data integrity, also known as false data injection
attack (FDIA). A general form of FDIA can be formulated
as an optimization problem, whose objective is to find a
stealthy and sparse data injection vector on the sensor mea-
surements with the aim of making the state estimate spuri-
ous and misleading. Due to the nonlinear ac measurement
model and the cardinality constraint, the problem includes
both continuous and discrete nonlinearities. To solve the
FDIA problem efficiently, we propose a novel convexifica-
tion framework based on semidefinite programming (SDP).
By analyzing a globally optimal SDP solution, we delineate
the “attackable region” for any given set of measurement
types and grid topology, where the spurious state can be
falsified by FDIA. Furthermore, we prove that the attack is
stealthy and sparse, and derive performance bounds. Sim-
ulation results on various IEEE test cases indicate the ef-
ficacy of the proposed convexification approach. From the
grid protection point of view, the results of this study can
be used to design a security metric for the current prac-
tice against cyber attacks, redesign the bad data detection
scheme, and inform proposals of grid hardening. From a
theoretical point of view, the proposed framework can be
used for other nonconvex problems in power systems and
beyond.

Index Terms—Convexification, cyber attack, false data
injection attack (FDIA), nonconvex optimization, power
system, resilience, security, semidefinite programming
(SDP), state estimation (SE).
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I. INTRODUCTION

THE convergence of automation and information technol-
ogy has enhanced reliability, efficiency, and agility of

the modern grid [1]. Managed by supervisory control and data
acquisition (SCADA) systems, a wealth of sensor data from
transmission and distribution infrastructures are collected and
filtered in order to facilitate a key procedure known as power
system state estimation (SE), which is conducted on a regular
basis (e.g., every few minutes), as shown in Fig. 1 [2]–[5]. The
outcome presents system operators with essential information
about the real-time operating status to improve situational
awareness, make economic decisions, and take contingency
actions in response to potential threats that could endanger the
grid reliability [6].

In smart grid where information is sent via remote terminal
units, maintaining the security of the communication network
is imperative to guard against system intrusion and ensure op-
erational integrity [3], [8], [9]. However, traditional approaches
such as security software, firewalls, and “air gaps,” i.e., no con-
nection between systems, are recognized as inadequate in the
face of growing likelihood of breaches and cyber threat, such
as the 2015 cyber attack on Ukraine’s electricity infrastructure
[10]. In a recent report from the National Academies of Sciences,
Engineering, and Medicine, titled “Enhancing the resilience of
the nation’s electricity system,” the committee concluded that
the United States’ electric grid is vulnerable to a range of threats,
among which terrorism and cyber attacks are most severe and
could potentially cause long-term and widespread blackouts
[6]. A process called “envisioning process” is recommended
to improve the cyber security and resilience, which stresses the
importance of “anticipating myriad ways in which the system
might be disrupted and the many social, economic, and other
consequences of such disruptions.”

The objective of this study is to analyze power grid vulnera-
bility against cyber attack—more specifically, one critical class
of threat known as false data injection attack (FDIA), which
attempts to stealthily modify data to introduce error into grid
SE (see Fig. 1) [11], [12]. To stage an FDIA, the attacker needs
to compromise power measurements by hacking the commu-
nication with SCADA. Previous works [11], [13]–[18] have
demonstrated that a stealth FDIA is possible to evade bad data
detection (BDD) by the control center, and can cause potential
damages of load shedding [17], economic loss [12], [19], and
even blackouts [20]. While these works have primarily studied
a simplified power flow model, i.e., dc model [11], [13]–[18],
[21], [22], an FDIA based on a more accurate ac model is within
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Fig. 1. Illustration of power system operation and its vulnerability to cyber attack (adapted from [7]). With unfettered access to the communication
network and grid information system through cyber intrusion, an adversary would be able to stage an attack on the system without any physical
sabotage, by simply injecting false data to the state estimator to impact the decision making for the system.

the realm of possibility [2], [23], [24]. In a system where mea-
surements are nonlinear functions of the state parameters, it is
usually not easy to construct a state that evades BDD. Indeed,
dc-based FDIA can be easily detected by the ac-based BDD [8],
[25]. On the other hand, the nonlinearity of equality power-flow
constraints also makes the co-existence of multiple states and
spurious solutions possible, which is a fundamental reason why
an ac-based FDIA with sparse attacks is feasible and perhaps
more detrimental than an dc-based FDIA. Once constructed, this
new class of attacks could be hard to detect by existing meth-
ods. Thus, it is vital to understand its mechanism and devise
protection/detection methods to thwart such attacks.

A. Related Work

Potential adversarial FDIA strategies have been addressed in
previous works on power system vulnerability analysis [11],
[14], [17], [25], [26]. The negative impacts and possible de-
fense mechanisms have also been studied [13], [14], [17], [20],
[23]. From a practitioner’s point of view, there are mainly two
categories, based on either dc or ac models [12], [19]. For DC-
FDIA, an unobservability condition was derived and the attack
was numerically shown to be sparse [11], [14], [17]. Distributed
DC-FDIA with partial knowledge about the topology was con-
sidered in [8] and [18]. The vulnerability was quantified by the
minimum number of sensors needed to compromise in order to
stage stealth FDIA [13], [14], [16]. This can be formulated as a
minimum cardinality problem, where different algorithms have
been proposed for efficient computation [21], [22]. As for the
attack impact, FDIA has been studied on the electric market [15]
and load redistribution [17] to show significant financial losses.

Only a few works have been published on ac-based FDIA,
due to the recognized complexity of nonlinear systems [3], [25].
Hug and Giampapa [26] introduced a graph-based algorithm
to identify a set of compromised sensors that suffices to con-
struct an unobservable attack; however, this only offers an upper

bound on the cardinality, rather than resource-constrained spar-
sity. Rahman and Mohsenian-Rad [25] studied ac-based FDIA
based on linearization around the target state under the assump-
tion that SE is obtained by a specific algorithm, which could
be too stringent in practice. Joint cyber and physical attacks on
power grids has been studied in [27], which has been extended
to a simplified ac power flow model [28] and to the false data
injection scenarios [29]. Robust ac-based SE has been investi-
gated to guard against bad data and adversarial injections [4],
[23], [30]–[32] (see, e.g., [24] for a review on this subject);
however, there are no guarantees to detect stealthy injections.
As validated in the experiments of Section IV, attacks planned
by solving the ac-based FDIA can evade BDD even when robust
SE methods are employed.

Differentiated from prior literature, this study is the first of
its kind to solve a general FDIA for the ac-based SE, with
theoretical guarantees of sparsity and stealthiness.

B. Contributions

This study focuses on the problem of FDIA under an ac
model, which can be formulated as an optimization problem
with a quadratic objective function subject to quadratic equality
constraints and a cardinality condition. This problem can be
written as

min
ṽ∈Cn b ,b∈Rn m

h(ṽ)

s. t. f(ṽ) = m + b

‖b‖0 ≤ c (NC-FDIA)

where the variable ṽ ∈ Cnb is a complex-valued vector of di-
mension nb , b ∈ Rnm is a real-valued vector of dimension nm ,
h(ṽ) is a quadratic function of ṽ, f(ṽ) ∈ Rnm is a real-valued
vector function with entries being quadratic in ṽ, and ‖b‖0 is
the cardinality of b that is upper limited by a positive integer c.
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With respect to FDIA, ṽ is the spurious state, m includes sensor
measurements, b is the sparsity-constrained attack vector, h(·)
is the FDIA objective, and f(·) is the ac-model measurement
function. Due to the quadratic equality constraints as well as the
cardinality constraint, (NC-FDIA) is nonconvex. By investigat-
ing the least-effort strategy from the attacker’s perspective, this
study provides a realistic metric for the grid security based on the
number of individual sensors required to thwart an FDIA. This
broadens the perspectives on power system security and vulnera-
bility analysis. The results also motivate protection mechanisms
for ac-based SE, such as the redesign of BDD [33]. The main
contributions of this paper are as follows.

1) Formulation of a novel convexification framework based
on SDP to solve the ac-based FDIA problem (NC-FDIA)
for a near-globally optimal strategy.

2) Analysis of the outcome of the SDP framework from the
perspectives of the attackable region, attack stealthiness,
and performance bounds.

3) Simulation study on an array of power systems to illus-
trate that the planned attack is sparse and stealthy.

We also note that the presented method has both practical
and theoretical implications on solving real-world nonlinear and
nonconvex problems that can be formulated in the abstract form
(NC-FDIA). This paper extends the conference paper [34] to a
more general scenario that includes both power branch and nodal
measurements, in addition to a new analysis of the attackable
region, attack stealthiness, and performance bounds.

C. Organization

The rest of this paper is organized as follows. We will first
introduce the notations used throughout the paper in the follow-
ing section. Section II provides an overview of the vulnerability
issue of ac-based SE. More specifically, we will introduce the
power system modeling, ac-based SE methods, and a general
framework of FDIA for ac-based SE. Since the presented frame-
work is nonconvex, a convexification framework based on SDP
is proposed in Section III. We will analyze the (globally) op-
timal solution of this SDP in terms of the “attackable region”
(see Section III-B) and performance bounds (see Section III-C).
Experimental results on several IEEE bus systems are discussed
in Section IV. Conclusions are drawn in Section V.

D. Notations

Set notations. We use R and C as the sets of real and complex
numbers, and Sn and Hn to represent the spaces of n × n real
symmetric matrices and n × n complex Hermitian matrices,
respectively. A set of indices {1, 2, . . . , k} is denoted by [k].
The set cardinality Card(·) is the number of elements in a set.
The support of a vector x, denoted as supp (x), is the set of
indices of the nonzero entries of x. For a set S ⊂ Rn , we use
Sc = Rnm \ S to denote its complement. The notation int Γ is
used to represent the interior of the set Γ.

Matrix notations. Vectors are shown by bold letters, and ma-
trices are shown by bold and capital letters. The symbols 0n ,
1n , 0m×n , In×n denote the n × 1 zero vector, n × 1 one vector,
m × n zero matrix, and n × n identity matrix, respectively. Let

Fig. 2. Illustration of a simple 2-bus system with nb = 2 and nl = 1.
Bus k is connected to a load with measurements of real and reactive
nodal power injections pk and qk . Bus k′ is connected to a generator
with measurements of real nodal power injection pk ′ and bus voltage
magnitude |vk ′ |. The branch power flows over the line l are also mea-
sured.

[x]i denote the ith element of vector x. For an m × n matrix W,
let W[X ,Y] denote the submatrix of W whose rows are cho-
sen from X ∈ [m] and whose columns are chosen from Y ∈ [n].
The notation W � 0 indicates that W is Hermitian and positive
semidefinite (PSD), and W � 0 indicates that W is Hermitian
and positive definite.

Operator notations. The symbols (·)	 and (·)∗ represent the
transpose and conjugate transpose operators. We use �(·), �(·),
trace (·), and det(·) to denote the real part, imaginary part, trace,
and determinant of a scalar/matrix. The dot product is repre-
sented by x1 · x2 = x	

1 x2 , for x1 ,x2 ∈ Rn . The imaginary unit
is denoted as i. The notations ∠x and |x| indicate the angle and
magnitude of a complex scalar; moreover, ∠x and |x| are de-
fined based on the angles and magnitudes of all entries of the
vector x. For a convex function g(x), we use ∂g(x) to denote its
subgradient. The notations ‖x‖0 , ‖x‖1 , ‖x‖2 , and ‖x‖∞ show
the cardinality, 1-norm, 2-form, and ∞-norm of x.

II. VULNERABILITY OF AC-BASED SE

A. Power System Modeling

We model the electric grid as a graph G:= {N ,L}, where
N := [nb ] and L:= [nl ] represent its set of buses and branches.
Denote the admittance of each branch l ∈ L that connects bus
s and bus t as yst . The mathematical framework of this paper
applies to more detailed models with shunt elements and trans-
formers; but to streamline the presentation, these are not consid-
ered in the theoretical analysis of this paper. The grid topology
is encoded in the bus admittance matrix Y ∈ Cnb ×nb , as well
as the from and to branch admittance matrices Yf ∈ Cnl ×nb

and Yt ∈ Cnl ×nb , respectively. To illustrate these definitions,
consider the simple 2-bus system given in Fig. 2. The bus ad-
mittance matrix can be written as

Y =

[
yk + ykk ′ −ykk ′

−ykk ′ yk ′ + ykk ′

]

where ykk ′ is the admittance of the branch that connects bus k
to bus k′, and yk (resp. y′

k ) accounts for the admittance of the
load as well as the admittance-to-ground at bus k (resp. bus k′).
The branch admittance matrices are given by

Yf =
[
yk + ykk ′ −ykk ′

]
,Yt =

[
−ykk ′ yk ′ + ykk ′

]
.

A general procedure for the construction of Y, Yf , and Yt can
be found in [35, Ch. 3].
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The power system state is described by the bus voltage vector
v = [v1 , . . . , vnb

]	 ∈ Cnb , where vk ∈ C is the complex volt-
age at bus k ∈ N with magnitude |vk | and phase ∠vk . Given the
complex nodal vector, the nodal current injection can be written
as i = Yv, and the branch currents at the from and to ends of
all branches are given by if = Yf v and it = Ytv, respectively.
Define {e1 , . . . , enb

} and {d1 , . . . ,dnl
} as the sets of canoni-

cal vectors in Rnb and Rnl , respectively. We can derive various
types of power and voltage measurements as follows (see Fig. 2
for an illustration).

1) Voltage magnitude: The voltage magnitude square at bus
k is given by |vk |2 = trace (Ekvv∗), where Ek := eke	k .

2) Nodal power injection: The power injection at bus node
k consists of real and reactive powers, pk + iqk , where

pk = � (i∗k vk ) = trace

(
1
2

(Y∗Ek + EkY)vv∗
)

qk = � (i∗k vk ) = trace

(
1
2i

(Y∗Ek − EkY)vv∗
)

.

3) Branch power flows: Given a line l ∈ L from node s to
node t, the real and reactive power flows in both directions
are given by

p
(l)
f = � ([if ]∗l vs)= trace

(
1
2
(
Y∗

f dle	s +esd	
l Yf

)
vv∗

)

p
(l)
t = � ([if ]∗l vt)= trace

(
1
2
(
Y∗

f dle	t +etd	
l Yf

)
vv∗

)

q
(l)
f = � ([if ]∗l vs)= trace

( 1
2i

(
Y∗

f dle	s −esd	
l Yf

)
vv∗)

q
(l)
t = � ([if ]∗l vt)= trace

( 1
2i

(
Y∗

f dle	t −etd	
l Yf

)
vv∗).

Thus, each customary measurement in power systems that
belongs to one of the above-mentioned measurement types can
be written as

fi(v) = trace (Mivv∗) (1)

where Mi ∈ Hnb is the Hermitian measurement matrix for the
ith noiseless measurement (it is straightforward to include linear
PMU measurements in our analysis as well).

B. AC-Based SE

The SE problem aims at finding the unknown operating point
of a power network, namely v, based on a given set of measure-
ments. During the operation, a set of measurements m ∈ Rnm

are acquired

m = f(v) + e + b (2)

where f : Cnb �→ Rnm is the measurement function whose
scalar elements are designated in (1), e ∈ Rnm denotes ran-
dom noise, and b ∈ Rnm is the bad data error that accounts for
sensor failure or adversarial injection [4], [11], [23]. In the case
of no bad data error, a common strategy for solving SE is to
form a nonlinear weighted least squares problem

min
v̂∈V

nm∑
i=1

wi(mi − fi(v̂))2 (3)

where V is the region of potential operating points, wi is the
inverse variance of sensor i, and fi(v̂) is given in (1).

In the case that the sensor measurements are not corrupted
by bad data and noise, i.e., b = e = 0, we describe a condition
under which a state is “observable” based on the measurement
types (matrices)M = {M1 , . . . ,Mnm

} [36]–[38]. First, we in-
troduce some notations. Let O denote the set of all buses except
the slack bus. The complex vector v ∈ Cnb can be represented
by its real-valued counterpart

v =
[
�

(
v[N ]	

)
�

(
v[O]	

) ]	 ∈ R2nb −1 .

Accordingly, any n × n Hermitian matrix M can be character-
ized by a (2n − 1) × (2n − 1) real skew-symmetric matrix

M =

[
� (M[N ,N ]) −� (M[N ,O])

� (M[O,N ]) � (M[O,O])

]
∈ R(2n−1)×(2n−1) .

Based on (1) and the above-mentioned notations, the vector-
valued function f(v) maps the state to a set of noiseless mea-
surements

f(v) =

⎡
⎢⎢⎢⎣

v∗M1v

...

v∗Mnm
v

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v	M1v

...

v	Mnm
v

⎤
⎥⎥⎥⎦ ∈ Rnm (4)

whose Jacobian matrix is given by

J(v) =
[
(M1 + M	

1 )v · · · (Mnm
+ M	

nm
)v

]	
. (5)

Motivated by the inverse function theorem, which states that
the inverse of the function f(v) exists locally if J(v) has full
column rank, an “observability” definition is introduced below.

Definition 1 (Observability): A state v ∈ Cnb is observable
from a set of measurement types M if the Jacobian J(v) has
full column rank. For a given set of measurement types M, the
observable set V(M) is the set of all observable states.

As implied by the observability property and the Kantorovich
theorem, if the state v is observable, then we can find it using the
Gauss–Newton method by starting from any initial point suffi-
ciently close to v. More generally, the SE problem (3) may be
solved using first-order methods or SDP-based convexification
techniques with theoretical guarantees on global optimality in
the case where the number of measurements is sufficiently large
or some prior information about the solution is available [4],
[37]–[39].

As captured by the bad data vector b, the sensor measure-
ments might be corrupted by aberrant data. The common prac-
tice is to employ a BDD based on statistical hypothesis test-
ing [3]. Under the null hypothesis that no bad injection exists,
namely bi = 0, the residual (mi − fi(v̂))2 should follow the
chi-squared distribution, where v̂ is the estimated state and
the random error ei is assumed to be normally distributed. A
threshold value is set based on confidence levels to detect large
residuals, whose corresponding data are discarded and a new
iteration of SE starts. Robust SE approaches such as the least-
absolute-value and the least-trimmed-squares-based estimators
have also been investigated in the literature [4], [30]–[32]. For a
least-trimmed-squares analysis, the objective in (3) is replaced



1788 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 5, MAY 2019

by the sum of squared residuals over a subset of data points [30].
For least-absolute-value estimators, the squared errors in (3) are
replaced by the absolute errors [4], [31], [32]. These methods
are able to sift out randomly occurring bad data; however, it
can be ineffective to guard against systematically fabricated bad
data, a type of cyber attack known as FDIA.

C. FDIA Framework

FDIA is a cyber attack on the data analytic process, where
a malicious agent intentionally injects false data b ∈ Rnm into
the nm grid sensors to make system operators believe in an oper-
ating state, namely ṽ, other than the true state v [8], [12]. As an
illustrative example (see Fig. 3), the operator would be “tricked”
if the attacker manages to tamper with certain power flow mea-
surements to generate a fake state estimate of the system.

FDIA differs from randomly occurring bad data in its stealth
operation to evade BDD. Existing works have investigated
stealth conditions for FDIA on dc-based SE [11], [14]. The
following definition of “stealth” is provided to include cases of
both dc- and ac-based models.

Definition 2 (Stealth): An attack b is stealthy under state v
if, in the absence of the measurement noise e, there exists a
nonzero vector c such that f(v) + b = f(v + c).

A definition of observable attack has also been introduced
in [23] using set notations. Our definition of stealthy attack is
equivalent to an attack that is not observable by the definition
given in [23]. The following lemma provides a sufficient condi-
tion for ac-based attacks to remain stealthy.

Lemma 1 (Sufficient condition for stealth attack): An attack
b is stealthy if there exists a nonzero vector c such that Mic = 0
for every i ∈ [nm ] that is not in the support of b.1

Proof: Since fi(v) = trace (Mivv∗), we have

fi(v + c) = trace (Mi(v + c)(v + c)∗) = fi(v)

for every i ∈ [nm ] that is not in the support of b. �
Lemma 1 implies that an attack is unobservable if the state

deviation c lies in the null space of the measurement matri-
ces of those sensors the attacker does not tamper with. This
is applicable to the situation discussed in [26] for a single bus
attack. To better understand this, consider a vector c that has
zeros everywhere except at location j. Since the jth column of
Mi , denoted as [Mi ]:j , is zero unless Mi corresponds to the
measurement of a branch that connects to bus j, this delineates
a “superset” of sensors needed to hack to guarantee a stealth
attack.

An upper bound on the minimum number of compromised
sensors can be derived for a multibus attack; however, the suf-
ficient condition could be too stringent because the attacker
only needs to satisfy bi = trace (Micc∗) + trace (Micv∗) +
trace (Mivc∗) = 0 for all i �∈ supp (b) to remain stealthy. For
instance, consider the system in Fig. 3. Since the bus states are
all under attack, the upper bound on the minimum number of
sensors to infiltrate is 40, or all the measurements, according to

1The support of b is the set of all indices of the measurements that have been
accessed and modified by the attacker.

[26] and Lemma 1. But due to the “clever” design, FDIA is con-
ducted successfully by tampering with only 18 sensors, which
is a sparser subset of the upper bound. It is also worthwhile to
note that one can think of a strategy that offsets the phases of bus
voltages at bus 2, 3, 5, and 6 by a constant. This will keep the
real power flows the same as before and only change the reactive
flows. However, even with this ad hoc strategy, the number of
sensors to tamper with is 19. This indicates the efficiency of the
demonstrated strategy. However, to find such an attack vector,
a general strategy can be formulated as an optimization prob-
lem (NC-FDIA) to maximize sabotage with limited resources
and to evade detection, where f(·) is the ac-model measurement
function (1), ṽ is the spurious state, h(·) is an optimization
criterion to be specified later, and c is a constant number. The
constraints amount to the unobservability condition (Definition
2) and the sparsity requirement. The following assumption is
made throughout the analysis on the adversary’s capability to
acquire grid topology and measurement data.

Assumption 1: The attacker can form a strategy after access-
ing the grid topology and the measurement vector m.

The above-mentioned assumption depicts a powerful adver-
sary and a completely adversarial scenario. Using the full set
of measurements, the attacker can perform SE to estimate the
true state v, and tailor the attack to be stealthy. However, if
this assumption is violated, the attacker risks being detected by
the BDD [8]. The analysis provided in this paper is based on
Assumption 1 because it helps understand the behavior of the
system under the worst attack possible (using the full knowl-
edge of the system) and simplifies the mathematical treatment.
In addition, by solving the nonconvex ac-based SE (3), one may
end up with spurious solutions that might not be easily distin-
guishable from the spurious stationary point caused by FDIA.
However, in practice most of the states have phases close to 0
and magnitudes close to 1 per unit, and hence, may be recovered
with high accuracy. For the common case where there is a large
number of redundant measurements, the spurious state is often
very close to the true state [39]. In this regard, spurious states
in normal conditions can be much less harmful than spurious
states caused by FDIA because the latter modifies the globally
optimal solution of SE.

Several objectives are possible for the attacker to fulfill vari-
ous malicious goals, such as the following:

1) Target state attack: h(ṽ) = ‖ṽ − vtg‖2
2 , which intention-

ally misguides the operator toward vtg ;
2) Voltage collapse attack:h(ṽ) = ‖ṽ‖2

2 , which deceives the
operator to believe in low voltages;

3) State deviation attack: h(ṽ) = −‖ṽ − v‖2
2 , which yields

the estimated state ṽ to be maximally different from the
true state v.

An FDIA attack can be formed by solving (NC-FDIA) with
one of the above-mentioned objectives; however, the problem is
challenging due to the following conditions:

1) a possibly nonconvex objective function, e.g., concave
for the state deviation attack;

2) nonlinear equalities; and
3) cardinality constraints.

Section III develops an efficient strategy to deal with these
issues.
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Fig. 3. Example of a 6-bus system, where the nodal voltage magnitudes and power injections as well as branch power flows are measured (p.u.).
The attacker injects false data (red) to influence the bus state estimates (shown on the right side of each bus). The per unit bases for power and
voltage are 100 MW and 240 kV, respectively. The line admittance values are identical to 1 + 1i. The FDIA injection is solved by SDP-FDIA, with
parameters shown in Table I. Note that pij and qij show the active and reactive power flows over the line (i, j).

III. SDP CONVEXIFICATION OF THE FDIA PROBLEM

Since the original attack problem (NC-FDIA) is nonconvex
and difficult to tackle, we propose a convexification method
based on SDP, which can be solved efficiently. Based on this
framework, an “attackable region” of system states is character-
ized, where a strategy is guaranteed to exist and can be found
efficiently. To streamline the presentation, we focus the analysis
on the case of “target state attack,” where h(ṽ) = ‖ṽ − vtg‖2

2
with vtg chosen by the adversary a priori. The results hold for
many other objective functions as well.

A. SDP Convexification

By introducing an auxiliary variable W ∈ Hnb and the asso-
ciated function h̄(ṽ,W) = trace (W) − ṽ∗vtg − v∗

tg ṽ, (NC-
FDIA) can be reformulated as

min
ṽ∈Cn b ,b∈Rn m ,

W∈Hn b

h̄(ṽ,W)

s. t. trace (MiW) = mi + bi ∀i ∈ [nm ]

‖b‖0 ≤ c

W = ṽṽ∗. (NC-FDIA-r)

Note that this reformulation can be applied to the state devia-
tion attack to convexify the objective function. A cardinality-
included SDP relaxation of the above-mentioned nonconvex
problem can be obtained by replacing W = ṽṽ∗ with a general
PSD constraint

min
ṽ∈Cn b ,b∈Rn m ,

W∈Hn b

h̄(ṽ,W)

s. t. trace (MiW) = mi + bi ∀i ∈ [nm ]

‖b‖0 ≤ c[
1 ṽ∗

ṽ W

]
� 0. (NC-FDIA-c)

To study the relationship between the nonconvex problem (NC-
FDIA-r) and its cardinality-included relaxation (NC-FDIA-c),

we define an augmented matrix

Ẑ =

[
1 v̂∗

v̂ Ŵ

]
(6)

where (v̂,Ŵ) is a solution of (NC-FDIA-c). It is straightfor-
ward to verify that if rank(Ẑ) is equal to 1, then we must have
Ŵ = v̂v̂∗. Thus, (v̂,Ŵ) is feasible for (NC-FDIA-r) and con-
sequently optimal since the objective value of (NC-FDIA-c) is a
lower bound for (NC-FDIA-r). In fact, by exploring the special
features of the problem, we can derive a milder condition to
guarantee the equivalence. This will be elaborated next.

Assumption 2a: Given a solution (v̂,Ŵ, b̂) of (NC-
FDIA-c), v̂ and vtg point along the same “general direction” in
the sense that

v̂∗vtg + v∗
tg v̂ > 0. (7)

Note that the objective function of (NC-FDIA-c) helps with
the satisfaction of Assumption 2a, since the objective aims at
making v̂ and vtg be as close as possible to each other.

Theorem 1: The relaxation (NC-FDIA-c) recovers a solution
of the nonconvex problem (NC-FDIA) and finds an optimal
attack if it has a solution (v̂,Ŵ, b̂) satisfying Assumption 2a
such that rank (Ŵ) = 1.

Proof: See Appendix A. �
Theorem 1 ensures that if rank(Ŵ) = 1, then rank(Ẑ) = 1

(even though it could theoretically be 2), in which case (NC-
FDIA-c) is able to find an optimal attack. Nevertheless, the
optimal solution of (NC-FDIA-c) is not guaranteed to be rank-1
(i.e., the solution Ŵ cannot be written in the form of uu∗ for any
u ∈ Cnb ), and in addition the cardinality constraint ‖b‖0 ≤ c in
this optimization problem is intractable. We introduce a series
of techniques to deal with each issue.

To enforce (NC-FDIA-c) to possess a rank-1 solution, we
aim at penalizing the rank of its solution via a convex term.
Low-rank optimization has been considered in problems such
as spectral estimation [40], system identification [41], and com-
pressed sensing [42]. A common approach is to employ the
nuclear norm penalty trace (W) [42]. However, this penalty is
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not appropriate for power systems, since it penalizes the voltage
magnitude at each bus and may yield impractical results. In-
stead, a more general penalty term in the form of trace (M0W)
will be used in this paper

min
ṽ∈Cn b ,b∈Rn m ,

W∈Hn b

h̄(ṽ,W) + trace (M0W)

s. t. trace (MiW) = mi + bi ∀i ∈ [nm ]

‖b‖0 ≤ c[
1 ṽ∗

ṽ W

]
� 0 (NC-FDIA-p)

where M0 is to be designed. Similar to Lasso [43], we can
replace the cardinality constraint in the above-mentioned prob-
lem with an l1-norm penalty added to the objective function to
induce sparsity, which leads to the convex program

min
ṽ∈Cn b ,b∈Rn m ,

W∈Hn b

h̄(ṽ,W) + trace (M0W) + α‖b‖1

s. t. trace (MiW) = mi + bi ∀i ∈ [nm ][
1 ṽ∗

ṽ W

]
� 0 (SDP-FDIA)

where α is a constant regularization parameter. After this con-
vexification, (SDP-FDIA) is, thus, an SDP (after reformulating
the l1-norm term in a linear way), which can be solved ef-
ficiently using standard numerical solvers (e.g., SeDuMi and
SDPT3) [44]. On the other hand, we recognize that by includ-
ing penalty terms for rank and sparsity, we inevitably introduce
bias to the optimization problem. Thus, the result obtained by
(SDP-FDIA) should be described as “near-optimal,” in com-
parison to a global minimum of NC-FDIA. This is an artifact
that arises from the computational complexity of the problem,
and can be only remedied by a careful selection of the penalty
coefficients.

Assumption 2b: Given a solution (v̂,Ŵ, b̂) of (SDP-FDIA),
v̂ and vtg have the same general direction in the sense of (7).

Similar to Assumption 2a, this assumption is mild since the
objective function of the target state attack strives to make v̂
and vtg as close as possible to each other. We will make this
assumption throughout the analysis unless otherwise specified.

Lemma 2 (Stealth attack): Let (v̂,Ŵ, b̂) be a solution of
(SDP-FDIA) satisfying Assumption 2b. The attack b̂ is stealthy
if rank(Ŵ) = 1.

Proof: See Appendix A. �

B. Attackable Region

In this section, we first introduce and characterize the set of
voltages that the attacker can achieve by solving (SDP-FDIA)
for the malicious data injection. Then, we analyze the sabo-
tage scale under the studied FDIA. Throughout this section, let
(v̂,Ŵ, b̂) denote an optimal solution of (SDP-FDIA). Given
any stealth attack b, we define an optimization problem based
on (SDP-FDIA) to minimize over (v,W) with a fixed b, and

denote its optimal objective value as g(b)

g(b) = min
ṽ∈Cn b ,
W∈Hn b

h̄(ṽ,W) + trace (M0W)

s. t. trace (MiW) = mi + bi ∀i ∈ [nm ][
1 ṽ∗

ṽ W

]
� 0. (FDIA-SE)

In the following, we will use g(b) as a proxy for the sabotage
scale.2 Now, we define an “attackable” state below.

Definition 3 (Attackable state): A state vat is attackable if
(vat ,W = vatv∗

at) is the unique and optimal solution of
(FDIA-SE) for some stealth attack vector b ∈ Rm .

Definition 4 (Attackable region): The attackable region
A(M, ρ) for a given set of measurement types M is the set of
states vat that is attackable for some M0 with bounded norm
‖M0‖2 ≤ ρ.

In other words, for any state vat ∈ A(M, ρ) in the at-
tackable region, there exists a stealth attack b such that
(vat ,W = vatv∗

at ,b) is a feasible solution of (SDP-FDIA) and
that (vat ,W = vatv∗

at) is optimal if we fix the attack b.
The size of A(M, ρ) also depends on ρ; more specifically,

we haveA(M, ρ1) ⊆ A(M, ρ2) for ρ1 ≤ ρ2 . This follows from
the definition that, for every v ∈ A(M, ρ1), there exists a stealth
attack vector b and a penalty matrix M0 with ‖M0‖ ≤ ρ1
such that (v,W = vv∗) is the unique and optimal solution
of (FDIA-SE); therefore, since ‖M0‖ ≤ ρ1 ≤ ρ2 , we also have
v ∈ A(M, ρ2). We will now characterize the attackable region.

Theorem 2: If A(M, ρ) is nonempty for some ρ > 0, the
intersection of the attackable region and the observable set, i.e.,
A(M, ρ) ∩ V(M), is an open set.

Proof: See Appendix B. �
For some special cases, we can have a more explicit charac-

terization of the attackable region, as explained later.
Theorem 3: Consider the “target state attack” with

h̄(ṽ,W) = trace (W) − ṽ∗vtg − v∗
tg ṽ, where vtg ∈ V(M) is

chosen to be observable. Then, vtg ∈ A(M, ρ) for some ρ > 0,
i.e., vtg is attackable.

Proof: See Appendix B. �
Note that the proof of Theorem 3 allows computing ρ explic-

itly. Since we consider the case when v̂ = vtg , Assumption 2b
is satisfied automatically (i.e., v∗

tgvtg + vtgv∗
tg > 0). Define a

set of voltages R(Y) ⊂ Cnb such that v ∈ R(Y) if and only
if, for each line l ∈ L that connect nodes s and t, we have

−π ≤ ∠vs − ∠vt − ∠yst ≤ 0 (8a)

0 ≤ ∠vs − ∠vt + ∠yst ≤ π (8b)

where yst is the branch admittance between buses s and t.
Since real-world transmission systems feature low resistance-
to-reactance ratios, the angle of each line admittance yst is close
to−π/2 [2], and thus, a realistic vector v would belong toR(Y)
under normal conditions where the voltage phase difference

2For an optimal solution of (SDP-FDIA), the term trace
(
M0Ŵ

)
can be

bounded within limited ranges; as a result, g(b) acts as a “proxy” for h̄(v̂, Ŵ).
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along each line is relatively small. The following result gives an
explicit form for a region that is attackable, in the case where the
set of measurement types includes only the branch power flows
and nodal voltage magnitudes, but not the nodal bus injections.
Henceforth, we will refer to this case as the “special case”
(compared to the “general case” where nodal bus injections can
also be included in the measurements).

Theorem 4: Let V(M) ⊂ Cnb denote the set of observable
states for a given set of measurement types M including the
branch power flows and nodal voltage magnitudes, but not the
nodal bus injections. Then, if Assumption 2b holds, we have
V(M) ∩R(Y) ⊆ A(M, ρ) for some ρ > 0.

Proof: See Appendix D. �
The attackable region is an important concept that character-

izes the outcome of solving (SDP-FDIA), meaning that if a state
is in the attackable region, then it is a candidate attack strategy
as well as the unique solution of (FDIA-SE) for some stealth
attack. However, this does not imply that no stealth attack exists
for a state ṽ that is not in the attackable region; in fact, we can
always construct a stealth data injection b = f(ṽ) − v, where
v is the true state. For example, if the measurement set M is so
small that a part of the grid remains unobservable (see Defini-
tion 1), then (FDIA-SE) does not have a unique solution for any
stealth attack b. In that case, the attack-targeted state ṽ does
not belong to A(M, ρ). In light of Theorem 2, if a state vat

is attackable, then any state in its small neighborhood is also
attackable. Since we do not know the outcome of (SDP-FDIA)
a priori, it is helpful to design a particular rank penalty matrix
M0 ; indeed, as shown in Theorem 3, this can guarantee that
a desired observable state is attackable. Furthermore, Theorem
4 indicates that any observable state is attackable over a set of
branch power flow measurements. In fact, we will give an ex-
plicit formula for M0 in this case (see the proof of Theorem 4
in Appendix D) such that the solution to (SDP-FDIA) is unique
and in the form of (v̂,Ŵ = v̂v̂∗, b̂).

C. Performance Bounds for (SDP-FDIA)

The main objective of this section is to compare the solution
of (SDP-FDIA) to an “oracle attack” to be defined later, and
provide guarantees for stealthy solutions (see Lemma 2). First,
we focus on the properties of the sabotage scale g(b) defined in
(FDIA-SE).

Lemma 3: g(b) is convex and subdifferentiable.
Proof: See Appendix C. �
To proceed with this paper, we consider an “oracle attack”

that is able to solve (NC-FDIA-p).
Definition 5 (Oracle attack): The oracle attack b� ∈ Rnm is

a global minimum of the nonconvex program (NC-FDIA-p).
Define B ⊆ Rnm as the set of all vectors in Rnm with the same
support as b� .

Let ΔB = arg minΔ t ∈B ‖Δ − Δt‖2
2 be the projection of a

vector Δ onto the set B. The deviation of the solution of (SDP-
FDIA) from the oracle, namely Δ̂ = b̂ − b� , belongs to a cone.

Lemma 4 ([45]): For every α ≥ 2‖∂g(b�)‖∞, the er-
ror Δ̂ = b̂ − b� belongs to the cone C(B,Bc ;b�) =
{Δ ∈ Rnm |‖ΔBc ‖1 ≤ 3‖ΔB‖1}.

For a general set of measurements that might include an
arbitrary set of voltage magnitudes, nodal injections, and branch
power flows as discussed in Section II-A, the following theorem
provides performance bounds and a condition for stealthy attack
using (SDP-FDIA).

Theorem 5: Consider (SDP-FDIA) for a “target state
attack” with h̄(ṽ,W) = trace (W) − ṽ∗vtg − v∗

tg ṽ, where

vtg ∈ V(M) is chosen to be observable. Let (v̂,Ŵ, b̂) denote
an optimal solution of (SDP-FDIA) for an arbitrary α greater
than or equal to 2‖∂g(b�)‖∞. The difference between the sabo-
tage scale of the solved attack and the oracle attack satisfies the
inequalities

−2α‖Δ̂B‖1 ≤g(b̂)−g(b�)≤α
(
‖Δ̂B‖1−‖Δ̂Bc ‖1

)
where Δ̂ = b̂ − b� is the difference with the oracle b� .

Proof: See Appendix D. �
According to Theorem 5, there is a tradeoff between attack

sparsity and outcome in the sense that a tighter bound can be
achieved with more entries outside the oracle sparse setB. How-
ever, this also means that the attacker needs to tamper with
more sensors. Moreover, the matrix M0 in (SDP-FDIA) can
be constructed systematically using the Gram–Schmidt process
(as detailed in the proof of Theorem 3 in Appendix B).

D. Discussions of Theoretical Results

To analyze the vulnerability of ac-based SE against potential
FDIA, Section II-C formulates the adversarial problem as an
optimization that aims at finding a sparse and stealthy attack
vector to maliciously lead SE to make wrong determinations.
However, the formulated NC-FDIA is highly nonconvex and,
thus, computationally challenging to solve, conforming to the
common belief that such an attack is difficult to be carried out
without modifying a large number of measurements. Perhaps,
the most surprising result of this section is that a near-globally
optimal attack may be computed efficiently by solving the SDP
relaxation (SDP-FDIA). Throughout the analysis, the rank-1
condition on the auxiliary matrix Ŵ ∈ Hnb is needed to en-
sure that Ŵ = v̂v̂∗ for the problem (NC-FDIA-r) leading to a
stealthy attack, where the auxiliary variable Ŵ emerges in the
reformulation of (NC-FDIA) (see Lemma 2). The key technique
to induce a rank-1 solution without imposing the rank condition

is the introduction of the penalty term trace
(
M0Ŵ

)
, where

M0 can be chosen based on the target state vtg .
Furthermore, we have characterized the attackable region of

the ac-based FDIA, which is defined as the set of those states
that are the unique and optimal solution of (FDIA-SE) for some
stealth attack b. Specifically, we have shown that if a state
v is attackable, then all observable states that are close to v
are also attackable, since the intersection of the attackable re-
gion and the set of observable states is an open set (see The-
orem 2). Regarding the target state attack with the target state
vtg , the result of Theorem 3 suggests that vtg is attackable as
long as vtg is observable for the given set of measurements.
In a special case where the measurements only include branch
power flows and nodal voltage magnitudes, any observable state
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satisfying conditions (8a) and (8b) is attackable (see Theorem
4). In addition, to quantify the suboptimality of the attack solved
by (SDP-FDIA), the difference between the SDP solution and
the oracle solution of (NC-FDIA) is bounded in Theorem 5.
The bounds depend on how many measurements the adversary
needs to modify (i.e., the sparsity of the attack).

The above-mentioned theoretical analysis is based on some
key assumptions. Assumption 1 depicts a worst-case scenario
where the adversary can access information about the grid topol-
ogy and measurement values, though the ability to modify sen-
sor values can be limited in terms of the number and locations
of the sensors to manipulate. Because of the sparsity inducing
l1-penalty on the attack b, the spurious state v̂ obtained from
(SDP-FDIA) can be different from the target state vtg . In this
regard, Assumption 2b requires v̂ to be close to vtg , which is
valid in the experiments and is a mild condition because the op-
timization minimizes the distance term ‖v̂ − vtg‖2

2 . The main
message of the developed theoretical results is that even though
a globally optimal solution of ac-based FDIA is hard to obtain,
a stealthy and sparse attack that is near-globally optimal may
be found efficiently. This is validated experimentally in Sec-
tion IV. Last but not the least, NC-FDIA is a static problem
that considers a snapshot of the measurements for SE. This is
mainly because a static SE problem is often solved in practice
(partly because voltage phases could change abruptly from one
time period to another). In the case where the operator solves
a dynamic SE, the attacker can plan a strategy accordingly by
manipulating the time-stamped data. This can be performed by
solving a larger problem that considers multiple time steps, with
a penalty for the smoothness of spurious state changes. While
such an attack has been studied for linear time-invariant sys-
tems [46], the results of this paper could be adopted to study
nonlinear attacks for dynamical systems. This extension is left
as future work.

IV. EXPERIMENTS

This section numerically studies the vulnerability of power
system ac-based SE under FDIA. More specifically, the objec-
tive is to validate whether the solution of (SDP-FDIA) is sparse
and stealthy.

We first study the 30-bus system provided in MATPOWER
[35] (see Fig. 4). The states of this system are randomly ini-
tialized with voltage magnitudes uniformly distributed over
[0.98, 1.02] and voltage angles uniformly distributed over
[−15◦, 15◦]. We consider a comprehensive measurement port-
folio, which includes nodal voltage magnitudes, power injec-
tions, and branch real/reactive power flows. To streamline the
presentation, we will focus on the target state attack, i.e.,
h(ṽ) = ‖ṽ − vtg‖2

2 , where the entries of the target vtg have
been deliberately chosen to have low magnitudes (around 0.9),
and phases identical to their counterparts in the true state. This
would often trigger misguided contingency response, in an at-
tempt to recover from the voltage sag [47]. Throughout the
experiments, we assume that the sensor noise is Gaussian dis-
tributed with zero mean and a standard deviation of 1% of the
measurement value.

Fig. 4. IEEE 30-bus test case [35].

TABLE I
SIMULATION EXPERIMENTS, LISTS OF THE REGULARIZATION PARAMETERS α

AND ε, THE RANK OF Ẑ, AND THE CARDINALITY OF b̂, AS WELL AS THE
UPPER BOUND GIVEN BY [26]

∗ The attacked bus numbers are identical to the MATPOWER description.
† The 6-bus system is described in Fig. 3.

An FDIA injection is obtained in Fig. 5 by solving (SDP-
FDIA) with parameters listed in Table I. There are 222 mea-
surements in total, which are organized in Fig. 5(a) by voltage
magnitudes (indices 1–5), nodal real and reactive power injec-
tions (indices 5–58), branch real power flows (indices 58–140),
and branch reactive power flows (indices 140–222). The FDIA
injections for nodal measurements and branch measurements
are also shown in Fig. 5. It can be observed that the injection
values are relatively sparse, especially for real power flows over
branches [indices 1–82 in Fig. 5(c)]. This is due to the fact that
they depend mainly on the phase differences between buses,
but the target voltages have identical phases as the true state.
The geographic locations of the attacked sensors include the
locations of buses under attack (buses 12, 14, and 15) and the
locations of the adjacent power lines, as confined within the
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Fig. 5. There are 222 measurements in total, which are organized as follows. (a) By voltage magnitudes (indices 1–5), nodal real and reactive
power injections (indices 5–58), branch real power flows (indices 58–140), and branch reactive power flows (indices 140–222). (b) FDIA injections
for nodal measurements, where indices 1–5 and 5–58 correspond to voltage magnitudes and bus injections, respectively. (c) FDIA injections for
branch measurements, where indices 1–82 and 82–164 correspond to real power flows and reactive power flows, respectively.

Fig. 6. This plot shows the spurious values against the original values
for all the measurements. The identity relation y = x is illustrated by
the dotted line. It can be observed that, given the presence of innate
sensor noise, the spurious values are almost identical to the original
measurements.

superset used to calculate the upper bound [26]. In addition, the
spurious measurements against the original values are depicted
in Fig. 6. Given the presence of innate sensor noise, it is difficult
to identify the attack on the raw measurement values by obser-
vation. In other words, the attack is “hidden” among the sensor
noises.

Assume that the FDIA visualized in Fig. 5 is successfully
implemented by the adversary on the set of measurements, and
then the system operator solves the SE problem using either the
Gauss–Newton algorithm implemented in MATPOWER (note
that the attack is SE-algorithm-agnostic) or the robust SE algo-
rithm based on least-absolute value reported in [4]. The spurious
states obtained by both the Gauss–Newton algorithm and the
least-absolute-value algorithm are very close to the solved tar-
get state ṽ in (SDP-FDIA), since the construction of the attack
in (SDP-FDIA) is SE-algorithm-agnostic. Fig. 7 shows the volt-
age magnitudes and phases of the solution of the least-absolute-
value algorithm against the true states. Even though the system
operates in a normal state with magnitudes in the prescribed
interval [0.98, 1.02], FDIA “tricks” the operator to believe in
a potential voltage sag where some of the voltage magnitudes
are outside of the above interval (green area in Fig. 7). Conse-
quently, the operator may take harmful contingency actions. It

is worthwhile to note that since the phases of the designed target
states vtg are identical to those of the true states by design, the
spurious states estimated by the operator change insignificantly
in phases, as shown in the right plot of Fig. 7.

To examine the effect of the regularization parameter α on
the solution sparsity, we have run ten independent experiments
with random sensor noise values and plotted the cardinality of
b̂ with respect to α, as shown in Fig. 8. While the absence of
‖ · ‖1 penalty (i.e., α = 0) results in a dense solution, as α in-
creases, the attack x̂a becomes significantly sparser compared
to the upper bound provided by [26]. However, as α continu-
ously increase, since the attack becomes sparser, its effect on
SE reduces. This fact is reflected in the performance bounds in
Theorem 5.

As for the choice of M0 , we set M0 = −I + εvtgv∗
tg + L0 ,

for a matrix L0 ∈ Rnb ×nb that satisfies the following properties:
1) L0 � 0;
2) 0 is a simple eigenvalue of L0 ;
3) the vector vtg belongs to the null space of L0 (outlined

in the proof of Theorem 3).
The matrix L0 is obtained via the standard Gram–Schmidt

procedure by starting with the target vtg . For the choice of ε, the
proof of Theorem 3 (see Appendix B) provides a guideline to
use the equation ε = 1

v∗
t g v̂ ; while v̂ cannot be known a priori, it

is desirable to be close to v∗
tg . Therefore, for the 30-bus system,

a value of ε that leads to a rank-1 solution is close to 1/30 ≈
0.033. In addition, the algorithm has been tested on several other
power systems, with parameters listed in Table I. We employ the
robust SE based on least absolute values, and use the residual
errors for BDD. According to the results, the constructed FDIA
attack can always evade BDD detection with ε close to 1/nb .
Indeed, the measurement residuals are all on the order of 0.001,
which are much lower than the BDD detection threshold. As for
the sparsity, we have found that the cardinality Card(b̂) is lower
than the upper bound by [26] at the obtained scale of attack.

As the analysis shows, by having access to the sensor mea-
surements, the adversary can solve (SDP-FDIA) to obtain a
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Fig. 7. These plots depict the voltage magnitude (left) and voltage phases (right) of the spurious SE against the true state, where the estimation
is given by robust SE based on least absolute values. In both plots, the dotted line indicates the y = x relationship. For the magnitude plot, the
green region specifies the normal operating interval [0.98, 1.02]. Observe that some spurious voltage magnitudes fall out of this prescribed operating
region, while all of the spurious states have almost the same phases as their counterparts in the true states, due to the specifications by the FDIA
target voltage vector.

Fig. 8. This plot shows the cardinality of the solution b̂ with respect
to α. The upper bound is derived according to [26]. Ten independent
experiments were performed to obtain the mean (red line) and min/max
(shaded region).

sparse attack vector. To thwart FDIA, a set of security sen-
sors may need to be placed at locations under potential attack
as indicated by b̂ of (SDP-FDIA). For any power system, the
cardinality of a potential FDIA stealth attack can be used to
indicate the vulnerability of the system against potential cyber
threat [13].

V. CONCLUSION

This study analyzes the vulnerability of power system ac-
based SE against a critical class of cyber attacks known as FDIA.
Since constructing an FDIA against ac-based SE requires solv-
ing a highly nonconvex problem, it is often believed that such
attacks could be easily detected. However, this study shows that
a near-globally optimal stealth attack can be found efficiently for
a general scenario through a novel convexification framework
based on SDP, where the measurement set could include nodal
voltage magnitudes, real and reactive power injections at buses,
and power flows over branches. This study further analyzes the
“attackable region” and derives performance bounds for a given
set of measurement types and grid topology, where an attacker
can plan an attack in polynomial time with limited resources.

For protection purposes, the results can be used to under-
stand the mechanism of FDIA on ac-based SE in order to design
new BDD procedures. In addition, the outcome of anticipating
such an attack can be used to evaluate the security of a given
system. Above all, the proposed convexification method and its
associated theoretical analysis can be applied to other noncon-
vex problems in power systems and beyond where the solution

requires sparsity and rank conditions. This paper provides a de-
tailed analysis on the design of a rank penalty function as well
as bounds on the sparsity of the optimal solution.

APPENDIX A
PROOF OF THEOREM 1 AND LEMMA 2

A. Proof of Theorem 1

First, we prove that the equation rank(Ŵ) = 1 implies that
Ŵ = a2 v̂v̂∗, for some a such that |a| ≥ 1. Since [ 1

v̂
v̂∗

Ŵ ] � 0,
by Schur complement, we have Ŵ � 0, and Ŵ − v̂v̂∗ �
0. Due to rank(Ŵ) = 1, we can express Ŵ = ww∗. Since
ww∗ − v̂v̂∗ � 0, one can write w = av̂, where |a| ≥ 1 (oth-
erwise, there exists a vector ν ∈ Cnb such that ν∗w = 0, but
ν∗v̂ �= 0 and ν∗ (ww∗ − v̂v̂∗) ν = −|ν∗v̂|2 < 0, which vio-
lates the PSD condition).

Now, we show by contradiction that the equation Ŵ = v̂v̂∗

holds at optimality. Assume that (v̂,Ŵ = â2 v̂v̂∗, b̂) is an opti-
mal solution of (NC-FDIA-c) and that â > 1 (the case â < −1 is
similar). It is obvious that (âv̂,Ŵ = â2 v̂v̂∗, b̂) is also feasible.
This gives rise to the relation

h̄(v̂, â2 v̂v̂∗) = trace
(
â2 v̂v̂∗) − (ṽ∗vtg + v∗

tg ṽ)

> trace
(
â2 v̂v̂∗) − â(ṽ∗vtg + v∗

tg ṽ)

= h̄(âv̂, â2 v̂v̂∗)

where the inequality follows from Assumption 2a. This contra-
dicts the optimality of (v̂,Ŵ = â2 v̂v̂∗, b̂). Therefore, we must
have â = 1, implying that Ŵ = v̂v̂∗.

Recall that (NC-FDIA-c) provides a lower bound for (NC-
FDIA-r), which is a reformulation of (NC-FDIA). Therefore,
since (v̂,Ŵ = v̂v̂∗, b̂) is feasible for (NC-FDIA-r), it is opti-
mal for (NC-FDIA).

B. Proof of Lemma 2

Let (v̂,Ŵ, b̂) denote an optimal solution of (SDP-FDIA).
If rank(Ŵ) = 1, then using a similar reasoning as in the proof
for Theorem 1, we have Ŵ = a2 v̂v̂∗ for every |a| ≥ 1 due to
the PSD constraint. Now, we show by contradiction that the
relation Ŵ = v̂v̂∗ holds at optimality. Let (v̂,Ŵ = â2 v̂v̂∗, b̂)
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be an optimal solution of (SDP-FDIA), and â > 1 (the case
â < −1 is similar). It is obvious that (âv̂,Ŵ = â2 v̂v̂∗, b̂) is
also feasible. For a fixed b̂, this gives rise to the relation

h̄(v̂, â2 v̂v̂∗) + â2 trace(M0 v̂v̂∗)

= trace
(
â2 v̂v̂∗) − (ṽ∗vtg + v∗

tg ṽ) + â2 trace(M0 v̂v̂∗)

> trace
(
â2 v̂v̂∗) − â(ṽ∗vtg + v∗

tg ṽ) + â2 trace(M0 v̂v̂∗)

= h̄(âv̂, â2 v̂v̂∗) + â2 trace(M0 v̂v̂∗)

where the inequality follows from Assumption 2b. This contra-
dicts the optimality of (v̂,Ŵ = â2 v̂v̂∗, b̂). Therefore, we must
have â = 1, implying that Ŵ = v̂v̂∗. Moreover, since

fi(v̂) = trace (Mi v̂v̂∗) = trace
(
MiŴ

)
= mi + b̂i = fi(v) + b̂i ∀i ∈ [nm ]

the stealth condition is satisfied, implying that b̂ is stealthy.

APPENDIX B
PROOF OF THEOREMS 2 AND 3

In the case of h̄(ṽ,W) = trace (W) − ṽ∗vtg − v∗
tg ṽ, the

dual of (FDIA-SE) can be written as

min
ξ∈Rn m ,q0 ∈R

ξ · (m + b)

s. t.

[
q0 −v∗

tg

−vtg I + M0 +
∑

i ξiMi

]
� 0

where ξ is the vector of dual variables. The complementary
slackness condition is given by[

q0 −v∗
tg

−vtg I + M0 +
∑

i ξiMi

][
1 ṽ∗

ṽ W

]

=

[
q0 − v∗

tg ṽ q0 ṽ∗ − v∗
tgW

−vtg + Q0 ṽ −vtg ṽ∗ + Q0W

]
= 0. (9)

Let (v̂,Ŵ) be an optimal solution of (FDIA-SE) and (q̂0 , ξ̂) be
a dual optimal solution. It follows from the above-mentioned
equation that q̂0 = v∗

tg v̂. By defining

Q0 = I + M0 +
∑

i

ξiMi (10a)

L0 = − 1
q̂0

vtgv∗
tg + I + M0 (10b)

H(ξ) = L0 +
∑

i

ξiMi (10c)

and using the Schur complement, the dual problem can be re-
formulated as

min
ξ∈Rn m

ξ · (m + b)

s. t. H(ξ) = L0 +
∑

i

ξiMi � 0. (FDIA-SE-d)

The following lemma proves strong duality between (FDIA-SE)
and its dual formulation.

Lemma 5: Suppose that there exists a vector v ∈ V(M) that
is feasible for (FDIA-SE). Then, strong duality holds between
(FDIA-SE) and its dual formulation (FDIA-SE-d).

Proof: To prove the lemma, it suffices to find a strictly fea-
sible point for the dual problem. Since there exists a vector
v ∈ V(M) that is feasible for (FDIA-SE), we have J(v)v �= 0
due to the full rank property of J(v). Therefore, there exists
an index i ∈ [nm ] such that v∗Miv �= 0. Let {d1 , . . . ,dnm

}
denote the standard basis vectors in Rnm . Then, we can select
ξ̂ = ξ + δ × di for any feasible dual vector ξ, where δ ∈ R is
a nonzero number with an arbitrarily small absolute value such
that δ × v∗Miv > 0. Therefore, one can write

H(ξ̂) = L0 +
∑

i

ξ̂iMi = H(ξ) + cMi � 0 (11)

if c is sufficiently small. Hence, ξ̂ is a strictly feasible dual point
and, by Slater’s condition, strong duality holds. �

Definition 6: Define Ω(L0 ,v) as a set of dual variables such
that

J(v)	ξ = −2L0v (12)

for every ξ ∈ Ω(L0 ,v), where J(v) ∈ Rnm ×(2nb −1) is the Ja-
cobian matrix in (5).

Since H(ξ) = L0 +
∑

i ξiMi , we have

H(ξ)v = L0v +
∑

i

ξiMiv = L0v + 1
2 J(v)	ξ = 0

for all ξ ∈ Ω(L0 ,v), which indicates that v lies in the null space
of H(ξ) ∈ Snb for every ξ ∈ Ω(L0 ,v).

Lemma 6: For every v ∈ V(M) and nm ≥ 2nb − 1, there is
a vector ξ ∈ Rnm such that (12) is satisfied. Therefore, Ω(L0 ,v)
is nonempty for every observable state vector v.

Proof: Since v ∈ V(M) is observable, J(v) has full col-
umn rank. This implies that, for every L0 , as long as the num-
ber of rows of J(v), namely nm , is greater than or equal to
the number of columns, namely 2nb − 1, there is a vector ξ
satisfying (12). �

A. Proof of Theorem 2

Define κ(H(ξ)) as the sum of the two smallest eigenvalues
of the Hermitian matrix H(ξ) ∈ Snb . It can be shown that the
intersection of the attackable region and observable set, i.e.,
A(M, ρ) ∩ V(M), can be represented as

{v ∈ V(M)|κ(H(ξ)) > 0, ξ ∈ Ω(L0 ,v)}.

Now, consider a vector v in {v ∈ V(M)|κ(H(ξ)) > 0, ξ ∈
Ω(L0 ,v)}, and let δ denote the second smallest eigenvalue
of H(M, ξ). Due to the continuity of the mapping from a state
v to a set Ω(L0 ,v), there exists a neighborhood T ∈ Cnb such
that there exists a ξt ∈ Ω(L0 ,vt) with the following property:

‖H(ξ) − H(ξt)‖F <
√

δ (13)

for every vt ∈ V(M) ∩ T (note that ‖.‖F represents
the Frobenius norm). Using an eigenvalue perturbation
argument ([48, Lemma 5]), it can be concluded that
H(ξt) � 0 and rank(H(ξt)) = nb − 1, which imply that
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κ(H(ξt)) > 0 and vt ∈ {v ∈ V(M)|κ(H(ξ)) > 0, ξ ∈
Ω(L0 ,v)}. Hence, A(M, ρ) ∩ V(M) is an open set.

B. Proof of Theorem 3

Let M0 be chosen as M0 = −I + εvtgv∗
tg + L0 , for some

ε > 0 and a matrix L0 ∈ Rnb ×nb satisfying the following
properties:

1) L0 � 0;
2) 0 is a simple eigenvalue of L0 ;
3) the vector vtg belongs to the null space of L0 .

By construction, rank(L0) = nb − 1. Let ρ = ‖M0‖2 de-
fined above. Note that ξ = 0 is a feasible dual point since
H(0) = L0 � 0. It can be shown that the pair of primal so-
lution (ṽ = vtg ,W = vtgv∗

tg ) is optimal for (FDIA-SE) since
it satisfies the karush-kuhn-tucker (KKT) conditions [i.e ., the
primal-dual feasibility and complementary slackness (9)].

It is desirable to show that the optimal solution (ṽ =
vtg ,W = vtgv∗

tg ) is unique. Due to the complementary slack-
ness condition (9), it follows that H(0)W = L0W = 0. We
have shown that ξ = 0 is a feasible dual solution, and it is
optimal since the sufficient optimality conditions are satisfied
(see, e.g., [49, Ch. 5]). The rank-1 condition for W follows
from the equation rank(H(0)) = rank(L0) = nb − 1 (since this
together with H(0)W = 0 implies that W lies in the null
space of H(ξ̂), which is at most rank 1). Moreover, because
of the equation H(0)vtg = L0vtg = 0, the matrix W must be
in the form of ξvtgv∗

tg , where ξ is a nonzero constant. Us-
ing the result of Lemma 2, we can establish that ξ = 1, and
that (ṽ = vtg ,W = vtgv∗

tg ) is the unique optimal solution. By
Definition 3, this means that vtg ∈ A(M, ρ) is attackable.

APPENDIX C
PROOF OF LEMMA 3

For any two attacks b1 and b2 , let the optimal states be
denoted as (v̂(1) ,Ŵ(1)) and (v̂(2) ,Ŵ(2)). For every number
λ ∈ [0, 1], the point (λv̂ + (1 − λ)v̂(2) , λŴ + (1 − λ)Ŵ(2))
is a feasible solution for the attack λb1 + (1 − λ)b2

g(λb1 + (1 − λ)b2) ≤ λg(b1) + (1 − λ)g(b2)

which proves the convexity. In what follows, in addition to
proving the continuity of g(b), we will derive a bound on the
subgradient of g(b), which is used in Theorem 5. The method
is an extension of [44] to the primal formulation. In particu-
lar, our analysis is a type of parametric programming, which
characterizes the change of the solution with respect to small
perturbations of the parameters (see [44, Ch. 4]). Consider a
disturbance γ to the vector b ∈ Rnm in (FDIA-SE) along the
direction b. The primal problem changes as

min
ṽ ,W

h̄(ṽ,W) + trace (M0W)

s. t. trace (MiW) = mi + bi + γbi[
1 ṽ∗

ṽ W

]
� 0 (Pγ )

and its dual formulation is given by

min
ξ,q0

ξ · (m + b + γb)

s. t.

[
q0 −v∗

tg

−vtg I + M0 +
∑

i ξiMi

]
� 0 (dγ )

Let Γ be the set of all vectors γ for which (Dγ ) has a bounded
solution and is strictly feasible. Assume that 0 ∈ Γ. It is straight-
forward to verify that Γ is a closed (and possibly unbounded)
interval. Due to duality, (Pγ ) is feasible and has a bounded
solution for every γ ∈ Γ, and the duality gap is zero.

LetFγ denote the feasible set of (Dγ ), b(γ) = m + b + γb,
and ξ(γ) ∈ {ξγ : ξγ = arg min{ξγ · b(γ), ξγ ∈ Fγ}. More-
over, let φ(γ;b,b) = ξ(γ) · b(γ) be the optimal value function.
Obviously, we have φ(0;b,b) = g(b) by the Slater’s condition,
and φ(γ;b,b) is concave in γ. We will use the shorthand nota-
tion φ(γ) henceforth.

Next, we derive the subdifferential of φ(γ), which is equiv-
alent to ∂g(b) when γ = 0 and b is one of the canonical basis
in Rnm . For any γ ∈ int Γ, choose dγ small enough such that
the point ξ(γ + dγ) lies in a compact set. Let ξ+(γ) and ξ−(γ)
denote the limit as dγ → +0 and −0, respectively.

Lemma 7: The equations

lim
dγ→+0

b(γ) · (ξ(γ + dγ) − ξ+(γ))
dγ

= 0

lim
dγ→−0

b(γ) · (ξ(γ + dγ) − ξ−(γ))
dγ

= 0

hold for every γ ∈ int Γ.
Proof: It is straightforward to verify that ξ+(γ) is an optimal

solution of (Dγ ). Assume that

lim
dγ→+0

b(γ) · (ξ(γ + dγ) − ξ+(γ))
dγ

≥ ε > 0.

There exists a sequence {dγk} → +0 such that

b(γ + dγk ) · ξ(γ + dγk )

≥ b(γ+dγk)·ξ+(γ)+εdγk+dγkb·(ξ(γ+dγk)−ξ+(γ))o(dγk )

> b(γ + dγk ) · ξ+(γ)

if dγk is sufficiently small. This contradicts the optimality of
ξ(γ + dγk ) for (Dγ+dγk

). Similarly, assume that

lim
dγ→+0

b(γ) · (ξ(γ + dγ) − ξ+(γ))
dγ

≤ ε < 0.

Then, there exists {dγk} → +0 such that

b(γ) · ξ(γ + dγk ) ≤ b(γ) · ξ+(γ) + εdγk + o(dγk )

< b(γ) · ξ+(γ)

which contradicts that ξ+(γ) is optimal for (Dγ ). A similar
argument can be made in the case where dγ → −0. �

We now derive the directional derivative of φ(γ).
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Lemma 8: The equations

lim
dγ→+0

φ(γ + dγ) − φ(γ)
dγ

= ξ+(γ) · b

lim
dγ→−0

φ(γ + dγ) − φ(γ)
dγ

= ξ−(γ) · b

holds for every γ ∈ int Γ.
Proof: Since b(γ) · ξ(γ) = b(γ) · ξ+(γ) = b(γ) · ξ−(γ),

it follows from Lemma 7 that

lim
dγ→+0

φ(γ + dγ) − φ(γ)
dγ

= lim
dγ→+0

ξ(γ + dγ) · b(γ + dγ) − ξ(γ) · b(γ)
dγ

= lim
dγ→+0

ξ(γ + dγ) · b +
b(γ) · (ξ(γ + dγ) − ξ(γ))

dγ

= ξ+(γ) · b.

The proof for the case dγ → −0 is similar. �
Notice that φ(γ) is continuously differentiable at γ if and only

if b · ξ+(γ) = b · ξ−(γ), which occurs either when (Dγ ) has a
unique solution or any feasible direction of the optimal face is
orthogonal to b. To wrap up this section, we state the following
lemma to bound the subdifferential ∂g(b).

Lemma 9: Let [ξ+(0)]i and [ξ−(0)]i denote the ith entry
of ξ(dγ) as dγ → +0 and −0 along the direction of the ith
canonical basis in Rnm . For every attack b, assume that 0 ∈ Γ.
The subdifferential of g(b) is bounded element-wise as

[ξ+(0)]i ≤ [∂g(b)]i ≤ [ξ−(0)]i ∀i ∈ [nm ].

Proof: The proof follows from the strong duality between
(Pγ ) and (Dγ ) at γ = 0, the concavity of φ(γ), and [50, Th.
24.1] on the monotonicity of subdifferential. �

APPENDIX D
PROOFS OF THEOREMS 4 AND 5

A. Proof of Theorem 4

For every v̂ ∈ V(M) ∩R(Y), we show that by choosing
b = f(v̂) − m where fi(v̂) is given in (1), the unique optimal
solution of (FDIA-SE) is given by (v̂,Ŵ = v̂v̂∗); hence, v̂ ∈
A(M, ρ) is attackable for some ρ defined below. We adopt the
argument made in [4]. Let M0 in (SDP-FDIA) be given by the
formula

M0 = −I + εvtgv∗
tg +

∑
l∈L

M̃(l)
pf +

∑
l∈L

M̃(l)
pt (14)

where ε > 0 is a constant parameter, and M̃(l)
pf and M̃(l)

pt are
arbitrary matrices in Hnb . For every (s, t) ∈ [nb ] × [nb ], assume
that the (s, t) entries of M̃(l)

pf and M̃(l)
pt are equal to zero if

(s, t) �∈ L and otherwise satisfy the following inequalities:

−π ≤ ∠yst − ∠M̃
(l)
pf ,st ≤ 0 (15a)

π ≤ ∠yst + ∠M̃
(l)
pt,st ≤ 2π. (15b)

Choose ρ = M0 defined in (14) accordingly.

Let ξ ∈ Rnm and Q = [ q0
q

q∗

Q0
] ∈ Hnb +1 be the dual vari-

ables. By the KKT conditions for optimality, we have the fol-
lowing conditions:

1) the stationarity conditions: q = −vtg and Q0 = I +
M0 +

∑
i ξiMi ;

2) the dual feasibility condition: Q � 0; and
3) the complementary slackness condition: Q[ 1

v
v∗

W ] = 0.
Let H(ξ) = − 1

q0
vtgv∗

tg + Q0 and q0 = v∗
tgv. Based on 1)

and 3), we have H(ξ)W = 0. Due to 2) and Schur complement,
it is required that H(ξ) � 0.

By Slater’s condition, strong duality holds if one can construct
a strictly feasible dual solution ξ̂, which is optimal if KKT
conditions are satisfied. The rank-1 condition for W follows if
we can further show that rank(H(ξ̂)) = nb − 1 (since together
with H(ξ̂)W = 0, it implies that W lies in the null space of
H(ξ̂), which is at most rank 1).

For the three types of measurements considered in this paper,
the measurement matrices are as follows:

1) Mi = Ei for every i ∈ N (associated with voltage
magnitudes);

2) Mi+nb
= Y(l)

pf for every i ∈ L (associated with real
power flow from the bus); and

3) Mi+nb +nl
= Y(l)

pt for every i ∈ L (associated with real
power flow to the bus).

By denoting ξ̂ =
∑

l∈L ξ̂
(l)
pf +

∑
l∈L ξ̂

(l)
pt , we can write

H(ξ̂) =
∑
l∈L

H(l)
pf (ξ̂

(l)
pf ) +

∑
l∈L

H(l)
pt (ξ̂

(l)
pt )

where

H(l)
pf (ξ̂

(l)
pf ) = M̃(l)

pf + ξ̂
(l)
pf ,sEs + ξ̂

(l)
pf ,tEt + ξ̂

(l)
pf ,l+nb

Y(l)
pf

H(l)
pt (ξ̂

(l)
pt ) = M̃(l)

pt + ξ̂
(l)
pt,sEs + ξ̂

(l)
pt,tEt + ξ̂

(l)
pt,l+nl +nb

Y(l)
pt

and
∑

l∈L M̃(l)
pf +

∑
l∈L M̃(l)

pt = I + M0 − 1
q0

vtgv∗
tg . Define

ξ̂
(l)
pf in such a way that

ξ̂
(l)
pf ,l+nb

=−
2�

(
v̂s v̂

∗
t M̃

(l)∗
pf ,st

)
� (v̂s v̂∗

t y
∗
st)

, ξ̂
(l)
pf ,t =

|v̂s |2�
(
M̃

(l)∗
pf ,styst

)
� (v̂s v̂∗

t y
∗
st)

ξ̂
(l)
pf ,s =

|v̂t |2
|v̂s |2

ξ̂
(l)
pf ,t + �(yst)ξ̂

(l)
pf ,l+nb

(16)

and ξ̂
(l)
pt such that

ξ̂
(l)
pt,l+nb +nl

=−
2�

(
v̂s v̂

∗
t M̃

(l)∗
pt,st

)
� (v̂s v̂∗

t yst)
, ξ̂

(l)
pt,t =−

|vs |2�
(
M̃

(l)
pt,styst

)
� (v̂s v̂∗

t yst)

ξ̂
(l)
pt,s =

|v̂t |2
|v̂s |2

ξ̂
(l)
pt,t + �(yst)ξ̂

(l)
pt,l+nb +nl

(17)

where v̂ is an optimal solution of the primal problem (FDIA-
SE). It can be verified that H(l)

pf v̂ = 0, H(l)
pt v̂ = 0, H(l)

pf � 0
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and H(l)
pt � 0, as long as:

−π ≤ ∠v̂s − ∠v̂t − ∠yst ≤ 0 (18a)

0 ≤ ∠v̂s − ∠v̂t + ∠yst ≤ π (18b)

−π ≤ ∠yst − ∠M̃
(l)
pf ,st ≤ 0 (18c)

π ≤ ∠yst + ∠M̃
(l)
pt,st ≤ 2π. (18d)

The inequalities (18a) and (18b) are satisfied since v̂ ∈
R(Y). The inequalities (18c) and (18d) require that M̃

(l)
pf ,st

and M̃
(l)
pt,st to lie in the second or third quadrants of the complex

plane, which is satisfied by the design in (15a) and (15b).
Our next goal is to show that rank(H(ξ̂)) = nb − 1, or equiv-

alently, dim(null(H(ξ̂))) = 1. For every x ∈ null(H(ξ̂)), since
H(l)

pf � 0 and H(l)
pt � 0, we have H(l)

pf x = H(l)
pt x = 0. By the

construction of (16) and (17), for every line l with the endpoints
s and t, it holds that xs

v̂s
= xt

v̂t
. This reasoning can be applied

to another line l′ : (t, a) to obtain xt

v̂t
= xa

v̂a
. By repeating the

argument over a connected spanning graph of the network, one
can obtain

xs

v̂s
=

xt

v̂t
=

xa

v̂a
= · · · = c (19)

which indicates that x = γv̂. As a result, dim(null(H(ξ̂))) = 1
and rank(H(ξ̂)) = nb − 1. By the complementary slackness
condition, it can be concluded that rank(Ŵ) = 1. By Lemma 2,
we have Ŵ = v̂v̂∗. We also know that b is stealthy since
trace (v̂∗Mi v̂) = mi + bi, ∀i ∈ [nm ] by choice.

B. Proof of Theorem 5

In what follows, we will derive performance bounds for x̂
compared to b� . By the definition of g(b) in (FDIA-SE), we
can rewrite (SDP-FDIA) only in terms of b as

max
b

g(b) + α‖b‖1 . (P4)

Define r(Δ) = g(b� +Δ)−g(b�)+α(‖b� +Δ‖1 − ‖b�‖1)
and Δ̂ = b̂ − b� . The separability of the l1-norm yields that

‖b� + Δ̂‖1 ≥ ‖b�
B + Δ̂Bc ‖1 − ‖b�

Bc + Δ̂B‖1

= ‖b�
B‖1 + ‖Δ̂Bc ‖1 − ‖Δ̂B‖1

= ‖b�‖1 + ‖Δ̂Bc ‖1 − ‖Δ̂B‖1 .

Together with r(Δ̂) ≤ 0 that results from the optimality of b̂,
we have proved the upper bound. For the lower bound, one can
write

g(b̂) − g(b�) ≥ 〈∂g(b�), Δ̂〉 ≥ −|〈∂g(b�), Δ̂〉| (20a)

≥ −‖∂g(b�)‖∞‖Δ̂‖1 (20b)

≥ −α

2

(
‖Δ̂B‖1 + ‖Δ̂Bc ‖1

)
(20c)

≥ −2α‖Δ̂B‖1 (20d)

where (20a) is due to the convexity of g(b) (Lemma 3), (20b)
is by Hölder’s inequality, (20c) is due to the assumption of α,
and (20d) is due to Lemma 4 (see Lemma 1 and [45]).
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