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Abstract—Fundamental sensor feedback limitations for improv-
ing rotor angle stability using local frequency or phase angle mea-
surement are derived. Using a two-machine power system model,
it is shown that improved damping of inter-area oscillations must
come at the cost of reduced transient stability margins, regardless
of the control design method. The control limitations stem from
that the excitation of an inter-area mode by external disturbances
cannot be estimated with certainty using local frequency informa-
tion. The results are validated on a modified Kundur four-machine
two-area test system where the active power is modulated on an
embedded high-voltage dc link. Damping control using local phase
angle measurements, unavoidably leads to an increased rotor angle
deviation following certain load disturbances. For a highly stressed
system, it is shown that this may lead to transient instability.
The limitations derived in the paper may motivate the need for
wide-area measurements in power oscillation damping control.

Index Terms—Fundamental control limitations, HVDC active
power modulation, local measurements, power oscillation
damping, sensitivity constraints, sensor feedback, transient
stability.

I. INTRODUCTION

W ITH a steadily growing demand, deregulated market,
and rising share of renewables the usage of long-distance

power transfer is increasing. In heavily stressed grids, poorly
damped inter-area modes are a concern [1]. A historical example
is the western North American blackout of August 10, 1996,
resulting from the instability of a 0.25 Hz inter-area mode [2].
To improve the stability margins, and thereby increasing the
transmission capacity, power oscillation damping (POD) con-
trol is often implemented. Typical actuators are the excitation
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systems of generators via power system stabilizers (PSSs) [3],
[4], high-voltage direct current (HVDC) links [5]–[10], flexible
alternating current transmission system (FACTS) devices [11]–
[17], inverter based power production [18], and direct active
power load control [19].

Traditionally, POD control is implemented as feedback con-
trol using locally available measurements. Shortcomings of
these measurements, such as potentially poor observability of
system wide inter-area modes, can be circumvented by collect-
ing measurements from distant geographical locations. With
the increased number of installed phasor measurement units
(PMUs), POD using wide-area measurement systems (WAMS)
has become popular.

In [14], it is found that damping control based on specific local
measurements may cause transient instability for some contin-
gencies, whereas WAMS yield transient stability improvements
as well as damping over a wide range of operating conditions.
The implementation of a POD controller using WAMS and
active power modulation of the Pacific HVDC Intertie in the
western North American power system is presented in [5].
Preliminary studies [6] found local frequency measurement to be
a suitable sensor signal for POD as it shows good observability
and robust performance over a range of operating conditions.
However, it is observed that damping based on local frequency
measurements may deteriorate transient performance and cause
first swing instability for some scenarios. The use of WAMS
is found to improve performance also during severe contin-
gencies [5], [6]. Although providing unprecedented advantages
for system monitoring and control, WAMS have some obvious
drawbacks, such as, increased system complexity as well as
potential reliability [15] and security issues [20]. Therefore, the
use of WAMS should be well motivated.

Performance issues may be caused by the choice of measure-
ments, but may also be a consequence of the control design.
With optimization-based control design, good performance can
often be achieved [21], [22]. However, tuning of the optimization
criteria can be an endless task as evaluating the achieved closed-
loop performance is often far from trivial. Fundamental design
limitations helps us to understand if unsatisfactory closed-loop
performance—be it with traditional or modern control design
methods—are due to a bad design or to inherent system limita-
tions.

The study of fundamental limitations in filtering and control
design has a long history, dating back to the work of Bode in the
1940s [23]. Limitations associated with open right half-plane
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(RHP) poles and zeros as well as time-delays are quite well
understood today. For an overview of this area see [24]–[29].
These results has seen application in power systems. For instance
in [11] where numerical methods to identify transfer function
zeros in large power systems are presented and [18] where
limitations due to RHP zeros are taken into account to identify a
suitable input-output pairing to improve power system stability
in a general control configuration. Typically, case studies of
complex numerical models are performed to gain insight into the
control problem at hand. However, resorting only to numerical
solutions do not give valuable physical insight. Some notable ex-
ceptions are [7] where it is shown analytically on a two-machine
power system how the location of controllable active power
injections affects the potential of POD, [19] where the positions
of transfer function zeros are illustrated using an analogy with
a damped mechanical pendulum, [30] where RHP zeros are
identified in the connection of a voltage-source converter-based
HVDC link to a weak ac system, and our preliminary study [31]
where the destabilizing effect of automatic voltage regulators
are identified as the cause for RHP zeros in a single-machine
infinite bus system.

The choice of inputs and outputs can be motivated by studying
pole-zero locations. The position of zeros, relative to the pole
pair associated with the poorly damped inter-area mode, affects
the controllability and observability of the mode. This holds
true for RHP as well as for left half-plane (LHP) zeros. In
power system small-signal analysis, controllability and observ-
ability are often combined into a single metric, the residue [32].
The size of the residue reflects the effectiveness of the chosen
input-output combination. The angle of the residue indicates
the phase compensation required for a feedback controller to
stabilize a poorly damped inter-area mode. Ideally, the residue
and the control design should be insensitive to changing system
conditions [12] and fault locations [16]. The position of zeros
relative to poorly damped poles are relevant since closed-loop
poles tend to the position of nearby open-loop zeros with in-
creasing feedback gain. Because of this, it is desirable to select
a combination of input and output signals that results in a large
separation between poles and zeros [13], [17]. Although proven
to be useful in practice, there is no straight-forward way to relate
the notion of residue and pole-zero separation to the fundamental
limitations of the closed-loop performance. In this work, we
use the Bode integral constraint to bridge the gap between
small-signal analysis and control performance limitations.

The contribution of this work is in the analysis of fundamental
limitations for improving the overall rotor angle stability of the
power system using local frequency measurements. Transient
rotor angle stability is considered in terms of the system’s ability
to maintain synchronism in the first swing following large load
disturbances. The considered system is characterized by the
available control inputs and measurement signals, the desired
performance variable, and the considered disturbances. The
control problem is formulated as a sensor feedback problem,
partitioned into separate control and filtering problems. The
analysis is performed on a linearized two-machine power system
representing a poorly damped inter-area mode. It is shown that
with ideal measurements, performance in terms of rotor angle

Fig. 1. Two-machine power system with a controlled supplementary active
power injection. The energy source could for instance be a wind power park, a
controllable load, or an HVDC link connecting to an asynchronous system.

stability is only limited by the available input power. Then
it is shown, using Bode integral constraints on the filtering
sensitivity, that the excitation of the inter-area mode cannot
be accurately estimated using local voltage phase angle or fre-
quency measurements. Last, it is shown that the consequence
of this filtering limitation is that any damping improvement
based on local frequency measurements, must come at the cost
of reduced transient stability margins, as implied by the findings
of [6], [14]. The results are validated in nonlinear simulations
using the well-known Kundur four-machine two-area test sys-
tem, where the active power of an embedded HVDC link is
modulated to improve damping of the dominant inter-area mode.
In the simulation study we extend the results by considering
WAMS, local ac power flow measurement, and local bus voltage
measurement.1

The remainder of this paper is organized as follows. In
Section II a linearized two-machine power system model is
derived. Section III introduces results from the literature on
sensor feedback limitations derived for general linear control
and filtering problems. In Section IV these results are applied to
the two-machine power system model and explicit limitations
are derived for two different sensor configurations. In Section V
the results are validated on a nonlinear benchmark power system
model. Section VI concludes the work.

II. LINEARIZED POWER SYSTEM MODEL

In this section a linearized model of a two-machine power
system is derived. A state-space representation is developed
from physical equations based on simplifying assumptions.
Then, transfer functions are derived, capturing the zero dynamics
relevant for the control limitations studied in the paper.

The derived model assumes active power control only at the
bus where we measure the voltage phase angles. In Section V we
assume modulation of active power in an HVDC link connect-
ing two buses. Although the input controllability is improved
compared to a single point of injection, this does not affect the
sensor feedback limitations.

A. State-Space Model of a Two-Machine Power System

We consider a power system represented by two synchronous
machines connected by an ac transmission line shown in Fig. 1.
Making simplifying assumptions in line with those of [8] this
can be considered a simplistic representation of the dominant
inter-area mode in a more realistic multi-machine grid.

1The four-machine test system and the control design examples are available
at the GitHub repository: https://github.com/joakimbjork/4-Machine.
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The electromechanical dynamics can be described using the
swing equation

δ̇i = ωi

Miω̇i = −V 2

Xi
sin(δi − θ)−Diωi +ΔPi (1)

for i = 1, 2. Machines are modeled, using the classical ma-
chine model, as a stiff electromotive force behind a transient
reactance [3]. Machine excitation and reactive power at the
control bus are controlled so that all buses have constant voltages
amplitudes V for the time frame of interest. The rotor phase
angles δi and machine speedωi represents machine i’s deviation
from a synchronously rotating reference frame with frequency
2πfs, where fs is usually 50 or 60 Hz. Constants Mi represents
the frequency and pole-pair scaled inertia of each machine and
Di represent the equivalent damping of higher-order dynamics
such as impact from machine damper windings, voltage reg-
ulators, system loads, and governors etc. The transmission is
assumed lossless and the electrical distance between machine i
and the control bus is represented by the reactanceXi, consisting
of transient machine reactance, transformers, and transmission
lines. The difference between the mechanical input power from
the machines and the local loads is given by ΔPi. Voltage phase
angle θ at the control bus is given by the active-power balance

Pu +

2∑
i=1

V 2

Xi
sin(δi − θ) = 0, (2)

where Pu is active power injected at the control bus.
Linearizing around the operating point δi(t0) = δ∗i and

θ(t0) = θ∗, we get approximately

θ =
X∗

2

X∗
Σ

δ1 +
X∗

1

X∗
Σ

δ2 +
X∗

1X
∗
2

X∗
Σ

Pu, (3)

where X∗
i
−1 = X−1

i V 2 cos(δ∗i − θ∗), and X∗
Σ = X∗

1 +X∗
2 .

Substituting (3) into (1) then gives us the linearized swing
equation in state-space form[

δ̇

Mgω̇g

]
=

[
0 I

−L −Dg

][
δ

ωg

]
+

[
0 0

I Lθ

][
ΔP

Pu

]
, (4)

where input ΔP = [ΔP1,ΔP2]
T, and state variables δ =

[δ1, δ2]
T and ωg = [ω1, ω2]

T.2 Inertia and damping constants
are given by Mg = diag(M1,M2) and Dg = diag(D1, D2),
respectively, while 0 and I are appropriately sized zero and
identity matrices, respectively. The linearized power flow are
described by the network matrices

L =
1

X∗
Σ

[
1 −1

−1 1

]
, and Lθ =

1

X∗
Σ

[
X∗

2

X∗
1

]
. (5)

B. Transfer Function of a Two-Machine Power System

The sensor feedback limitations consider in this paper are con-
nected with the controllability and observability of the inter-area

2The notation ω (with no subscript) is reserved for angular frequency.

Fig. 2. The system interpreted as two masses on a swing plank subject to an
external force d1 or d2. At initial time t0, ω1(t0) = ω2(t0) = θ̇(t0) = 0.

mode. Commonly, the residue method [3] is used to character-
ize the input-output controllability and observability of modes
in small-signal analysis studies and POD controller design.
However, for the purpose of this analysis, residues provide
insufficient information. Instead we use (4) to derive transfer
functions capturing the poles and zeros of relevant input-output
combinations.

The electrical midpoint may differ from the mass-weighted
electrical midpoint. However, to simplify notation we assume
that the machines have identical inertia constants so that M1 =
M2 = M . For convenience, we also assume that damping can be
neglected so thatD1 = D2 = 0 and that we consider the extreme
case where load disturbances d = [d1, d2]

T occur close to the
machines so that d1 = ΔP1 and d2 = ΔP2. Consider u = Pu in
(4) to be a controlled active power injection somewhere between
the two machines as shown in Fig. 1. The transfer function of
(4) mapping external inputs d and u to phase angles at machine
and control buses δ = [δ1, δ2]

T and θ, respectively, are given by

[
Gδd Gδu

Gθd Gθu

]
= G0

⎡
⎣s2 +Ω2/2 Ω2/2 N1

Ω2/2 s2 +Ω2/2N2

N1 N2 N3

⎤
⎦, (6)

where Ω =
√
2/MX∗

Σ is the undamped frequency of the inter-
area mode and

G0 =
1

s2M (s2 +Ω2)
. (7)

In particular, for an unloaded system we have

N1 =
X∗

2

X∗
Σ

(
s2 +

1

MX∗
2

)
, N2 =

X∗
1

X∗
Σ

(
s2 +

1

MX∗
1

)
, (8)

and N3 = MX∗
ΣN1N2.

C. Mechanical Analogy

The machines in Fig. 1 can be interpreted as masses on a
swing plank with the electrical distance as physical distance. An
external force applied to the system will initiate a relative swing
between the two masses, if not applied directly at the center [7].
Now consider Fig. 2. We want to design a sensor feedback
controller using local frequency (or phase angle) measurement,
y = θ̇, to attenuate the relative swing. At time t0, a force d1 or
d2 is applied to one of the machines. To dampen the swing, the
sign of z = ω1 − ω2 need to be estimated. As seen in Fig. 2,
however, this information is not directly attained from the local
frequency measurement. A damping controller may therefore
cause transient stability issues by amplifying the first swing
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as observed in [6]. In this paper, we study the fundamental
limitations of this control problem.

III. SENSOR FEEDBACK LIMITATIONS

We review some results for general linear systems. In this
paper, the scope is limited to scalar systems. For more extended
overview see [24]–[29]. In Section IV the result will be used
to show sensor feedback limitations for the two-machine power
system derived in Section II.

Let the scalar transfer function Gyu represent a plant with
output y and input u. Consider a linear controller u = −Ky
where K is any proper rational transfer function.

Definition 1 (Sensitivity Functions): The closed-loop sensi-
tivity and complementary sensitivity functions are given by

S = (1 +GyuK)−1, and T = 1− S, (9)

respectively.
Lemma 1 (Interpolation Constraints [24]): For internal sta-

bility, no cancellation of open RHP poles or zeros are allowed
between the plant and the controller. Let pi, i = 1, . . . , np and
qi, i = 1, . . . , nq be the open RHP poles and zeros of the plant
Gyu. Then for all pi and qi,

S(pi) = 0, T (pi) = 1,

S(qi) = 1, T (qi) = 0. (10)

The interpolation constraints limit the achievable perfor-
mance since S and T represent closed-loop amplification of
load disturbances and measurement noise, respectively.

Lemma 2 (Bode Integral [24]): Suppose that the loop-gain
GyuK is a proper rational function. Then, if S(∞) �= 0∫ ∞

0

ln

∣∣∣∣S(jω)S(∞)

∣∣∣∣ dω =
π

2
lim
s→∞

s [S(s)− S(∞)]

S(∞)

+ π

np∑
i=1

pi (11)

where j =
√
−1.

If the loop-gain is strictly proper, then S(∞) = 1. Typically,
bothGyu andK are strictly proper. The limit in (11) then goes to
0. The reduction of the sensitivity at some angular frequencies
then has to be compensated by an (at least) equally large amplifi-
cation in other frequencies. This resembles the displacement of
water in a water-bed. The Bode integral constraint is therefore
also known as the water-bed effect.

In general the measured output y may differ from the per-
formance variable z that we want to control. For an open-loop
plant in the general control configuration shown in Fig. 3, the
goal is to design a sensor feedback controller K that reduces the
amplitude of the closed-loop system from d to z, given by

Tzd = Gzd −GzuK(1 +GyuK)−1Gyd. (12)

In the general control configuration, RHP poles and zeros in
Gyd,Gzd, andGzu may put further restrictions on the achievable
performance [28]. The general control problem can be separated
into a control and an estimation problem as shown in Fig. 3. This

Fig. 3. General control configuration as a control and filtering problem. The
filter Fu decouples the control input u from the estimation error z̃.

work focuses on the latter by studying limitations in the linear
filtering problem.

Assume that the system is detectable from y, i.e., all unobserv-
able states are stable, and that ẑ = Fy is an unbiased, bounded
error estimate of z. An observer is a bounded error estimator
if for all finite initial states, the estimation error z̃ = z − ẑ is
bounded for all bounded inputs. A bounded error estimator is
unbiased if u is decoupled from z̃ [24].

Definition 2 (Filtering Sensitivity Functions [24]): If Gyd is
detectable, F is a stable filter, and Gzd is right invertible3, the
filtering sensitivity functions are given by

P = (Gzd − FGyd)G
−1
zd , and M = FGydG

−1
zd , (13)

with P(s) +M(s) = 1 at any s ∈ C that is not a pole of P
or M.

The filtering sensitivity function P represents the relative
effect of disturbance d on the estimation error z̃, while the
complementary filter sensitivity M represents the relative effect
of d on the estimate ẑ.

Lemma 3 (Interpolation Constraints for P and M [24]): Let
ρi, i = 1, . . . , nρ be the open RHP poles of Gzd and let ξi, i =
1, . . . , nξ be the open RHP zeros of Gyd that are not also zeros
of Gzd. Assume that F is a bounded error estimator. Then

P(ρi) = 0, M(ρi) = 1,

P(ξi) = 1, M(ξi) = 0. (14)

Lemma 4 (Bode Integral forP [24]): Suppose thatP is proper
and thatF is a bounded error estimate. Let the open RHP zeros of
P be�i, i = 1, . . . , n� and let ςi, i = 1, . . . , nς be the open RHP
zeros of Gzd such that F (ςi)Gyd(ςi) �= 0. Then if P(∞) �= 0∫ ∞

0

ln

∣∣∣∣P(jω)

P(∞)

∣∣∣∣ dω =
π

2
lim
s→∞

s [P(s)− P(∞)]

P(∞)

+ π

n�∑
i=1

�i − π

nς∑
i=1

ςi . (15)

Similar to Lemmas 2 and 1, this tells us that the estimation er-
ror cannot be made arbitrarily small over all angular frequencies.

3For Gzd to be right invertible there need to be at least as many inputs as
signals to be estimated. Note that G−1

zd
is not necessarily proper.
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IV. POWER SYSTEM SENSOR FEEDBACK LIMITATIONS

The results from Section III will here be used to identify fun-
damental sensor feedback limitations for improving rotor angle
stability in a two-machine power system. First, we show that with
ideal wide-area measurements, without communication delay,
the performance in terms of rotor angle stability is only limited
by the available input power. Second, we show that using local
phase angle measurements, it is impossible to perfectly estimate
the excitation of the inter-area mode. Water-bed constraints on
the filtering sensitivity dictates that accurate estimation of the
inter-area mode has to be compensated by inaccuracy outside a
certain angular frequency window. Finally, the main result of the
paper is presented. We show that the filtering limitation results in
feedback limitation for the closed-loop system using local mea-
surements. Consequently, amplification of certain disturbances
are unavoidable.

A. Ideal Feedback Measurement y = ω1 − ω2

Inter-area oscillations are an electromechanical phenomenon
where groups of machines in one end of the system swing against
machines in the other end of the system [3]. Consider the two-
machine system shown in Fig. 1. Here, the inter-area mode is
accurately observed from the modal speed [13] which for the
two-machine system is given by the relative machine speed

z = δ̇1 − δ̇2 = ω1 − ω2. (16)

If available, this is the ideal feedback signal [10], [13]. With
input-output mapping given by the transfer function matrix in
(6) the system to stabilize with feedback control becomes

Gzu =
X∗

1 −X∗
2

MX∗
Σ

s

s2 +Ω2
. (17)

Proposition 1: Suppose that y = z, Gzu have no open RHP
zeros, and that |Gzd| roll off at higher angular frequencies. Then
for every positive ε there exist a controller K such that

|Tzd(jω)| < ε, ∀ω. (18)

Proof: First, we note that u = −Kzz. Thus, the closed-loop
system (12) reduces toTzd = SGzd. Since |Tzd| ≤ |S||Gzd|, the
objective (18) is fulfilled if

|S(jω)| < ε/|Gzd(jω)|, ∀ω. (19)

If there are no RHP zeros in Gzu then, by Lemma 1, S is not
constrained at any specific angular frequencies. �

Example 1: Suppose that we choose proportional controlu =
−kz then with Gzu given by (17)

S =
s2 +Ω2

s2 + sk
X∗

1−X∗
2

MX∗
Σ

+Ω2
. (20)

According to Lemma 2 we then have∫ ∞

0

ln |S(jω)| dω =
π

2
lim
s→∞

s [S(s)− 1]

= −k
π

2

X∗
1 −X∗

2

MX∗
Σ

(21)

which, for k(X∗
1 −X∗

2) > 0, is always negative.

This implies that the excitation of the inter-area mode, by
load disturbances, can be made arbitrarily small for all angular
frequencies. In terms of rotor angle stability, both POD and
transient stability are then only limited by the available input
power and the achievable actuator bandwidth.

B. Filtering Limitations — Local Measurement y = θ

Typically the industry is restrained from using external
communication for crucial system functions such as POD.
Thus, using relative machine speed for feedback is nor-
mally not an option. The controller instead needs to rely
on local measurements. Here we will show the limitations
of estimating the relative machine speed (16) using local
measurements.

Consider the two-machine system shown in Fig. 1 using local
phase angle measurement, y = θ. With transfer function[

Gzd1
Gzd2

Gyd1
Gyd2

]
= G0

[
s3 −s3

X∗
2

X∗
Σ

(
s2+ 1

MX∗
2

)
X∗

1

X∗
Σ

(
s2+ 1

MX∗
1

)]
(22)

given by (6) to (8). Assume that 0 ≤ X∗
1 < X∗

2 ≤ X∗
Σ, i.e.,

machine 1 is closest to the measurement bus. Then the cor-
responding complex conjugated zero pairs q1 = ±j

√
1/MX∗

2

and q2 = ±j
√

1/MX∗
1 fulfill

Ω/
√
2 ≤ |q1| < |q2| ≤ ∞. (23)

Partition the general control problem (12) into a control and
an estimation problem as shown in Fig. 3.

Proposition 2: Suppose that y = θ and let P1 and P2 be
the filtering sensitivity functions associated with d1 and d2
respectively. Then an estimator ẑ = Fy, such that

|Pi(jω)| < 1, i = 1, 2 (24)

is only possible in a frequency interval (ω, ω̄) ⊂ (|q1|, |q2|).
Proof: A minimum requirement for |Pi| < 1 is that the esti-

mate ẑ has the same sign as z, i.e., that Mi > 0. From (22), the
complementary filtering sensitivities to consider becomes

M1 = FGyd1
G−1

zd1
= F

X∗
2

X∗
Σ

s2 + |q1|2
s3

,

M2 = FGyd2
G−1

zd2
= −F

X∗
1

X∗
Σ

s2 + |q2|2
s3

. (25)

Clearly, M1(jω), M2(jω) > 0 are then only possible if
sgn(|q1|2 − ω2) = − sgn(|q2|2 − ω2) = −1. �

Proposition 3: Suppose that y = θ and that an estimator ẑ =
Fy achieves ∫ ω̄

ω

ln |Pi(jω)|dω < 0, i = 1, 2 (26)

in a frequency interval (ω, ω̄) ⊂ (|q1|, |q2|). Then amplification
of the disturbance on the relative estimation error,

sup
ω

max (|P1(jω)|, |P2(jω)|) > 1, (27)

is unavoidable in the frequency intervals ω < ω and ω > ω̄.
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Fig. 4. Bode diagram visualizing the filtering limitation when using local
phase angle measurement, y = θ, in Example 2.

Proof: Since Gyd1
G−1

zd1
and Gyd2

G−1
zd2

in (25) are strictly
proper, Pi(∞) = 1. According to Lemma 4 we then have∫ ∞

0

ln |Pi(jω)| dω =
π

2
lim
s→∞

s [Pi(s)− 1] + Ci (28)

where Ci is a non-negative constant resulting from any RHP
zeros in Pi. From Definition 2, Pi − 1 = −Mi. With the com-
plementary filtering sensitivities given by (25), then∫ ∞

0

ln |P1(jω)| dω = −π

2
F (∞)

X∗
2

X∗
Σ

+ C1,∫ ∞

0

ln |P2(jω)| dω =
π

2
F (∞)

X∗
1

X∗
Σ

+ C2. (29)

If the filter is strictly proper, then any region with |Pi(jω)| < 1
need to be compensated with an (at least) equally large region
with |Pi(jω)| > 1. If the filter is proper, this holds true with
respect to at least one of the disturbances d1 or d2. �

Example 2: Consider the two-machine power system shown
in Fig. 1 with linear dynamics (22) derived in Section II. Let
the line reactance X∗

Σ = 1p.u. and scale the machine inertia
M so that the inter-area modal frequency Ω =

√
2/MX∗

Σ =
1 rad/s. In addition, add a 0.05 p.u./(rad/s) damping constant
at each machine so that the inter-area mode has small but positive
damping. Fig. 4 shows the Bode diagram of Gydi

G−1
zdi

, i = 1, 2,
with X∗

1 = 0.1 p.u. and X∗
2 = 0.9 p.u., i.e., the control bus is

located closer to machine 1.
Consider the case where the mode is estimated using a simple

derivative filter. Following the numbers listed in Fig. 4:
1) The derivative filter adds 90◦ phase to Gydi

G−1
zdi

and
thus M1(jω) > 0 for ω > |q2|. However, disturbances d2
coming from the other end of the system will result in an
initial estimate with a 180◦ phase shift, i.e., M2(jω) < 0.

2) At ω < |q1| we will have the opposite problem.
The mechanical analogy in Section II-C thus appears as a

sensor feedback limitation both around the high frequency zero
q2 and the low frequency zero q1.

3) In a frequency interval (ω, ω̄) ⊂ (|q1|, |q2|) both transfer
functions have the same phase. Thus M1,M2 > 0 can be
guaranteed no matter the origin of the disturbance.

Fig. 5. Block diagram for filter design in Example 3. The integral weight on
the output reduces the steady state estimation error.

Fig. 6. Relative machine speed z and estimate ẑ using local phase angle
measurement following a 0.2 p.u. load step d1 (left) and d2 (right) in Example 3.

Remark 1 (Observability Analogy): If the control bus are at
the electrical midpoint, then the relative frequency z is unobserv-
able using local frequency measurement [7]. At the electrical
midpoint, we also have |q1| = |q2| = Ω and thus the frequency
interval in which the sign of z can be accurately estimated shrinks
to zero. If the control bus are adjacent to a machine, then we
have best achievable observability of z [7]. Similarly we have
the maximum interval, (ω, ω̄) ⊂ (Ω/

√
2,∞). Note that there is

still a lower limit, so the considered filtering limitations applies.
Ultimately, however, consequences for closed-loop performance
are more relevant when the excitation of the mode is large.
As seen in Fig. 4, for ω ≤ Ω, |Gzd(jω)| decreases as ω → 0.
Filtering limitations therefore becomes less significant when
measuring closer to a machine.

Example 3: Consider again the two-machine system intro-
duced in Example 2. An estimate of the mode is here obtained
by the filter F0, tuned to minimize the H2-norm from external
inputs d and n to the weighted output e as shown in Fig. 5.

Note that the H2 design does not allow for pure integrators
in the plant. The pole of the output integral weight is therefore
shifted slightly into the LHP. Additionally, the integrator in Gyd

is canceled in advance by a wash-out filter.
In the tuning process, external inputs are modeled as white

noise with amplitudes |d1|, |d2| = 0.2 p.u. and |n| = 0.05 rad.
With the output weight fixed, the ratio |d|/|n| determines the
filter performance. As seen in Fig. 6 the initial sign of z cannot
accurately be estimated for both disturbances. By choosing
|d1| �= |d2| in the tuning process, we can choose which distur-
bance to be favored by the filter. The corresponding filtering
sensitivities P1 and P2 are shown in Fig. 7.

C. Feedback Limitations — Local Measurement y = θ

If there are no RHP zeros or time-delays in Gyu, then
the sensitivity can be made arbitrarily small, e.g., using an
inverse based controller. However, making S small is not
necessarily the same as making the closed-loop system (12)
small if y �= z. Here it will be shown that the filtering limitation
in Propositions 2 and 3 result in closed-loop performance
limitations in terms of achievable disturbance attenuation.
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Fig. 7. Filtering sensitivity and disturbance response ratio with respect to d1
(top) and d2 (bottom) in Examples 3 and 4. Due to the water-bed effect, distur-
bance amplification is unavoidable around the zero frequencies |q1| and |q2|.

The aim of a feedback controller is to reduce the amplitude of
the closed-loop system (12) compared to the open-loop system,
i.e., to make |Tzd| < |Gzd|. Multiplying with G−1

zd this can be
expressed using the disturbance response ratio

|Rzd| =
∣∣1−GzuK(1 +GyuK)−1GydG

−1
zd

∣∣ < 1. (30)

Proposition 4: Suppose y = θ and let Rzd1
and Rzd2

be the
disturbance response ratios associated with d1 and d2 respec-
tively. Then a sensor feedback controller u = −Ky, such that

|Rzdi
(jω)| < 1, i = 1, 2 (31)

is only possible in a frequency interval (ω, ω̄) ⊂ (|q1|, |q2|).
Proof: In Fig. 3, decoupling of the control input u from the

estimation error is achieved by selecting Fu such that

Gzu = F (Gyu + Fu). (32)

Substituting Gyu with Gyu + Fu and K with KzF then (30)
can be written as

|Rzdi
| = |1− (1 +GzuKz)

−1GzuKzMi| < 1. (33)

The proof then follows from Proposition 2. �
Proposition 5: Suppose that y = θ and that a sensor feedback

controller u = −Ky achieves disturbance attenuation with∫ ω̄

ω

ln |Rzdi
(jω)|dω < 0, i = 1, 2 (34)

in a frequency interval (ω, ω̄) ⊂ (|q1|, |q2|). Then disturbance
amplification

sup
ω

max (|Rzd1
(jω)|, |Rzd2

(jω)|) > 1, (35)

is unavoidable in the frequency intervals ω < ω and ω > ω̄.
Proof: Bode integral constraints similar to Lemma 4 can be

derived also for Rzd. Suppose that the closed-loop two-machine
system is stable and that the performance variable z = ω1 − ω2.

Fig. 8. Four-machine two-area system [3], [33]. Modifications: embedded
HVDC link, inertia reduced to 75%, inter-area ac power flow increased to
500 MW, and PSSs tuned down for a marginally damped inter-area mode.

Since both Gzu and Mi are strictly proper, Rzdi
− 1 have a

relative degree ≥ 2.4 Thus,∫ ∞

0

ln |Rzdi
(jω)| dω = π

nγ∑
r=1

γr ≥ 0 (36)

where γr are RHP zeros of Rzdi
[28]. It then follows that

disturbance amplification (35) is unavoidable in the frequency
intervals ω < ω and ω > ω̄ due to the water-bed effect. �

Remark 2: RHP zeros of Pi are not necessarily shared with
Rzdi

. But if Kz → ∞ in (33) then Rzdi
→ Pi.

Example 4: Consider again the two-machine system with the
filter F designed in Example 3. Since the filter gives an estimate
of the mode, damping of the mode can be improved by closing
the loop with a controller Kz = 0.5p.u./(rad/s) as shown in
Fig. 3. In accordance with Propositions 4 and 5 this result in
an unavoidable disturbance amplification outside the frequency
interval (ω, ω̄) ⊂ (|q1|, |q2|) for either Rzd1

or Rzd2
as seen in

Fig. 7.

V. NONLINEAR SIMULATION STUDY

In this section, we study the filtering limitations in a Simulink
implementation [33] of the Kundur four-machine two-area test
system [3] shown in Fig. 8. For illustrative purposes, the sys-
tem has been modified by reducing the POD. We assume the
controllable device is an embedded HVDC link where the dc
power can be controlled in a linear region with sufficiently high
bandwidth. Without further loss of generality, the dc dynamics
are then neglected, as motivated in [8]. We begin this section
by showing the filtering limitations associated with local phase
angle or frequency measurement. Then we show the conse-
quences this have on rotor angle stability. Finally, it is shown
how alternative measurement signals can be useful to limit rotor
angle stability issues associated with phase angle measurements
in the considered four-machine test system.

To facilitate the analysis and controller design, we need a
linear representation of the system. Using the Simulink linear
analysis toolbox, we obtain the 90th order state-space realization

ẋ = Ax+Bdd+Buu

y = Cyx+Dydd+Dyuu

z = Czx (37)

4If we instead choose the performance variable as z = δ1 − δ2, then Gzu

have a relative degree of 2 in itself.
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wherex is the state vector representing rotor speeds, rotor angles,
generator voltages, controller states, etc.; d is a vector of external
inputs, such as the active power load at buses 7 and 9; u is the
controllable dc power in the HVDC link; y is some measured
output such as the phase angle θ9; and z is a performance variable
chosen to represent the inter-area mode.

A. Filtering Limitations — Local Measurement y = θ9

Let us illustrate how to extend the analysis in Section IV-
B to study the filtering limitations associated with local phase
angle measurement in the four-machine system. To do this, it is
convenient to represent (37) on its modal form.

Let λi, i = 1, . . . , 90 be the eigenvalues of A so that
det(A− λiI) = 0. Let V = [v1, . . . , v90] ∈ C90×90 and U =
[u1, . . . , u90] ∈ C90×90 be matrices of left and right eigenvec-
tors so that vH

i A = vH
i λi, Aui = λiui, and V H = U−1, where

vH
i is the complex conjugate transpose of vi.

Transforming the state-space coordinates x into the modal
coordinates ζ = V Hx we can rewrite (37) as

ζ̇ = V HAUζ + V HBdd+ V HBuu

y = CyUζ +Dydd+Dyuu

z = CzUζ (38)

where V HAU = diag(λ1, . . . , λ90) ∈ C90×90.
Oscillatory modes, λi, are characterized by two complex con-

jugated modal states. For instance let the oscillatory inter-area
mode be represented by the pair ζ1 and ζ2 = ζ̄1. Ideally, to
stabilize the mode, we would like a good estimate of either ζ1
or ζ2. The problem is that most available numerical methods
do not allow for a complex valued state-space representation.
This can be amended by instead representing (38) on real Jordan
form [34]. LetV = [v1, . . . ,v90] ∈ R90×90 be a transformation
matrix with
� [vi,vi+1] = [Re vi, Im vi] if λi = λ̄i+1, and
� vi = vi if λi is real.
With the coordinate transform ζ = V Tx, we rewrite the sys-

tem (38) on real Jordan form

ζ̇ = V TAUζ + V TBdd+ V TBuu

y = CyUζ +Dydd+Dyuu

z = CzUζ (39)

where U−1 = V T and V TAU ∈ R90×90 is block-diagonal.
The state-space realization (39) can be used to study the filter-

ing limitations associated with local phase angle measurements.
But first, to facilitate the subsequent controller design, let us
rotate the eigenvectors so that ζ1 and ζ2 are suitable to represent
the damping and synchronizing torque of the inter-area mode.

For the undamped symmetrical two-machine system (6), suit-
able states to represent the damping and synchronizing torque
would be ζ1 = ω1 − ω2 and ζ2 = δ1 − δ2 respectively. Suitable
states to represent the damping and synchronizing torque in the
detailed four-machine model (37) are not as obvious. However, if
we assume that the inter-area oscillations are still dominated by
the mechanical dynamics of the synchronous machines we can

Fig. 9. Mode shape of the inter-area mode in the four-machine system.

Fig. 10. Bode diagram visualizing the filtering limitation with local phase
angle measurement, y = θ9, and load disturbances d1 and d2 at buses 7 and 9
respectively, as shown in Fig. 8.

rotate the corresponding eigenvectors, e.g., v1 and v2 = v̄1, so
that the elements corresponding to machine speeds are aligned
with the real axis, as shown in Fig. 9. This makes

ζ1 = Re vH
1 x = vT

1x and ζ2 = Im vH
1 x = vT

2x (40)

state variables suitable for analyzing damping and synchroniz-
ing torque in the four-machine system even though governors,
voltage dynamics, higher-order generator dynamics, etc., have
been introduced [9]. To target damping of the inter-area mode,
let the performance variable

z = ζ1 = Czx = vT
1x (41)

where v1 is the left eigenvector associated with the inter-area
mode, aligned with the real axis as shown in Fig. 9.

Assume now that we use local measurement y = θ9 to im-
prove POD in the four-machine system shown in Fig. 8. The sen-
sor feedback limitations considering active power disturbances
d1 and d2 at buses 7 and 9, respectively, are shown in Fig. 10. The
Bode diagram bares close resemblance to the simplified model in
Fig. 4. The main difference is that Gyd2

G−1
zd2

shows a prominent
zero pair also at higher angular frequencies. This is because
the disturbance d2 occur at the measurement bus. As shown in
(6), the transfer function Gyd2

therefore has a low frequency
and a high frequency zero pair. Proposition 3 implies that it
will be impossible to accurately determine the source of the
load disturbance. According to Proposition 5, POD using local
frequency measurements will therefore unavoidably amplify
disturbances around the low frequency and high frequency zero
pairs. In the following subsection, we show the consequence of
this for transient rotor angle stability.
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Fig. 11. Root locus used for selecting controller gain kPSS.

It is also worth noting that the electromechanical zero pairs
are in the RHP. This is often the case in power systems due to
the destabilizing effect of generator excitation controllers [31].
Since we have RHP zeros, interpolation constraints on the sen-
sitivity further limits the achievable closed-loop performance,
according to Lemma 1. Ultimately, this will have consequences
for robustness. It is therefore advisable not demand too much
from the feedback controller [27].

B. Feedback Limitations — Local Measurement y = θ9

To show the consequences of the filtering limitations on rotor
angle stability, we first need to design a feedback controller.
In this section, we will compare two types of controllers. A
conventional phase compensating controller, typically used for
PSS implementations, and a H2 optimal controller tuned to
attenuate the performance variable (41).

1) PSS-Style Controller: Let PDC = −KPSSθ9

KPSS = s kPSS
sT1 + 1

sT2 + 1︸ ︷︷ ︸
Phase compensation(

5Ω1

s+ 5Ω1

)
︸ ︷︷ ︸

Low-pass

2
s

s+ 0.2Ω1︸ ︷︷ ︸
Wash-out

(42)

where Ω1 = |λ1| ≈ 4.4 rad/s is the frequency of the poorly
damped inter-area mode. The eigenvalue sensitivity to small
changes in KPSS is given by the residue R(λ1) = −Cyu1v

H
1Bu

[32]. We tune the phase compensation in (42) so that
argR(λ1)K(λ1) = −π. Thus, feedback moves the eigenvalue,
λ1, associated with the inter-area mode in the negative real direc-
tion as shown in Fig. 11. Choosing kPSS = 1.05, the damping of
the inter-area mode improves from 2.7% to 10%. The low-pass
filters in (42) are selected to avoid amplification of high fre-
quency measurement noise. The wash-out filter is tuned to avoid
amplification at low angular frequencies. The required phase
compensation, −5◦, is achieved with T1 = 0.21 and T2 = 0.25
in (42).

Fig. 12. Rotor angle differences and control input following a 350 MW dis-
turbance pulse with PDC = −KPSSθ9.

Fig. 13. Extended system for optimal control design.

In Fig. 12, the system response to a 1 s long 350 MW dis-
turbance is shown. The worst case disturbances are those that
increase the rotor phase angle difference. Therefore we consider
a load loss at bus 5 and a generation loss at bus 11 (simulated as
active power load pulses). This could for example represent the
commutation failure of an exporting or importing HVDC link.

The trajectory of λ1 in Fig. 11 indicates that the implemented
controller improves damping torque. It also marginally improves
synchronizing torque. This could lead us to believe that both
POD and transient stability have been improved. Indeed, as seen
in Fig. 12, both the damping and transient response are improved
for disturbances occurring close to the measurement bus at
bus 11. However, for disturbances occurring in the other end of
the system, this is not the case. In accordance with Proposition 5,
an erroneous control input and thus a disturbance amplification
is unavoidable. This increases the initial angle, δ1 − δ4, leading
to a system separation in the first swing.

2) H2 Optimal Controller: Let PDC = −KH2
θ9, where

KH2
is the controller that minimizes the H2-norm from white

noise inputs d and n to weighted outputs in the extended system
shown in Fig. 13. Let power and phase be given in MW and
degrees, respectively, and
� let load disturbances |d| = 1 and measurement noise |n| =
1, and let the input weights Wd/Wn = 100;

� let Wu = 1; and
� let |Cz| = 1 in (41) and Wz = 40 · 360.
The tuned controller then achieves 10% damping of the

inter-area mode. Closing the feedback loop, the eigenvalues
of the inter-area mode are shifted into the LHP whereas the
remaining open-loop poles are unaffected, as shown in Fig. 11.
The optimal controller has the same order as the extended
system. Here however, it can be reduced to 4th order without
significantly changing the dynamical closed-loop performance.
The implemented controller is

KH2
=

0.042s(172− s)(s+ 12.6)(s+ 0.59)

(s2 + 3.9s+ 19.4)(s2 + 3.4s+ 51.1)
. (43)
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Fig. 14. Rotor angle differences and control input following a 350 MW dis-
turbance pulse with PDC = −KH2

θ9.

Remark 3: Note that the reduced controller (43) has a RHP
zero at s = 172. However, since Ω1 � 172, this is insignificant
for the closed-loop performance.

In Fig. 14, the system response to a 1 s long 350 MW distur-
bance is shown. Just as in Fig. 12 we see good damping as well as
improved transient performance when disturbances occur close
to the measurement bus. Unlike the PSS-style controller, we
see that the H2 optimal controller survive the first swing, also
for disturbances occurring at bus 5. This implies that transient
stability issues may be avoided with proper controller tuning.
However, also the well tuned H2 optimal controller amplifies
the first swing as seen in Fig. 14. In accordance with Proposition
5, this is unavoidable.

For the simulations, the controllable dc power variation has
been saturated at ±75 MW from the steady state set point.
One way to reduce the erroneous excitation of the inter-area
mode is to reduce this saturation limit. This would improve the
transient stability margin for disturbances occurring in the other
end of the system. It is also worth noting that both the PSS-style
controller and the H2 controller improve POD as well as first
swing stability in the case where load disturbances occur in the
same area. In a more distributed setting where POD is provided
by decentralized controllers in each end of the system, then the
negative effect on the first swing will be counterbalanced by
controllers in the other end of the system.

Remark 4 (Weight Selection): There are many ways of choos-
ing the input and performance weights. For instance, the input
weights can be chosen to reflect the size and dynamics of the
expected load disturbances and to account for PMU measure-
ment noise. Similarly, the performance weights can reflect the
allowed signal sizes and input usage. This is particularly useful
in H∞ control design since then performance specifications can
be considered together with the small-gain theorem, guarantee-
ing robust performance by ensuring that the H∞-norm of the
closed-loop is less than one. A convenient design procedure is
often to first design the controller by optimizing the H2-norm,
and then to assess robustness using the H∞-norm [27].

C. Feedback Limitations — Alternative Measurements

In this section we will consider H2 optimal feedback control
with alternative measurements. It will be shown that by using
WAMS or by substituting local phase angle measurement with

Fig. 15. Rotor angle differences and control input following a 350 MW dis-
turbance pulse. Transient rotor angle stability is improved using WAMS.

Fig. 16. Bode diagram visualizing the complementary filtering sensitivity with
local power flow measurement, y = PAC, and load disturbances d1 and d2 at
buses 7 and 9 respectively, as shown in Fig. 8. Compared to Fig. 10 we see
that measurement of ac power flow does not show the same filtering limitations
associated with local phase angle measurement.

local power flow or voltage measurements, the transient stability
issues associated with local phase angle measurements can be
avoided. Conclusions from the analysis in Section IV can, to
some extent, be extrapolated to power flow and voltage mea-
surements.

1) WAMS: System awareness can be improved by using
WAMS. Complementary measurements should be selected at
buses with good observability, and ideally at the other end
of the system, to provide as much information as possible.
To complement local phase angle measurement, one suitable
candidate is therefore the rotor speed ω1. Assume a 200 ms
communication delay. Using the H2 optimal control design
method in Section V-B2 the controller is tuned to achieve 10%
damping of the inter-area mode. As shown in, Fig. 15, the use
of WAMS improves the transient performance by reducing the
amplification of the first swing.

2) AC Power Flow y = PAC: Let the feedback controller be
an H2 optimal controller tuned to improve the damping to 10%
using measurement of ac power flow in one of the lines between
buses 8 and 9.

Since the power flow over the line depends on the angle
difference, θ9 − θ7, it is useful for determining the source of
the disturbance. This can be confirmed by studying the com-
plementary filtering sensitivity in Fig. 16. Therefore, as seen
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Fig. 17. Rotor angle differences and control input following a 350 MW
disturbance pulse. For the considered two-area system, feedback control using
ac power flow or local voltage measurement does not show the same issues with
transient rotor angle stability as feedback from local phase angle measurement.

in Fig. 17, power flow does not exhibit the same issues with
transient stability as local phase angle measurements. For this
reason, ac power flow would here be a better measurement
choice compared to phase angle measurements. For a more
complex system, however, this may not necessarily be the case
as observability will depend on the topology of the particular
system. For instance, the initial surge of power will always
be in the direction of the load disturbance. If measuring in a
shunt, e.g. the electric power of a synchronous machine, then
we may experience similar filtering limitations as with phase
angle measurements. Power flow also shows more sensitivity to
process noise. In Fig. 17, although the attenuation of the rotor
angle looks smooth, there is quite a bit of fluctuation in the input
signal due to the interaction with the local modes. To extend
the analysis, it will be interesting to consider a more detailed
network model.

3) Bus Voltage y = V9: Let the feedback controller be an
H2 optimal controller tuned to improve the damping to 10%
using measurement of local bus voltage V9. As seen in Fig. 17,
using local voltage measurement, the feedback controller effi-
ciently attenuates disturbances originating in either end of the
system.

Typically, voltage measurement is best used in combination
with reactive power control, e.g., from HVDC converters [7] or
FACTS [13], [17], but it could also be used when controlling ac-
tive power. Best observability of the inter-area mode is achieved
when measuring the voltage close to the electrical midpoint.
As seen in Fig. 17, POD control implemented using voltage
measurement is less sensitive to the location of active power load
disturbances. The reason for this is that the average speed mode is
not observable in the voltage. But there could be other dynamical
phenomena, for instance, involving reactive power disturbances
and short circuits faults that could exhibit similar first swing
stability issues. The classical machine model (4) used for the
analysis does not capture voltage dynamics. To properly extend
the analysis, a more detailed machine modeling is needed. It is
also worth noting that the use of voltage measurement can have
other drawbacks, not captured in this study. For instance, when
using voltage measurement in combination with reactive power
control, the residue angle is sensitive to load dynamics [12].
This can have consequences for the robustness of the control
design.

VI. CONCLUSION

Sensor feedback limitations for improving rotor angle stabil-
ity using feedback from local phase angle measurements have
been studied. For a linearized two-machine power system model
it was shown that, although arbitrarily good damping can be
achieved, the sensor feedback limitation dictates that damping
improvement must come at the cost of decreased transient per-
formance. Using a detailed power system model, it was shown
that this decrease in transient performance may result in transient
instability.

The aim of this work has been to introduce a new analysis
method to bridge the gap between small-signal analysis and the
study of fundamental performance limitations. In the transition
towards more converter-based renewable energy, the importance
of control is likely to become even more important than it is
today. More understanding of the fundamental limitations will
be useful when choosing the control architecture and when
designing control algorithms.

It was shown that transient stability can be improved by using
wide-area measurements. In our future work, we will study
how communication time-delays affect the potential benefit of
complementary wide-area measurements. It was also shown that
transient stability margin was improved for disturbances origi-
nating in the same end of the network. Future work will extend
this analysis to study how coordinated tuning of distributed
controllers can be used to improve POD without communication,
while still ensuring sufficient transient stability margins. In the
simulation study, it was also shown that transient stability could
be preserved by substituting phase angle measurement with
power flow or voltage measurements. At least in the considered
example. Future work will extend the analysis to involve voltage
dynamics and to consider a more general multi-machine system.
This allows for bus voltage measurements and a more accurate
representation of the ac power flow. Additionally, filtering lim-
itations associated with reactive power disturbances and short
circuit faults may also be considered.
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