
1949-3053 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2017.2720761, IEEE
Transactions on Smart Grid

1

Distributed Optimal Dispatch of Distributed Energy
Resources over Lossy Communication Networks

Junfeng Wu, Tao Yang, Member, IEEE, Di Wu, Member, IEEE, Karanjit Kalsi, Member, IEEE, and
Karl H. Johansson, Fellow, IEEE

Abstract—Driven by smart grid technologies, a great effort has
been made in developing distributed energy resources (DERs) in
recent years for improving reliability and efficiency of distri-
bution systems. Emerging DERs require effective and efficient
control and coordination in order to harvest their potential
benefits. In this paper, we consider optimal DER coordination
problem, where the goal is to minimize the total generation cost
while meeting total demand and satisfying individual genera-
tor output limit. This paper develops a distributed algorithm
for solving the optimal DER coordination problem over lossy
communication networks with packet-dropping communication
links. Under the assumption that the underlying communication
network is strongly connected with a positive probability and the
packet drops are independent and identically distributed (i.i.d.),
we show that the proposed algorithm is able to solve the optimal
DER coordination problem even in the presence of packet drops.
Numerical simulation results are used to validate and illustrate
the proposed algorithm.

Index Terms—Distributed algorithms; Optimal DER coordi-
nation; Packet drops; Power systems; Smart grids.

I. INTRODUCTION

IN the past decades, power systems have been undergoing
a transition from a system with conventional generation

power plants and inflexible loads to a system with a large
numbers of distributed generators, energy storages, and flex-
ible loads, often referred to as distributed energy resources
(DERs) [1]. These resources are small and highly flexible
compared with conventional generators, and can be aggregated
to provide power necessary to meet the regular demand. As the
electricity grid continues to modernize, DER can help facilitate
the transition to a smarter grid.

In order to achieve an effective deployment among DERs,
one needs to properly design the coordination and control
among them. One approach is through a completely centralized
control strategy, where a single control center accesses the
entire network’s information and provides control signals to
the entire system. However, centralized approaches have a
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few drawbacks, such as a single point failure, high com-
munication requirement and computation burden, and limited
flexibility [2], [3].

To overcome these limitations, recently, by using the results
in the fields of distributed control and multi-agent systems
[4], [5], various distributed strategies have been proposed
for solving the DER coordination problem [6]–[13]. In these
distributed algorithms, each agent (generator) maintains a
local estimate of an optimal incremental cost, which is the
consensus variable, and updates it by exchanging information
with only a few neighboring agents. Based on the consensus
theory [4], [5], if the communication network is connected,
all these local estimates converge to an optimal increment
cost. The distributed algorithms for the DER coordination
problem are progressing with generalization of communication
networks, from fixed undirected networks to fixed directed
networks and time-varying networks. For undirected fixed
communication networks, the authors of [6] proposed a leader-
follower consensus-based algorithm where the leader collects
the mismatch between demand and generation. The authors of
[7] develop a leaderless algorithm, where in addition to the
consensus part, an innovation term is introduced to ensure the
balance between system generation and demand. For directed
fixed communication networks, the authors of [8] proposed a
distributed algorithm based on the ratio consensus algorithm,
and a consensus-based algorithm where agents collectively
learn the system imbalance was developed in [9]. To further
alleviate the communication burden, a distributed algorithm
based on the consensus and bisection method was proposed
in [11] and a minimum-time consensus-based algorithm was
developed in [12]. In all aforementioned references, the com-
munication network is assumed to be perfect with reliable
communication links. However, varying communication links
and communication time delays are ubiquitous in communi-
cation networks. Therefore, recent studies have been devoted
to developing distributed algorithms for the DER coordination
problem over communication networks which may be subject
to varying communication links and/or communication time
delays. The authors of [14] proposed a distributed algorithm
based on nonnegative-surplus [15] to solve the DER coor-
dination problem over time-varying directed communication
networks but without time delays. To handle the case where
networks are subject to both time-varying topologies and
communication time delays, the authors of [16] developed
a distributed algorithm based on the push-sum and gradient
method [17].

In this paper, we consider the case where the communi-
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cation networks may be subject to unreliable communication
links, which is common in communication networks. Here the
reliability of communication links is treated as packet drops.
Although time-varying communication networks may be used
to model packet drops, a more realistic modeling approach is
based on the probability framework, i.e., the communication
link fails with a certain probability. In such a probability
setting, the previously developed DER coordination algorithms
in [14], [16] for time-varying communication networks are not
able to handle packet drops. The main contribution of this
paper is to propose a robustified extension of the distributed
algorithm proposed in our earlier work [16] and show that
this robustified distributed algorithm is able to solve the DER
coordination problem over communication networks even in
the presence of packet drops.

While the motivation for this work is driven by power
system applications, the proposed framework is also useful
in addressing similar problems that arise in other networked
cyber-physical systems where the cyber communication net-
work is subject to packet-dropping links. In this regard,
our work is closely related to the literature of distributed
optimization [17]–[21]. In [17], a distributed algorithm based
on the push-sum and (sub)gradient method was developed
to solve the optimization problem over directed time-varying
communication networks. In [18], the authors proposed a
distributed algorithm to solve the optimization problem over
communication networks with packet drops, where packet
drops are modeled by time-varying graphs. In [19], [20],
the authors developed an extension of the ratio consensus
algorithm in which messages are encoded as running sums
and show that the extended algorithm is able to solve the
average consensus problem in the presence of packet drops,
i.e., average consensus is achieved almost surely. In contrast
to [19], [20], we aim to go beyond finding a feasible solution
(i.e., we include some optimization criteria in the problem
formulation) and try to solve the distributed optimization
problem even in the presence of unreliable communication
links with packet drops. To do so, we propose a distributed
algorithm by integrating our previously proposed algorithm in
[16] based on the push-sum and gradient method [17] without
packet-dropping links with the robustified strategy proposed
in [19], [20]. Notice that our work can also be viewed as a
robustified extension of the distributed algorithm developed
in [17]. A similar distributed optimization in the presence
of packet drops has also been considered in [21], where a
distributed algorithm based on the Newton-Raphson consensus
approach [22] and the robustified strategies in [19], [20] were
developed. Compared with [22] where the second derivative
of the local cost (objective) function was used, our proposed
algorithm only uses the gradient (first derivative) of the local
cost function and thus enjoys less computation burden.

The remainder of the paper is organized as follows: In Sec-
tion II, we introduce some preliminaries on graph theory, the
problem formulation for DER coordination, and our previously
proposed algorithm for solving the DER coordination problem
over networks without packet drops. Section III presents an
example that motivates our study. In Section IV, a distributed
algorithm based on our previous algorithm and a robustified

strategy is proposed to solve the DER coordination problem
over unreliable communication networks with packet-dropping
communication links. Case studies are presented in Section V
to illustrate and validate the proposed algorithm. Finally,
concluding remarks are offered in Section VI.

II. PRELIMINARY

This section first presents some background on graph theory
[23], which is needed to describe the communication network
among DERs. In addition, we formulate the DER coordination
problem and briefly summarize our previously developed dis-
tributed algorithm for communication networks with reliable
links [16].

A. Communication Network

In this paper, we assign each bus in the power system an
agent (node). Information exchanges among the agents occur
over a communication network, described by a directed graph
G := (V, E), where V = {1, 2, . . . , N} denotes the index set of
the agents with N being the number of agents and E ⊆ V ×V
denotes the set of communication links between some pairs
of the agents. In particular, (j, i) ∈ E if there exists a directed
communication link from agent i to agent j. For notational
convenience, we assume that (j, j) 6∈ E for all j ∈ V although
each agent has an access to its own information. A directed
path from node i1 to node ik is a sequence of nodes i1, . . . , ik
such that (ij+1, ij) ∈ E for j = 1, . . . , k − 1. If there exists
a directed path from node i to node j, then node j is said to
be reachable from node i. A directed graph G is said to be
strongly connected if every node is reachable from every other
node. Let N in

j and N out
j denote the in- and out-neighbors of

node j, respectively, i.e.,

N in
j = {i ∈ V | (j, i) ∈ E},

N out
j = {` ∈ V | (`, j) ∈ E},

and dout
j denotes the out-degree of node j, i.e., dout

j = |N out
j |.

To support information prorogation from one agent of the
network to another, we will make the following assumption
on graph connectivity.

Assumption 1. The graph G := (V, E) is strongly connected.
Each agent j knows its own out-degree dout

j .

B. Distributed Dispatch over Networks with Reliable Commu-
nication Links

The goal of the DER coordination problem is to minimize
the total generation cost while meeting total demand and
satisfying individual generator output limits, formulated as:

min
xi

N∑
i=1

Ci(xi) (1a)

subject to
N∑
i=1

xi = D, (1b)

xi ∈ Xi := [xmin
i , xmax

i ], i = 1, . . . , N, (1c)
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where xi is the power generation of agent i, Ci(·) : R+ →
R+ is the cost function of agent i, where R+ is the set of
non-negative real numbers, xmin

i and xmax
i are respectively

the lower and upper bounds of the power generation of agent
i, and D is the total demand satisfying

∑N
i=1 x

min
i ≤ D ≤∑N

i=1 x
max
i in order to ensure the feasibility of problem (1).

Compared to most studies where cost functions are assumed
to be quadratic, this paper considers general convex cost
functions that satisfy the following assumption.

Assumption 2. For each i ∈ {1, . . . , N}, the cost function
Ci(·) : R+ → R+ is strictly convex and continuously
differentiable.

Since i) each cost function Ci(·) is convex, ii) the constraint
(1b) is affine, and iii) the set X1 × · · · ×XN is a polyhedral
set, if we dualize problem (1) with respect to the constraint
(1b), there is zero duality gap. Moreover, the dual optimal
set is nonempty [24]. Consequently, solutions of the DER
coordination problem can be obtained by solving its dual
problem.

For convenience, let x := [x1, . . . , xN ]> ∈ RN+ . Then,
define the Lagrangian function

L(x, λ) =
N∑
i=1

Ci(xi)− λ

(
N∑
i=1

xi −D

)
.

The corresponding Lagrange dual problem is

max
λ∈R+

N∑
i=1

Ψi(λ) + λD, (2)

where
Ψi(λ) = min

xi∈Xi

Ci(xi)− λxi. (3)

Under Assumption 2, for any given λ ∈ R+, the right-hand
side of (3) has a unique minimizer given by

xi(λ) = projXi

(
∇C−1i (λ)

)
, (4)

where ∇C−1i denotes the inverse function of ∇Ci, which
exists over [∇Ci(xmin

i ),∇Ci(xmax
i )] since ∇Ci is contin-

uous and strictly increasing due to Assumption 2, and
projXi

(
∇C−1i (λ)

)
denotes the projection of ∇C−1i (λ) to the

set Xi, defined as

projXi

(
∇C−1i (λ)

)
= min{max{∇C−1i (λ), xmin

i }, xmax
i }.

Furthermore, there is at least one optimal solution to the dual
problem (2), and the unique optimal solution of the primal
DER coordination problem is given by

x∗i = xi(λ
∗), ∀i = 1, 2, . . . , N, (5)

where λ∗ is any dual optimal solution.
For any given λ ∈ R+, because of the uniqueness of xi(λ),

the dual function
∑N
i=1 Ψi(λ) +λD is differentiable at λ and

its gradient is given by −(
∑N
i=1 xi(λ)−D) [25]. We can then

apply the gradient method to solve the dual problem (2):

λ(t+ 1) = λ(t)− γ(t)

(
N∑
i=1

xi(λ(t))−D

)
, (6)

where λ(0) ∈ R can be arbitrarily assigned and γ(t) is the
step-size at time instant (step) t.

When designing a distributed algorithm based on (6),
the main challenge is how to obtain the global quantity∑N
i=1 xi(λ(t)) − D in a distributed manner. To do so, we

note that the dual problem (2) can be converted into

max
λ∈R+

N∑
i=1

Φi(λ), (7)

where
Φi(λ) = min

xi∈Xi

Ci(xi)− λ(xi −Di) , (8)

and Di is a virtual local demand at each bus such that∑N
i=1Di = D. Note that there is no physical meaning to Di’s.

The purpose of introducing these parameters is for designing
a distributed algorithm by applying the gradient method based
on the dual problem (7). The gradient of Φi(λ) is

∇Φi(λ) = − (xi(λ)−Di) . (9)

In our previous work [16], we have proposed a distributed
algorithm based on the push-sum and gradient method [17]
for solving the DER coordination problem over strongly
connected networks with reliable communication links. In the
proposed algorithm, each agent j maintains scalar variables
vj(t), wj(t), yj(t), λj(t), xj(t), where xj(t) and λj(t) are the
estimates of the optimal generation (primal optimal solution)
and the optimal incremental cost (dual optimal solution),
respectively. At each time step t, each agent j ∈ V updates
its variables through information exchanges with its neighbors
according to

wj(t+ 1) =
∑

i∈N in
j (t)∪{j}

vi(t)

douti + 1
, (10a)

yj(t+ 1) =
∑

i∈N in
j (t)∪{j}

yi(t)

douti + 1
, (10b)

λj(t+ 1) =
wj(t+ 1)

yj(t+ 1)
, (10c)

xj(t+ 1) = projXj

(
∇C−1j (λ)

)
, (10d)

vj(t+ 1) = wj(t+ 1)− γ(t+ 1)(xj(t+ 1)−Dj). (10e)

The step size γ(t+ 1) > 0 satisfies the following assumption.

Assumption 3. The sequence (γ(t))t∈N satisfies the following
conditions:

∞∑
t=1

γ(t) =∞,
∞∑
t=1

γ2(t) <∞, and

0 < γ(t) ≤ γ(s) for all t > s ≥ 0. (11)

The algorithm (10) is initialized at time instant t = 0, with
an arbitrary value to vj(0) at agent j and yj(0) = 1 for all
j ∈ V .

Remark 1. We compare the distributed algorithm (10) with
existing ones in the literature. According to (9), −(xj(t +
1) − Dj) in (10e) is the gradient of the function Φj(λ) at
λ = λj(t+ 1). Without (10d) and the gradient term in (10e),
the algorithm is reduced to a particular version of push-sum
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Fig. 1. IEEE five-bus power system.

TABLE I
GENERATOR PARAMETERS

Bus ai (kW2h) bi ($/kWh) ci ($/h) Range (kW)
1 0.00024 0.0267 0.38 [30,60]
2 0.00052 0.0152 0.65 [20,60]
3 0.00042 0.0185 0.4 [50,200]
4 0.00052 0.0152 0.65 [20,60]
5 0.00031 0.0297 0.3 [20,140]

algorithm [26], or ratio consensus algorithm [27], [28] for
computing the average of initial values in directed graphs. In
this case, all λj(t + 1) converge to the average of the initial
values. The inclusion of the gradient term in the update of
vj(t+1) is to ensure that all λj(t+1) converge to an optimal
incremental cost λ∗.

We are now ready to recall our previous result which states
that the proposed distributed algorithm (10) solves the optimal
dispatch problem for distributed energy resources over reliable
communication networks.

Lemma 1 ( [16] Theorem 1). Under Assumptions 1, 2
and 3, the distributed algorithm (10) solves the optimal DER
coordination problem, i.e., λi(t) → λ∗, and xi(t) → x∗i as
t→∞ for all i ∈ V .

The proof of Lemma 1 was motivated by [17] and was
carried out in two steps. The first step shows that λi(t + 1)
tracks the average v̄(t) = 1

N

∑N
i=1 vi(t) for t ≥ 0 increasingly

well as time goes on. The second step shows that the average
v̄(t) converges to an optimal incremental cost λ∗.

III. MOTIVATING EXAMPLE AND PROBLEM STATEMENT

In this section, we first present a motivating example for
this study. We consider the IEEE 5-bus system shown in
Fig. 1, where each bus is connected with a generator whose
cost function is quadratic, i.e., Ci(xi) = aix

2
i + bixi + ci.

The parameters of the generators including the parameters
of the quadratic cost functions are given in Table I. The
communication network is not necessarily the same as the
physical topology and is modeled by a fixed directed graph
depicted in Fig. 2.

Fig. 2. Directed communication network.
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Fig. 3. Results for networks with reliable communication links.

A. Perfect Communication Networks

We first consider the case where the communication network
is perfect with reliable communication links. The virtual local
demands at each bus are given as D1 = 40 kW, D2 = 30 kW,
D3 = 100 kW, D4 = 40 kW, and D5 = 90 kW. The total
demand is D =

∑5
i=1Di = 300 kW, which is unknown to the

agent at each bus. The simulation results of running distributed
algorithm (10) with step size γ(t) = 0.15

t are given in Fig. 3. It
is shown in Fig. 3a that all the estimates of the optimal incre-
mental cost converge to an optimal value λ∗ = 0.296 $/kWh.
As shown in Fig. 3b, the power outputs of the generators also
converge to their optimal values, which are x∗1 = 56.05 kW,
x∗2 = 26.975 kW, x∗3 = 50 kW, x∗4 = 26.975 kW, and
x∗5 = 140 kW, which agrees with the centralized solution. As
λi(t) and xi(t) converge to their optima, the total generation
meets the total demand D = 300 kW as shown in Fig. 3c.
These results are in consistence with the our previous result
[16, Theorem 1], recapped in Lemma 1.
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Fig. 4. Results for networks with packet-dropping communication links

B. Unreliable Communication Networks with Packet Drops

We next consider the effect to the proposed distributed al-
gorithm (10) when the communication networks are unreliable
with packet-dropping communication links. In particular, we
consider the case where each communication link (j, i) ∈ E
suffers a packet drop with the same probability qji = 0.1.
Since the packet drops are random, the iteration results at
each agent vary from one simulation to another. Nevertheless,
the proposed algorithm (10) always fails to converge. The
simulation results of a particular run are given in Fig. 4, which
shows that the algorithm fails to converge, and thus fails to
solve the DER coordination problem in the presence of packet-
dropping communication links.

To conclude, we find that the previously developed al-
gorithm (10) which solves the DER coordination problem
over networks with reliable links, however, fails for the case
when communication links are subject to packet drops. This
motivates us to propose a distributed algorithm for the DER
coordination problem over unreliable networks with packet-
dropping communication links.

To do so, let us first introduce a probabilistic modeling
approach for packet drops. For a fixed strongly connected
communication network G := (V, E), due to packet-dropping
communication, the existing communication link from agent
i to agent j, (j, i) ∈ E may randomly fail with some
nonzero probability. Let (Ω,F) denote the measurable space
generated by the intermittent communication over E . We use
an indicator variable rji(t;ω) : Ω → {0, 1} to denote if
the communication over (j, i) ∈ E is successful or not: let
rji(t;ω) = 1 if the information from agent i is received by

agent j at time t; otherwise let rji(t;ω) = 0. Notice that for
each link (j, i) ∈ E , rji(t;ω) can be defined accordingly at
time t. We let r(t;ω) be a random vector containing all random
variables of {rji(t;ω) : (j, i) ∈ E} in a fixed order and denote
pji(t) := E[rji(t)]. We make the following assumption on the
sequence (r(t))t∈N, where N = {0, 1, 2 . . .}.

Assumption 4. The binary random vectors r(0), r(1), . . . has
the following property:
(i). For any time t, any two elements rji(t) and rlk(t) of r(t)

are independent.
(ii). The link failure rate is strictly less than one, i.e., 1 −

pji(t) < 1.
(iii). The random vectors r(0), r(1), . . . are independently

and identically distributed (i.i.d.).

According to (ii) of Assumption 4, we can simplify the
notation of pji(t) by discarding the time index “t” into pji.
In particular, at any time instant t, for (j, i) ∈ E , let rji(t) be
indicator variables which take value rji(t) = 1 if the message
from agent i is received by agent j, otherwise rji(t) = 0. The
goal of this paper is to propose a distributed algorithm for the
DER coordination problem that is able to overcome packet
drops.

IV. MAIN RESULTS

To cope with the effects of unreliable communication net-
works to the distributed algorithms for DER coordination,
in this section, we present a robustified extension of the
distributed algorithm (10). We then show that this robustified
distributed algorithm is capable to solve the DER coordination
problem even in the presence of packet-dropping communica-
tion links as long as the underlying communication network
is strongly connected with a positive probability.

A. Resilient Distributed DER Coordination Algorithm against
Packet Drops

To propose a resilient DER coordination algorithm against
packet drops, we integrate the algorithm (10) with the running-
sum method proposed in [19], [20] for handling packet drops.
The proposed algorithm is given in Algorithm 1. Intuitively,
compared to the distributed algorithm (10), in Algorithm 1,
each agent j keeps track of certain additional variables,
includes them in the message it broadcasts, and uses them in
the update equations. In particular, besides variables wj(t+1),
yj(t + 1), λj(t + 1), xj(t + 1) and vj(t + 1), each agent
j at time instant t + 1 also maintains additional variables
σj(t+1) =

∑t
k=0

vj(k)
1+doutj

and ηj(t+1) =
∑t
k=0

yj(k)
1+dout

j
, which

are the running sums of vj and yj respectively, and ρji(t+ 1)
and υji(t+1) for i ∈ N in

j which keep track of the running sum
of vj and yj received at agent j from agent i. These variables
are updated according to Algorithm 1. Notice that each agent
j computes the running sums σj(t+1) and ηj(t+1) according
to (12) and sends them to all its outgoing neighboring agents.
The running sums are initialized to σj(0) = 0 and ηj(0) = 0
for all j ∈ V . The variables ρji and υji remain unchanged until
a transmission is successfully received on link (j, i) ∈ E , i.e.,
rji(t) = 1. It is clear that each agent knows the running sum of
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itself, i.e., ρjj(k + 1) = σj(t+ 1) and υjj(t+ 1) = ηj(t+ 1).
Finally, agent j updates the values of wj and yj to be the
sum of the differences between the two most recently received
running sum values according to (14a) and (14b) while other
update equations (14c) to (14e) are the same as (10c)-(10e).

Remark 2. We compare Algorithm 1 with the existing dis-
tributed algorithms in the literature. Without the running
sum variables σj(t) and ηj(t), the algorithm reduces to
the subgradient-push algorithm in [17]. The distributed DER
coordination algorithm in [16] can be treated as a particular
version of Algorithm 1 without the running sum variables. In
this case, all λj(t+1) converge to an optimal incremental cost
λ∗ in the absence of lossy communication links. Without (14d)
and the gradient term in (14e), the algorithm is reduced to the
algorithm proposed in [20] which converges to the average
of the initial values almost surely in the presence of packet-
dropping communication links. The inclusion of the gradient
term in the update of vj(t+ 1) is to ensure that all λj(t+ 1)
converge to an optimal incremental cost λ∗ almost surely.

Remark 3. In the absence of lossy communication links (i.e.,
rji(t) ≡ 1), Algorithm 1 reduces to the algorithm (10). This
can be seen from the following observations: 1) When rji(t) ≡
1, there hold ρji(t) ≡ σi(t) and vji(t) ≡ ηi(t). 2) According
to (12), (14a), and (14b),

wj(t+ 1) =
∑

i∈N in
j ∪{j}

vi(t)

douti + 1

and
yj(t+ 1) =

∑
i∈N in

j ∪{j}

yi(t)

douti + 1
.

Hence, Algorithm 1 is a robustified extension of the distributed
algorithm (10) for the case with packet-dropping communica-
tion links.

B. Convergence Results

In this section, we present the convergence results for the
proposed Algorithm 1. We first show that, for each agent j,
a subsequence of (λj(t))t∈N almost surely (a.s.) converges to
the same optimal incremental cost λ∗, which is an optimal
solution to the dual problem (2). By doing so, we then
show that the proposed distributed Algorithm 1 is able to
solve the DER coordination problem over networks with
packet-dropping communication links. Here we focus on the
almost sure convergence analysis (i.e., pointwise convergence
on the sample space Ω). Our main result is obtained with
the help of results from the weak ergodicity theory and the
supermartingale convergence theorem.

In order to present the main results, the following property
from [20] is needed. The presentation of the property will be
adopted to the context of this paper.

Proposition 1 ( [20] Lemma 2). Assume that Assumptions 1
and 4 are satisfied. For Algorithm 1, we have P(yj(t) ≥
C i.o.) = 1, where C := 1

NN and “i.o.” is short for “infinitely
often”.

Algorithm 1 Distributed algorithm for the DER coordination
problem over networks with packet-dropping communication
links

1: Input: vj(0), σj(0) = 0, ρji(0) = 0, ∀i ∈ N in
j ,

yj(0) = 1, ηj(0) = 0, υji(0) = 0, ∀i ∈ N in
j .

2: for t ≥ 0:
3: Compute:

σj(t+ 1) = σj(t) + vj(t)/(1 + doutj ), (12a)

ηj(t+ 1) = ηj(t) + yj(t)/(1 + doutj ). (12b)

4: Broadcast: σj(t+ 1) and ηj(t+ 1) to all ` ∈ N out
j .

5: Receive: From each i ∈ N in
j receive σi(t + 1) and

ηi(t+ 1) if rji(t) = 1.
6: Set:

ρji(t+ 1)=

{
σi(t+ 1), if rji(t) = 1 or i = j,

ρji(t), if rji(t) = 0.
(13a)

υji(t+ 1)=

{
ηi(t+ 1), if rji(t) = 1 or i = j,

υji(t), if rji(t) = 0.
(13b)

7: Compute:

wj(t+ 1)=
∑

i∈N in
j ∪{j}

(ρji(t+ 1)− ρji(t)), (14a)

yj(t+ 1)=
∑

i∈N in
j ∪{j}

(υji(t+ 1)− υji(t)), (14b)

λj(t+ 1)=
wj(t+ 1)

yj(t+ 1)
, (14c)

xj(t+ 1)=projXj

(
∇C−1j (λj(t+ 1))

)
, (14d)

vj(t+ 1)=wj(t+ 1)− γ(t+ 1)(xj(t+ 1)−Dj). (14e)

By virtue of Proposition 1, we can define a sequence of
time instants for each agent j, at which yj(t) ≥ C is satisfied,
as follows:

tj,1 = min{t : yj(t) ≥ C},
tj,2 = min{t : yj(t) ≥ C, t > tj,1},

...
tj,k = min{t : yj(t) ≥ C, t > tj,k−1}.

Proposition 1 implies that the sequence Tj :=
(tj,1, . . . , tj,k, . . .) has countably infinite elements a.s.
for all j ∈ V . We are now ready to present our main result,
which states that λj(tj,k), where tj,k ∈ Tj , converges to λ∗

almost surely.

Lemma 2 (Almost Sure Convergence). Assume that As-
sumptions 1, 2, 3 and 4 are satisfied. Then the sequence
(λj(tj,k))tj,k∈Tj for any j ∈ V converges to the same
random optimal incremental cost λ∗(ω) almost surely, i.e.,
P (limk→∞ ‖λj(tj,k;ω)− λ∗(ω)‖ = 0) = 1 for all j ∈ V .

The proof of Lemma 2 is somewhat involved and is given
in Section IV-C. Basically, it contains two main steps. In the
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first step, we show that λj(t+ 1) for all j ∈ V almost surely
converges to a time-varying function (to be specified in the
proof) increasingly well as time goes on. In the second step, we
show that this time-varying function almost surely converges
to an optimal incremental cost λ∗.

Remark 4. Lemma 2 presents an almost sure convergence on
the subsequence of λj(t) over the time instants when yj(t)
exceeds C. Such a convergent subsequence may not imply the
convergence of the whole sequence. This is because when yj(t)
is small, the deviation of wj(t)’s cannot be ignored compared
with yj(t). Therefore, the current proof can only characterize
the convergence behavior over the time instants when yj(t)
exceeds C. Notice that this convergence definition is consistent
with the existing literature, see, e.g., [20], [29].

Remark 5. It should be emphasized that, in the consensus
literature, the equivalence between consensus in mean square
and almost sure consensus over random networks generated
by i.i.d. stochastic matrices, can be readily established via
a monotonicity argument on a sequence maxi,j∈V ‖zi(t) −
zj(t)‖, where zj(t) denotes the state of agent j at time t [30].
However, such an equivalent relation does not hold when
studying our Algorithm 1 in mean square sense and in almost
sure sense because the monotonicity property does not hold
when the running-sum and the (sub)gradient-push protocols
are used.

Lemma 2 together with the update equation for the gen-
eration in (14d) and the zero duality between the primal
problem (1) and the dual problem (2) leads to the following
theorem.

Theorem 1. Assume that Assumptions 1, 2, 3 and 4 are
satisfied. Then the distributed Algorithm 1 solves the optimal
DER coordination problem in the sense that λj(tj,k) → λ∗

and xj(tj,k) → x∗j a.s. as k → ∞, where tj,k ∈ Tj , λ∗
and x∗j are respectively an optimal incremental cost and the
optimal generation for generator j.

C. Proof of Lemma 2

We will build our analysis by using the augmented graph
idea from [20]. In particular, for each communication link
(j, i) ∈ E , we add a virtual buffer agent b(j,i) which stores the
mass that may have otherwise been lost due to packet drops
over the link (j, i). In doing so, we define the augmented graph
Ga := (Va, Ea) with

Va = V ∪ {b(j,i)|(j, i) ∈ E},
Ea = E ∪ {(b(j,i), i)|(j, i) ∈ E} ∪ {(j, b(j,i))|(j, i) ∈ E}.

Let E := |E|. The augmented graph Ga has Ñ := N + E
agents, where the first N agents are the ones in the original
graph and the last E ones are the virtual buffer agents. Fig. 5
illustrates the augmented graph idea for a line graph consisting
of two agents and one virtual agent. When there is a packet
drop on (1, 2), with the link (b(1,2), 2), the virtual buffer agent
b(1,2) holds the mass that may otherwise been lost according to
Fig. 5a. When the communication link (1, 2) becomes reliable,

2 1

𝑏(% ,')

(a) Packet drop on the communication link (1, 2).

2 1

𝑏(% ,')

(b) No packet drop on the communication link (1, 2).

Fig. 5. An augmented graph with a virtual buffer agent b(1,2), where the
dashed lines have packet drops while the solid lines do not.

the information from agent 2 and the mass in the virtual buffer
agent b(1,2) are transmitted to agent 1 according to Fig. 5b.

We next introduce the variables w̃`, ỹ`, and ṽ` for the
virtual agents ` = b(j,i) in the augmented graph, with initial
conditions 0. The updates of w̃`, ỹ`, and ṽ` for ` = b(j,i) are
as follows:

w̃l(t+ 1) =

{
w̃l(t) + vi(t)/(1 + doutj ), if rji(t) = 0,

0, otherwise;

ỹl(t+ 1) =

{
ỹl(t) + yi(t)/(1 + doutj ), if rji(t) = 0,

0, otherwise;

and ṽl(t + 1) = w̃l(t + 1). Given an arbitrarily
given order l1, l2, . . . , lE for the elements of E ,
we define w̃ = [w1, . . . , wN , w̃bl1 , . . . , w̃blE ]>,
ỹ = [y1, . . . , yN , ỹbl1 , . . . , ỹblE ]>, ṽ =

[v1, . . . , vN , ṽbl1 , . . . , ṽblE ]>. With these notations,
Algorithm 1 can be rewritten into a matrix form as

w̃(t+ 1) = M(t)ṽ(t), (15a)
ỹ(t+ 1) = M(t)ỹ(t), (15b)

λj(t+ 1) =
wj(t+ 1)

yj(t+ 1)
, j ∈ V, (15c)

xj(t+ 1) = projXj

(
∇C−1j (λ)

)
, (15d)

ṽ(t+ 1) = w̃(t+ 1)− γ(t+ 1)[x>(t+ 1)− D̃>,0]>, (15e)

where D̃ = [D1, . . . , DN ]>. Some immediate observations
from (15) are as follows: M(t) ∈ RÑ×Ñ is a random matrix,
depending on a set of random variables {rji(t)|(j, i) ∈ E} and
is column stochastic.

To prove Lemma 2, we need the following lemma whose
proof can be found in Appendix A.

Lemma 3. Consider a sequence (M(t))t∈N of column
stochastic matrices. which are random and given by (15a).
Assume that Assumption 1 is satisfied. Then there exists a uni-
form bound β ∈ (0, 1) and a sequence (h(t))t∈N of stochastic
vector such that lim supt→∞

∣∣[M(t)M(t − 1) · · ·M(s)]ij −
hi(t)

∣∣1/(t−s) ≤ β a.s., for all i, j ∈ V and s ≤ t.
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We are now ready to prove Lemma 2. The proof is
carried out into two steps: in the first step, we show that
limk→∞ |λj(tj,k) − 1

N

∑Ñ
i=1 ṽi(tj,k)| = 0 a.s. for all j ∈ V

(Recall that ṽi(tj,k) is updated following (15e).); in the second
step, we show that limt→∞ | 1N

∑Ñ
i=1 ṽi(t)−λ∗| = 0 a.s.. The

result then follows from the combination of these two steps.
In what follows, the notation “tj,k” will be written as “tk” for
short when the agent index j is specified in the context.

Denote M(t : s) = M(t) · · ·M(s) (where t ≥ s),
v̄(t) = 1

N

∑Ñ
i=1 ṽi(t) and B = maxj∈V Bj , with Bj =

maxxj∈Xj
|xj − Dj |, for shorthand. With some algebra, we

get

w̃j(t+ 1) = [M(t : 0)ṽ(0)]j +
t∑

s=1

[M(t : s)ε(s)]j , (16)

ỹj(t+ 1) = [M(t : 0)ỹ(0)]j , (17)

1>ṽ(t) = 1>ṽ(0) +
t∑

s=1

1>ε(s), (18)

where ε(t) = −γ(t)[x>(t) − D̃>,0]>. Then, for agent j we
obtain

|λj(tk + 1)− v̄(tk)|

=

∣∣∣∣∣wj(tk + 1)

yj(tk + 1)
−

1>ṽ(0) +
∑tk
s=1 1

>ε(s)

N

∣∣∣∣∣
≤
∣∣∣∣ [M(tk : 0)ṽ(0)]j
[M(tk : 0)ỹ(0)]j

− 1>ṽ(0)

N

∣∣∣∣
+

∣∣∣∣∣
∑tk
s=1[M(tk : s)ε(s)]j
[M(tk : 0)ỹ(0)]j

−
∑tk
s=1 1

>ε(s)

N

∣∣∣∣∣
:=ξ1(tk) + ξ2(tk).

First we show that limtk→∞ ξ1(tk) = 0 a.s.. To do so, notice
that

ξ1(tk)

=
∣∣∣ [(M(tk : 0)− h(tk)1>)ṽ(0)]j

[M(tk : 0)ỹ(0)]j

− [(M(tk : 0)− h(tk)1>)ỹ(0)1>ṽ(0)]j
N [M(tk : 0)ỹ(0)]j

∣∣∣,
where h(t) := [h1(t), . . . , hN (t),0>]> is defined in (32) in
the proof of Lemma 3. The equality follows because 1>ỹ(0) =
N . Denoting M(tk : s) − h(tk)1> := T (tk : s), we further
have

ξ1(tk) ≤
∣∣∣∣ [T (tk : 0)ṽ(0)]j
[M(tk : 0)ỹ(0)]j

∣∣∣∣+

∣∣∣∣ [T (tk : 0)ỹ(0)1>ṽ(0)]j
N [M(tk : 0)ỹ(0)]j

∣∣∣∣
≤ 2

C
max
i∈V
|[T (tk : 0)]ji| ‖v(0)‖1, (19)

where C = 1
NN is defined in Proposition 1. From Lemma 3,

there exist constants ε and L such that β + ε ∈ (0, 1) and

|[T (t : s)]ji| ≤ L(λ+ ε)t−s (20)

for all i, j ∈ V . Then (19) and (20) together lead to

ξ1(tk) ≤ 2L

C
(λ+ ε)tk‖ṽ(0)‖1. (21)

Then we have ξ1(tk)→ 0 a.s. when tk →∞.
To complete the first step, we only need to show that

limtk→∞ ξ2(tk) = 0 a.s.. To do so, we rewrite ξ2(tk) as
follows:

ξ2(tk) (22)

=
∣∣∣∑tk

s=1[(M(tk : s)− h(tk)1>)ε(s)]j
[M(tk : 0)ỹ(0)]j

−
∑tk
s=1[(M(tk : s)− h(tk)1>)ỹ(0)1>ε(s)]j

N [M(tk : 0)ỹ(0)]j

∣∣∣
=

∣∣∣∣∣
∑tk
s=1[T (tk : s)ε(s)]j
[M(tk : 0)ỹ(0)]j

−
∑tk
s=1 [T (tk : 0)ỹ(0)1>ε(s)]j
N [M(tk : 0)ỹ(0)]j

∣∣∣∣∣
≤

∣∣∣∣∣
∑tk
s=1[T (tk : s)ε(s)]j
[M(tk : 0)ỹ(0)]j

∣∣∣∣∣+

∣∣∣∣∣
∑tk
s=1 [T (tk : 0)ỹ(0)1>ε(s)]j
N [M(tk : 0)ỹ(0)]j

∣∣∣∣∣
≤ 1

C

tk∑
s=1

(max
i∈V
|[T (tk : s)]ji|+ max

i∈V
|[T (tk : 0)]ji|) ‖ε(s)‖1,

which with (20) together leads to

ξ2(tk) ≤ 2L

C

tk∑
s=1

(λ+ ε)tk−s‖ε(s)‖1. (23)

From Assumption 3, we have limt→∞ γ(t) = 0. Then,
ξ2(tk)→ 0 holds a.s. as tk →∞ by [31, Lemma 3.1], which
is presented as Lemma 4 in the Appendix B.

In the second step, we show that limt→∞ |v̄(t) − λ∗| = 0
a.s.. From (15e), it follows that

v̄(t)− λ∗

=
1

N
1>M(t− 1)ṽi(t− 1)− λ∗ − γ(t)

N

N∑
j=1

(xj(t)−Dj)

=v̄(t− 1)− λ∗ − γ(t)

N

N∑
j=1

(xj(t)−Dj),

which leads to

|v̄(t)− λ∗|2

=|v̄(t− 1)− λ∗|2 +
γ2(t)

N2
|
N∑
j=1

xj(t)−Dj |2

− 2γ(t)

N

N∑
j=1

(xj(t)−Dj)(v̄(t− 1)− λ∗). (24)

The cross term in (24) can be bounded as follows. Let fj(λ) =
−Ψj(λ) − λDj . By the concavity of (3), fj(λ) is a convex
function of λ, and therefore

fj(λ
∗) ≥ fj(λj(t))− (xj(t)−Dj)(λj(t)− λ∗),

fj(λj(t)) ≥ fj(v̄(t− 1))−B|λj(t)− v̄(t− 1)|,
which together yields

(xj(t)−Dj)(v̄(t− 1)− λ∗)
=(xj(t)−Dj)(λj(t)− λ∗)

+ (xj(t)−Dj) (v̄(t− 1)− λj(t))
≥fj(λj(t))− fj(λ∗)−B|λj(t)− v̄(t− 1)|
≥fj(v̄(t− 1))− fj(λ∗)− 2B|λj(t)− v̄(t− 1)|.
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Combining the above inequality with (24), we have

|v̄(t)− λ∗|2 ≤|v̄(t− 1)− λ∗|2 +B2γ2(t)

− 2γ(t)

N

N∑
j=1

(fj(v̄(t− 1))− fj(λ∗))

+
4Bγ(t)

N

N∑
j=1

|λj(t)− v̄(t− 1)|. (25)

We next show that |v̄(t) − λ∗|2 converges to a ran-
dom variable a.s. by taking conditional expectations given
M(0), . . . ,M(t − 1) at both sides of the inequality (25)
and applying the supermartingale convergence theorem [32,
Lemma 11], which is presented as Lemma 5 in the Appendix B
for readers’ convenience, with

z(t) = |v̄(t− 1)− λ∗|2, α1(t) = 0,

u(t) =
2γ(t)

N

N∑
j=1

(fj(v̄(t))− fj(λ∗)).

and

α2(t) = B2γ2(t) +
4Bγ(t)

N

N∑
j=1

|λj(t)− v̄(t− 1)|.

In order to apply the supermartingale convergence theorem
(Lemma 5), the following conditions

∞∑
t=0

α1(t) <∞ a.s., and
∞∑
t=0

α2(t) <∞ a.s.

need to be satisfied.
The first one is obvious since α1(t) = 0. To check

the second condition, we first note that for the first
term,

∑∞
t=0B

2γ2(t) < ∞ since the step-size satisfies∑∞
t=0 γ

2(t) < ∞. Also note that by (21), (23) and
Lemma 4(b), we can verify that

∑∞
t=0 γ(t)

∑N
j=1 |λj(t)−v̄(t−

1)| <∞ a.s.. Therefore,
∑∞
t=0 α2(t) <∞ a.s..

Hence, from the supermartingale convergence theorem (i.e.,
Lemma 4 in the Appendix B), we conclude: (i). |v̄(t;ω)−λ∗|2
converges to a random variable a.s. for any given dual optimal
solution λ∗, and (ii).

∑∞
t=0 γ(t)

∑N
j=1(fj(v̄(t;ω)−fj(λ∗)) <

∞ a.s.. The rest of the proof is similar to that of [17, Lemma
7]. Since

∑∞
t=0 γ(t) =∞, we can show that with probability

1, there exists a convergent subsequence (v̄(tl;ω)) such that
v̄(tl;ω) → v∗(ω) and fj(v̄(tl;ω)) → fj(λ

∗). Therefore,
v∗(ω) is a dual optimal solution by the continuity of fj . Letting
λ∗ = v∗(ω) in (i), we have that v̄(t;ω) converges to v∗(ω).

The proof is complete now.

Remark 6. The proof technique used in the first step of the
proof for Lemma 2 is motivated by [20]. In particular, we
use the idea of virtual buffer agents to store the information
that may have otherwise been lost due to the packet-dropping
communication links. However, the situation here is much more
complicated due to the additional gradient terms in (14e)
which are needed to ensure that the algorithm converges to
an optimal increment cost almost surely. Nevertheless, such
gradient terms are well behaved in the sense that the multipli-
cation of these gradient terms together with the diminishing

step size asymptotically vanish. This nice property allows us to
treat these additional terms as perturbations and show that the
proposed distributed Algorithm 1 still converges under these
perturbations. Of course, as shown in the proof of the first
part of Lemma 2, it no longer converges to the average of
the initial values almost surely, but converges to the average
function v̄(t) increasing well as time goes on. In the second
step, we show that v̄(t) converges almost surely to an optimal
incremental cost.

V. CASE STUDIES

In this section, we present various case studies to illustrate
and validate the proposed algorithm. We begin by revisiting
the motivating example in Section III. We then show the
performance of the proposed algorithm for the case where
the communication links suffer from different probabilities
of packet drops. Finally, we consider the effect of different
splitting of total demand on the proposed algorithm.

A. Motivating Example Revisit

First, we return to the motivating example in Section III-B.
This example shows that the previously proposed algorithm
(10) always fails to converge, when each communication link
(j, i) ∈ E suffers a packet drop with the same probability qji =
0.1, which are independent between communication links and
between time instants. Let us consider the same scenario but
with the newly developed Algorithm 1. Since the packet drops
are random, the iteration results at each agent vary from one
simulation to another. Nevertheless, the proposed Algorithm 1
always solves the DER coordination problem. The simulation
results of a particular run are given in Fig. 6. As can been
seen, even in the presence of packet-dropping communication
links, each variable still converges to the optimal value as the
case without packet drops shown in Fig. 3 yet with a slower
convergence rate.

B. Different Probabilities for Packet-Dropping Communica-
tion Links

Notice that in the above case study, each communication
link suffers a packet drop with the same probability. We now
consider a more general case where different communication
links have different probabilities of packet drops. In particular,
the probabilities of packet drops in different communication
links are q14 = 0.1, q21 = 0.12, q31 = 0.08, q32 = 0.13,
q35 = 0.03, q45 = 0.05, q52 = 0.15, and q53 = 0.09. The
simulation results of one realization are given in Fig. 7. As
can been seen, even when communication links suffer packet
drops with different probabilities, each variable still converges
to the optimal value.

C. Different Splitting of Total Demand

We now consider the effect of different splitting of total
demand. Recall that the virtual local demand at each bus
is arbitrarily assignable as long as the summation is equal
to the total demand, i.e.,

∑N
j=1Dj = D. In our previous

case studies, we have chosen D1 = 40 kW, D2 = 30 kW,
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Fig. 6. Results for networks with packet-dropping communication links
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Fig. 7. Results for networks with packet-dropping communication links

D3 = 100 kW, D4 = 40 kW, and D5 = 90 kW. Now, let us
assign the virtual local demand as Dj = 60 kW so that the
total demand is also D =

∑5
j=1Dj = 300 kW, The commu-

nication links have packet drops with the same probabilities as

0 50 100 150 200 250 300
−10

−5

0

5

Time Step

(a) Incremental cost ($/kWh)

0 50 100 150 200 250 300
0

50

100

150

200

Time Step

 

 

Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5

(b) Generation (kW)

0 50 100 150 200 250 300
0

100

200

300

400

500

600

Time Step

 

 

Total generation

Total demand

(c) Generation (kW)

Fig. 8. Results for networks with packet-dropping communication links

those in Section V-B. We have tested the performance of the
proposed algorithm by running the simulation various times—
the proposed Algorithm 1 always solves the DER coordination
problem. The simulation results of a particular run are given
in Fig. 8. It shows that each variable still converges to the
optimal value.

Remark 7. In the above three case studies, the algorithm
converges to the optimal values. However, the convergence rate
are different, as shown in Fig. 6, Fig. 7, and Fig. 8. Intuitively
speaking, the convergence rate depends on the probability of
link failures, the splitting of D, and the step-size. However,
the explicit relationship is difficult to obtain and is left as a
future work.

VI. CONCLUSIONS

This paper considers the distributed DER coordination
problem over directed communication networks with packet-
dropping links. We first showed by a motivating example that
our previously developed distributed algorithm fails to solve
the DER coordination problem in the presence of packet-
dropping communication links. We then proposed a robustified
extension of the distributed algorithm and showed that this
robustified distributed algorithm is able to solve the DER
coordination problem even in the presence of packet drops
as long as the underlying communication network is strongly
connected with a positive probability. One interesting direc-
tion is to explicitly characterize the convergence rate of the
proposed algorithm. Another interesting direction is to extend
the proposed distributed algorithm to accommodate additional
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physical models and constraints, such as transmission line loss,
power flow, and transmission line flow constraints.
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APPENDIX A
PROOF OF LEMMA 3

Consider a sequence (x(t))t∈N, where x(t) is defined as

x(t) = M(t)> · · · · ·M(s)>x(s), (26)

where t ≥ s. Consider a specific event for time t, which is
defined as

A(t) = {ω ∈ Ω : rij(t;ω) = 1, (j, i) ∈ E}.

It contains all situations, for which the links of E are all reli-
able. The outcome of M(t) corresponding to the realizations
in A(t) is denoted as M . The probability of A(t) is time-
invariant and can be computed as

P(A(t)) =
∏

(j,i)∈E

pji := p > 0.

When there is no packet drop over G, there are paths from
each virtual buffer agent to the actual agents and paths from
any actual agents to the other actual agents (see Fig. 5b). Also
observe that in M the diagonal elements corresponding to the
actual agents are all strictly positive. Therefore, if we look
at N consecutive matrices M jointly, there are at least one
path from any actual or virtual agent to any actual ones. A
mathematical formulation of this property is that: letting T =
MN for i ∈ V , there holds T (i, :) > (1/N)N .

Then, following results on coefficients of ergodicity [33],
[34], we have that: if

z′ = T>z,
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then

max
i∈V

z′ −min
i∈V

z′ ≤
(
1− (1/N)N

)
(max
i∈V

z −min
i∈V

z). (27)

For ease of notation, in the rest of the paper we write β1 :=
1 − (1/N)N for short. Evidently β1 ∈ (0, 1). In contrast, for
a generic column stochastic matrix, the equality (27) does not
hold in general, while a weaken version truly holds: if M̃ is
a generic column stochastic matrix and z′ = M̃>z, then

max
i∈V

z′ −min
i∈V

z′ ≤ max
i∈V

z −min
i∈V

z. (28)

Having obtaining the above properties for M(t), next we
are in a position to prove the conclusion. To this end, we let
T (k) = M((k− 1)N + s) · · ·M(kN + s− 1) and z(k+ 1) =
T (k)>z(k) with z(1) = ej for j ∈ V . Then it can be seen
that z(k) = x((k− 1)N + s). We further define the following
notations based on T (k). Let

X(k) = max
i∈V

[z(k + 1)]i −min
i∈V

[z(k + 1)]i

and
ξ(k) =

X(k + 1)

X(k)
.

By (27) and (28), we get

E[log ξ(k)] ≤ log(pNβ1) := β2 < 0. (29)

By writing out common elements of fractions, we can
represent the ratio of X(k + 1) and X(1) by products of
ξ(k), ξ(k − 1), . . . , ξ(1), i.e.,

X(k + 1)

X(1)
= ξ(k) · · · ξ(1) (30)

Taking the logarithm over both sides of the above equation
yields

logX(k + 1)− logX(1) =

k∑
i=1

log ξ(i).

Since logξ(i)’s have uniformly bounded covariances, Kol-
mogorovs strong law of large numbers [35] shows that, with
probability 1,

lim
t→∞

1

k

k∑
i=s

log ξ(i) = E[log ξ(k)],

which together with (29) implies that, with probability 1,

lim
k→∞

1

k
log

X(k + 1)

X(1)
≤ β2.

Since X(1) = 1, the above equality further implies

lim
k→∞

X(k)1/k ≤ eβ1 , with probability 1.

Additionally, since maxi∈V x(t) − mini∈V x(t) is non-
increasing by (28) and z(k) = x((k − 1)N + s), there hold
with probability 1 that[

max
i∈V

x(t)−min
i∈V

x(t)
]1/(t−s)

≤
[

max
i∈V

z(d t− s
N
e)−min

i∈V
x(d t− s

N
e)
]1/(t−s)

and[
max
i∈V

x(t)−min
i∈V

x(t)
]1/(t−s)

≥
[

max
i∈V

z(d t− s
N
e+ 1)−min

i∈V
z(d t− s

N
e+ 1)

]1/(t−s)
.

The above upper and lower bounds converge to
(limk→∞ X(k)1/k)1/N , therefore

lim
t→∞

[
max
i∈V

x(t)−min
i∈V

x(t)
]1/(t−s) ≤ eβ1/N := β. (31)

Due to the above relation, we further have

lim
t→∞

[
max
i∈V

x(t)−min
i∈V

x(t)
]

= 0, a.s..

When the above relation holds, we can define the following
limit

hi(s) = lim
t→∞

1

N

∑
i∈V

[M(t)> · · ·M(s)>]ij (32)

and have

|[M(t)> · · ·M(s)>]ij − hi(s)|

≤

∣∣∣∣∣∣[[M(t)> · · ·M(s)>]ij −
1

N

∑
j∈V

[M(t)> · · ·M(s)>]ij

∣∣∣∣∣∣
+

∣∣∣∣∣∣hi(s)− 1

N

∑
j∈V

[M(t)> · · ·M(s)>]ij

∣∣∣∣∣∣
≤max

i∈V
x(t)−min

i∈V
x(t) + sup

t′≥t

∣∣∣ 1

N

∑
j∈V

[M(t′)> · · ·M(s)>]ij

− 1

N

∑
j∈V

[M(t)> · · ·M(s)>]ij

∣∣∣
≤ 2

(
max
i∈V

x(t)−min
i∈V

x(t)

)
.

Here last inequality holds because, for any t′ ≥ t,
| 1N
∑
j∈V [M(t′)> · · ·M(s)>]ij is a convex combination of

[M(t)> · · ·M(s)>]ij for j ∈ V . It together with (31) leads
to that limt→∞ |[M(t)> · · ·M(s)>]ij−hi(s)|1/(t−s) ≤ β a.s.
with β ∈ (0, 1).

When taking transpose of M(t)> · · ·M(s)>, we get
M(s) · · ·M(t). Since M(t)’s are i.i.d. distributed, reversing
the order of the matrices does not change the probability, the
result follows.

The proof is now complete.

APPENDIX B
USEFUL LEMMAS

Lemma 4 ( [31] Lemma 3.1). Let (γ(t))t∈N be a scalar
sequence.
(a) If limt→∞ γ(t) = γ and 0 < β < 1, then

limt→∞
∑t
`=0 β

t−`γ(`) = γ
1−β .

(b) If γ(t) ≥ 0 for all t,
∑∞
t=0 γ(t) < ∞ and 0 < β < 1,

then
∑∞
t=0(

∑t
`=0 β

t−`γ(`)) <∞.

Lemma 5 ( [32] Lemma 11). Let z(t), u(t), α1(t) and α2(t)
be nonnegative random variables and let

E[z(t+ 1)|Ft] ≤ (1 + α1(t))z(t)− u(t) + α2(t) a.s.,
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and
∞∑
t=0

α1(t) <∞ a.s., and
∞∑
t=0

α2(t) <∞ a.s.,

where E[z(t+ 1)|Ft] denotes the conditional expectation for
the given z(0), . . . , z(t), u(0), . . . , u(t), α1(0), . . . , α1(t) and
α2(0), . . . , α2(t). Then

z(t)→ z a.s., and
∞∑
t=0

u(t) <∞ a.s.,

where z ≥ 0 is some random variable.
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