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Computing Critical -Tuples in Power Networks
Kin Cheong Sou, Henrik Sandberg, and Karl Henrik Johansson

Abstract—In this paper the problem of finding the sparsest (i.e.,
minimum cardinality) critical -tuple including one arbitrarily
specified measurement is considered. The solution to this problem
can be used to identify weak points in the measurement set, or
aid the placement of new meters. The critical -tuple problem
is a combinatorial generalization of the critical measurement
calculation problem. Using topological network observability
results, this paper proposes an efficient and accurate approximate
solution procedure for the considered problem based on solving a
minimum-cut (Min-Cut) problem and enumerating all its optimal
solutions. It is also shown that the sparsest critical -tuple problem
can be formulated as a mixed integer linear programming (MILP)
problem. ThisMILP problem can be solved exactly using available
solvers such as CPLEX and Gurobi. A detailed numerical study
is presented to evaluate the efficiency and the accuracy of the
proposed Min-Cut and MILP calculations.

Index Terms—Combinatorial optimization, critical -tuples,
minimum cut, mixed integer linear programming, state estimation.

NOTATION

Subset of transmission lines whose removal
partitions the network into two disjoint parts.

Set of all transmission lines.

Graph of the power network.

Jacobian of the measurement function.

Submatrix of , consisting of the rows and
columns in the index sets and , respectively.

th row of matrix .

Complement of an index set .

Complement of a singleton set .

Large scalar constant treated as “infinity” in the
MILP procedure.

Number of measurements (rows of ).

Number of buses (columns of ).

Subset of buses (i.e., ).
is used to define a partition of the network.
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Node weights for bus .

Edge weights for transmission line .

Edge weights which also account for the bus
weights connected to . .

Set of all buses.

state vector (phase angles).

Cut capacity of . The sum of all weights of the
edges cut by the partition defined by .

Sum of all weights of the buses connected by
edges which are cut by the partition of .

Modified cut capacity, where the edge weights
are replaced by .

I. INTRODUCTION

A. Critical -Tuples

A modern SCADA/EMS system relies heavily on the state
estimator, which estimates the power network states (e.g.,

the phase angles of bus voltages) based on measurements such
as transmission line power flows, bus power injections and bus
voltages. An important question related to state estimation is
whether the network is observable or not; whether the states can
be uniquely determined based on the available measurements.
This is a central issue of network observability analysis (e.g.,
[1]–[9] and the references therein). While the measurements are
typically placed so that a power network is observable, there
exist weak points known as critical measurements. By defini-
tion, if a critical measurement is lost (e.g., failure of a meter),
then the network becomes unobservable (i.e., the states can no
longer be uniquely determined). The notion of critical measure-
ment also plays an important role in another vital power network
state estimation function, namely, bad data detection (e.g., [3],
[4], [10]–[12], and the references therein). Specifically, a bad
data detection scheme based on measurement residual cannot
identify whether a meter is faulty or not if the corresponding
measurement is critical. A generalization of the concept of crit-
ical measurement is a critical -tuple, where is any natural
number. A critical -tuple is a set of measurements such that
if all measurements in the set are lost then the network becomes
unobservable. However, losing any subset of measure-
ments would not result in the loss of observability. A critical
2-tuple is also referred to as a critical set, where bad data can
be detected but not identified (other terminologies include min-
imally dependent set or bad data group, e.g., [13]–[15]). Critical
-tuples of larger cardinalities are also of practical interest, as
will be explained later. How to compute them is the main topic
of this paper.
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While critical -tuple, network observability, and bad data
detection are closely related, the mathematical tools to analyze
them are different. While critical -tuples provide the mea-
surements to remove to render the network unobservable, the
topic of network observability is the opposite. They include
checking whether a network is observable or not, and in case
of an unobservable network which parts of it is still observable
(i.e., finding observable islands). Likewise, critical -tuple
computation and bad data detection are separate issues: Es-
sentially, the measurement residual based bad data detection
theory investigates what detection can be achieved beyond
the limitations imposed by critical measurements or critical
-tuples. These techniques are, consequently, not concerned
with finding the critical -tuples.
Techniques to identify critical 1-tuples (i.e., critical measure-

ments) and critical 2-tuples (i.e., critical sets) are widely known
(e.g., [3], [11], [13]–[16]). In [17] and [18], the calculation of
critical -tuples for is considered. However, the pro-
cedure in [18] is efficient only for finding critical -tuples of
small cardinalities (i.e., ), as will be explained and numer-
ically demonstrated later in this paper. The computation of crit-
ical -tuples is inherently computationally intensive, because
finding critical -tuples amounts to a combinatorial search, as
will be discussed in detail in this paper.

B. Problem Formulation and Its Motivation

The general setup of this paper is the standard state estima-
tion problem over a linearized DC power flow network [3], [4].
The particular problem considered is to find the sparsest (i.e.,
minimum cardinality) critical -tuples involving at least one ar-
bitrarily specified measurement. By parameterizing the sparsest
critical -tuple problem with the specified measurement, it is
possible to examine all weak points in the network and not just
the weakest point at the boundary of the network. The precise
description of the considered problem is as follows. Let be
the number of measurements in the power network, and be the
number of states (i.e., the phase angles of the bus voltage pha-
sors). It is assumed that . Let be the Jacobian
of the state-to-measurement function in a linearized model. De-
note as the submatrix of formed by including the
rows in an index set and the columns in an index set . Also
denote and as the complements of and , respectively.
Then according to, for instance [4, Theorem, p. 165], the mea-
surements in an index set form a critical -tuple if and only if

for any . Here is the index of an ar-
bitrary reference bus, and denotes the set of all indices except
. The sparsest critical -tuple problem for a specified measure-
ment can be written as

(1)

where denotes either the cardinality of a set or the
number of nonzero entries of a vector, depending on the input ar-
gument. Notice that (1) does not explicitly impose the condition

that cannot contain any strictly proper subsets whose removal
makes rank deficient. However, this condition is always sat-
isfied at optimality. Problem (1) requires a combinatorial search
of the rows whose removal makes the matrix rank deficient.
In general, no efficient algorithm is available to exactly solve
(1). However, specializing (1) to the case of power system state
estimation results in a significant solution efficiency gain be-
cause of the special structure of . The demonstration of this
is the main contributions of the paper. Problem (1) is motivated
from the following applications.
1) Identifying Measurements in Small Cardinality Critical
-Tuples: While not directly solved as an optimization
problem, (1) is addressed in [18] (Definition 1, even though
the term “critical set” in [18] has a different meaning than the
one here). For any given measurement set, [18] finds the mea-
surements such that the optimal objective value of (1) is less
than or equal to three. This information is used to determine
the set of additional measurements to be included, so that
the network becomes more robust to meter failures. Other,
but related, meter inclusion problems are also considered in
[19] and [20]. This paper, on the other hand, solves (1) for
all , regardless of the corresponding optimal objective value.
These include the measurements in the critical -tuples of
cardinalities less than or equal to three as in [18]. However,
the information of the sparsest critical -tuples of larger
cardinalities can be used for a measurement inclusion scheme
with a more stringent robustness requirement.
2) Planning of Measurement Sets: Instead of expanding a

pre-existing measurement set as in [18]–[20], it is possible to
obtain a cost effective yet meter failure robust measurement set
by removing appropriate measurements from the full set. The
solution to (1) with corresponding to the full measurement set
can provide insight into which measurements can be removed.
This measurement removal strategy has the advantage that it
does not assume any pre-existing measurement set which can
affect the final measurement set. In Section V-E a numerical
example is presented to demonstrate the potential of the above
measurement removal scheme.
3) Cyber-Security of Power Networks: Based on a result in

[21, Corollary 1, Section II-B], problem (1) is equivalent to an-
other cardinality minimization problem: (2) to be described in
Section II-B. Problem (2) arises from cyber-security analysis of
power networks (e.g., [21]–[26]). In particular, [24]–[26] ana-
lyze the vulnerability of each measurement using (2), where
a malicious attacker inflicts “bad data” in a critical -tuple. In
this case, sparsest critical -tuples of larger cardinalities (i.e.,
) are of interest because the “bad data” is intentional instead

of occurring by chance. The solution of (2) can be used to iden-
tify the weak points in the measurement set in the cyber-security
setting.
Finally, note that for complete safeguard against bad data

or cyber-attack, the set of all critical -tuples [in addition to
the sparsest ones found by solving (1)] should be computed.
However, this would require an enumeration which is not
computationally tractable for realistic applications. The cal-
culation of the sparsest critical -tuples in (1) can identify
the network vulnerabilities, subject to practical computation
constraints.
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C. Contributions and Related Work

This paper presents two methods to solve (1). The first
method is efficient but suboptimal. It utilizes a sufficient
condition for critical -tuples candidates in [2] and [21]. This
condition is topological. In the setting of this paper, the con-
dition states that for any set of transmission lines whose cut
would separate the network into two disjoint parts, removing
all line and injection measurements associated with these trans-
mission lines would make the network unobservable. Using
this sufficient condition, a restricted version of the sparsest
critical -tuple problem in (1) can be stated as follows. If
the specified measurement is a line power flow, then the
corresponding transmission line must be cut. On the other
hand, if the specified measurement is a power injection at a
bus, then one of the incident transmission lines must be cut.
Then the rest of the transmission lines are cut (or not cut) in
order to minimize the number of measurements removed, while
dividing the network into two parts. This cut problem, while
being a restricted version of (1), is still nontrivial. However,
if the injection measurements are not directly counted towards
the optimization objective (to be made precise later), then this
modified problem becomes a classical minimum cut problem
(Min-Cut) (e.g., [27]). Min-Cut admits scalable solution algo-
rithms (e.g., [28], [29]). The solution to the Min-Cut problem
can be used as a suboptimal solution to (1). In fact, due to
[30]–[32], it is possible to efficiently enumerate all optimal
solutions to the Min-Cut problem and pick the best available
suboptimal solutions to (1). This is the idea of the first method
of this paper.
Two previous results are related to the first proposed method.

As mentioned before, [18] addresses (1). In [18], a (non-unique)
set of measurements is chosen to be the basic measurements.
Then the critical -tuples containing exactly one basic mea-
surement can be identified using a matrix factorization approach
generalizing the one in [3, Ch. 4.5.4]. To find critical -tuples
containing more than one basic measurements, a recursive ap-
plication of the matrix factorization approach for finding crit-
ical -tuples with only one basic measurement is required. For
larger , the recursion becomes more expensive as there are
possible combinations of basic measurements to be included
in the critical -tuples, for different . To solve (1) for all
possible , in total applications of the matrix factor-
ization procedure are required. The computation effort is expo-
nential in terms of network size (i.e., the number of buses ).
In summary, [18] is accurate but the procedure is efficient only
for a sparse measurement set (so that critical -tuples of large
cardinalities will not be encountered). The proposed method in
this paper, on the other hand, is efficient for solving (1) irrespec-
tive of the cardinality of the critical -tuple, because the main
computation is solving a Min-Cut problem. However, as it will
be numerically demonstrated in Section V, the accuracy of the
proposed method suffers when the measurement set becomes
sparse. In this sense, [18] and the proposed method are com-
plementary to each other. Another closely related work is [21],
which considers a variant of (1). In this variant, the sparsest crit-
ical -tuple also contains at least one measurement. However,
instead of being user-specified, this measurement is chosen by

the optimization to find the sparsest non-empty critical -tuple.
Solving (1) for all leads to the solution to the problem in [21]
but the converse is not true. Most importantly, [21] does not
pose their problem as (1) defined in this paper. The problem in
[21] is posed as a submodular function minimization problem
[33], [34].While theoretically polynomial-time algorithms exist
for solving this problem [notably the ellipsoid method [35] and
more recently [36] of which the complexity is ],
no practically efficient algorithms for this class of problem have
been observed, to the best of the authors’ knowledge. On the
other hand, the Min-Cut problem in the proposed method can be
solved efficiently both in theory and in practice. For example,
the complexity of [28] is . The practical ef-
ficiency will be demonstrated by the numerical experiment later
in this paper.
The second proposed method, based on mixed integer linear

programming (MILP), is exact under a mild assumption, but it is
less time-efficient. The method is based on the equivalence be-
tween (1) and (2), to be described in Section II-B. This means
that (1) can be solved by instead solving (2). Previous attempts
to approximately solve (2) include, for instance, [22] describing
an attempt to use matching pursuit (e.g., [37]), and [38] about
the application of LASSO [39]. The MILP formulation, based
on [26], does not admit any polynomial time solution algorithms
in general. However, there exist good MILP solvers such as
CPLEX [40] or Gurobi [41]. The major novelty of this second
contribution of the paper is the combination of [21] and [26].

D. Organization of the Paper

The rest of the paper is organized as follows. In Section II,
three known theorems from [2] and [21] are reviewed, and
a corollary is derived. These theorems form the theoretical
foundation of this paper. Section II also reviews the Min-Cut
problem, which is an important part of the proposed algorithm.
Section III describes the first contribution of the paper: a
Min-Cut based algorithm which makes use of the topological
characterization of network observability to find the sparsest
critical -tuples. In Section IV, the second contribution, the
exact MILP formulation, is derived with some properties
discussed. In Section V, some case studies are presented to
evaluate the performance of the proposed algorithms. Finally
Section VI concludes the paper.

II. TECHNICAL BACKGROUND

This section reviews some known results needed for the
derivation of the contributions of this paper. Theorems adopted
from known sources are stated without proof.

A. Topological Sufficient Condition for Critical -Tuple
Candidates

The first statement is adopted from [2, Theorem 5]. It pro-
vides a sufficient and necessary condition for network observ-
ability in terms of spanning trees, which are loop-free connected
subgraphs of the power network retaining all buses but subsets
of the transmission lines.
Theorem 1: A power network is observable if and only if

there exists a spanning tree with an assignment function, map-
ping from the set of the transmission lines in the spanning tree
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to the set of line power flow and injection measurements of the
original power network. The assignment function satisfies the
following properties:
1) Two distinct spanning tree transmission lines map to two
distinct measurements.

2) If the line power flow of a spanning tree transmission line
is measured, then this transmission line maps to its own
line measurement under the assignment function.

3) If the line power flow of a spanning tree transmission line
is not measured, then the injection measurement of one of
the two terminal buses of this transmission line is the value
of the assignment function.

The following theorem, which is the main theoretical basis
of this paper, is adopted from [21, Theorem 2]. It states that if
an appropriate choice of measurements are removed, then it be-
comes impossible to form any spanning tree with an assignment
function defined as in Theorem 1. Hence, the statement provides
a sufficient condition for finding candidates for critical -tuples.
Theorem 2: Let be any set of transmission lines whose cut

would divide the power network into two disjoint parts. Then
removing all line power flow measurements in and all power
injection measurements of the buses connected by the lines in
would render the power network unobservable.
Remark 1: Any spanning tree of the network contains at least

one transmission line in . However, under the measurement
removal scheme in Theorem 2, it is impossible to define any as-
signment function in Theorem 1 for this line. Hence the network
becomes unobservable.
Remark 2: While Theorem 2 provides the sets of measure-

ments whose removal would render the network unobservable,
these sets are not necessarily critical -tuples since their subsets
might also render the network unobservable.
Remark 3: The original version of Theorem 2, as in [21],

is more general in that it allows the situations in which di-
vides the network into more than two disjoint parts. However,
the method proposed in this paper cannot exploit the additional
generality.

B. Sparsest Critical -Tuple Problem as a Cardinality
Minimization Problem

The following cardinality minimization problem has been
studied in power network cyber-security (e.g., [22], [25]):

(2)

The following theorem, adopted from [21, Theorem 1], estab-
lishes that the sparsest critical -tuple problem in (1) is equiva-
lent to (2).
Theorem 3: An index set is a feasible solution to (1) if

and only if there exists a feasible solution in (2) such that
whenever .

Theorem 3 implies the following statement (proved in the
Appendix) establishing the equivalence between (1) and (2).
Corollary 1: The optimization problems in (1) and (2) are

equivalent in that is an optimal solution to (2) if and only if
is an optimal solution to (1).

C. Min-Cut Problem on an Undirected Graph

Consider an undirected graph , where and
denote the set of nodes and the set of edges, respectively, and
let each edge be weighted with a scalar . Let

be any subset of . Define the cut capacity function

(3)

For any two distinct nodes and , the Min-Cut problem
seeks a partition of into such that and are
in different partitions, and the cut capacity is minimized:

(4)

For more detail regarding the Min-Cut problem in (4), see for
example [27]. For efficient solution algorithms, see for example
[28] and [29]. The Min-Cut problem is a subproblem to be
solved in the proposed critical -tuple calculation algorithm to
be described in the next section.

III. APPROXIMATE CRITICAL -TUPLE CALCULATION
VIA MIN-CUT OPTIMIZATION

A. Graph-Oriented Optimization Problem Related to (1)

The sufficient condition in Theorem 2 provides a topolog-
ical characterization of a subset of the solution candidates of
the sparsest critical -tuple problem in (1). This characteriza-
tion leads to a graph-oriented optimization problem which is
related to, but not exactly the same as, (1). The development is
as follows. Denote the power network as , where
is the set of all buses and is the set of all transmission lines.
Then the set in Theorem 2, whose cut would partition , can
be characterized by a bus subset such that

(5)

In reality, it is also required that both subgraphs containing
and are connected. However, this condition is automatically
satisfied at optimality of the proposed problem. To describe
the number of removed measurements associated with (i.e.,
) according to Theorem 2, the following definitions are re-

quired. Let be the number of meters on a transmission line
, and be the number of injection flow meters on a

bus . Then associated with , the number of line power
flowmeasurements to remove is defined in (3). In addition,
the number of power injection measurements to remove can be
defined as
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Hence, associated with , the total number of measurements
to be removed is . Lastly, the constraint in (1)
that one specified measurement must be included in the critical
-tuple should be enforced. For simplicity of discussion, for the
moment it is assumed that the specified measurement is a line
power flow. The case of power injection will be handled in the
end of this section. Now suppose the specified line power flow
meter is on transmission line , then the corresponding
topological constraint is that and . In summary, the
graph oriented optimization problem, set up as an approxima-
tion to (1), is described as

(6)

Strictly speaking, an optimal solution to (6) is a set of buses,
with the corresponding set of “cut” transmission lines defined
in (5). However, it is more convenient to treat the optimal solu-
tion as the corresponding set of measurements to be removed,
as prescribed by Theorem 2. Solving (6) yields a sparse set
measurements whose removal makes the network unobservable.
The numerical experiment in Section V will demonstrate the
usefulness of (6). However, it should be emphasized that an op-
timal solution to (6) is not necessarily a sparsest critical -tuple
in (1). The reason is twofold. First, since Theorem 2 is a suf-
ficient condition, (6) searches only through a subset of the sets
of measurements whose removal would render the network un-
observable. Second, as pointed out in Remark 2, an optimal so-
lution to (6) does not even need to be a critical -tuple. These
restrictions will be demonstrated by the numerical experiment
in Section V.

B. Min-Cut Approximate Solution Procedure for (1)

In order to apply the standard Min-Cut algorithm to solve (6),
it is proposed in this paper that in the objective function
is indirectly accounted for by solving the following Min-Cut
problem:

(7)

where is defined according to (3) with modified edge
weights for all , with ,
and defined in Section III-A. corresponds to a modified
metering scenario where an injection meter of a bus is moved
to all incident transmission line(s). However, this modification
can lead to overcounting of injection meters as opposed to
solving (6). See Fig. 1 for an illustration. Since (6) and (7) have
the same constraint, the optimal solution to (7) is a suboptimal
solution to (6). In addition, by the results in [30]–[32], it is
possible to efficiently enumerate all optimal solutions to the
Min-Cut problem in (7). Hence, the best available suboptimal
solution to (6) can be chosen. However, it is emphasized
that the strategy of solving (7) can only provide a sparse set
of measurements including , and the removal of these

Fig. 1. Illustration of the modified cut capacity function. Left: Metering sce-
nario in (6). Right: Transmission line metering scenario pertaining to in
(7). The number in the parenthesis indicates the number of times a meter is re-
peated. If both 1–2 and 1–3 are cut, the true cost is 4. However,
the approximate cost is 5.

measurements makes the network unobservable. From (1)–(6)
and then to (7) these two transitions induce their respective
limitations. As it was explained earlier, (1) and (6) are two
different optimization problems. Moreover, solving (7) is not
equivalent to solving (6), as illustrated in Fig. 1. The quality
of approximately solving (6) via (7) depends on the ratio
between the number of transmission line measurements and
bus injection measurements. In the extreme case where there is
no injection measurement, (7) is the same as (6). The accuracy
and efficiency of the proposed Min-Cut procedure will be
numerically assessed in Section V. The following algorithm
summarizes the Min-Cut based approximate solution procedure
for (1), where the specified measurement is a line power flow
on a transmission line.

Algorithm 1: Min-Cut procedure for transmission line case:

Step 1) In the power network graph , define
arc weights as the number of meters on a
transmission line , plus the number of
meters on buses and .

Step 2) Suppose the specified transmission line is
. Setup a Min-Cut problem as in

(7). Solve (7) using algorithms such as [28] and
[29] for an optimal solution, which is a set of
“cut” transmission lines. The line power flows
measurements and injections measurements
at the terminal buses constitute a suboptimal
solution to the sparest critical -tuple problem
in (1).

Step 3) Use the results in [30]–[32] to enumerate all
optimal solutions to (7). Pick the best suboptimal
solution to (1) among all optimal solutions to (7).

Even the best available suboptimal solution to (1) might not be
a critical -tuple in that there might be a strictly proper subset
whose removal makes the network unobservable. To make sure
a critical -tuple is obtained, an enumeration is required to see
which measurements in the suboptimal solution can be elimi-
nated. For example, this can be achieved using Corollary 1 and
the exact algorithm to be described in Section IV. Since the sub-
optimal solution typically contains very few measurements, the
enumeration is not expensive.
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In the case where the specified measurement in (1) is
a power injection on a bus, the following procedure can be
applied:

Algorithm 2: Min-Cut procedure for bus injection case:

Step 1) Let be the power network graph
and let be the bus with the considered
injection measurement. For each such that

, apply Algorithm 1 on transmission
line .

Step 2) Among all solutions provided by Algorithm 1
applied to , pick the one with the minimum
cost in (1) as the best available solution to (1).

The numerical examples in Section V illustrate the performance
of these algorithms.

IV. EXACT SPARSEST CRITICAL -TUPLE PROBLEM
FORMULATION AS A MILP PROBLEM

Theorem 3 and Corollary 1 state that the sparsest critical
-tuple problem in (1) can be solved by solving the cardinality
minimization problem in (2). Problem (2) can be formulated as
a MILP problem, as mentioned in [26]. The key to the formula-
tion is the counting of the cardinality of vector . To achieve
this, an additional binary decision vector and a
scalar constant are needed. If is large enough, then
the constraint

provides a cardinality countingmechanism via . If
, then . If , then can be either 0 or
1. However, since (2) seeks to minimize the cardinality of ,
as it will be clear shortly, must be zero at optimality. The
constant must be chosen large enough so that it is larger than

for at least one optimal solution of (2).
In the special case where all line power flows are measured, the
method in [26] can be used to compute . In other cases, the
general guideline is that should be as large as possible, before
the optimization solver complains about numerical difficulties.
Suppose is a typical state vector under normal operation, then

with some can be a reason-
able guess for . The choice of is the only heuristic part of
the otherwise exact sparsest critical -tuple problem formula-
tion. The MILP formulation of (2) is as follows:

(8)

Note that since the objective function is , at optimality
for any such that , the corresponding must
be zero. Hence, . Finally, notice that if the

TABLE I
COMPARISON BETWEEN THE PROCEDURE IN [18], MIN-CUT,

AND MILP FOR THE IEEE 14-BUS SYSTEM

measurements in a certain set are considered very reliable and
are immune from faults, then (8) can be modified accordingly
by adding the constraint for all .

V. CASE STUDY

Numerical experiment results are demonstrated in this sec-
tion. All computations are performed on a laptop with an Intel
Core i5 2.53-GHzCPU and 4 GB ofmemory. AllMin-Cut prob-
lems are solved inMATLAB using [42], which calls the libraries
from [43]. All MILP problems are solved in MATLAB using
Gurobi [41] via Gurobi Mex [44].

A. Comparison With the Procedure in [18]

First, problem (1), for each possible specified measurement
, is solved using three methods. The first method is the recur-
sive critical -tuple calculation procedure in [18] implemented
by the authors. As in [18], only critical -tuples containing three
basic measurements are sought. The second method is the pro-
posed Min-Cut procedure in Algorithm 1 and Algorithm 2 in
Section III. The third method is the MILP procedure (with
) in Section IV. The solution of the MILP procedure is used

as a reference for accuracy. The IEEE 14-bus benchmark system
is analyzed, with two different measurement sets. The first mea-
surement set is from [18, Section IV, measurement set of Sce-
nario 1], containing measurements from 9 out of 14 buses and 6
out of 19 transmission lines. The second measurement set con-
tains all bus and transmission line measurements, which may
be of interest for meter placement. For each , the procedure in
[18] (with three basic measurements) and Min-Cut might only
provide an overestimate of the cardinality of the sparsest critical
-tuple. Table I lists the percentages of with overestimation,
the average overestimation (over all with overestimation) and
the average relative overestimation (relative to the cardinality
of the corresponding sparsest critical -tuple).
Table I confirms the statement in Section I-C that the pro-

cedure in [18] and Min-Cut should be used in different mea-
surement settings. Reference [18] performs better in a sparse
measurement set, while Min-Cut is a better choice in a dense
measurement set.

B. Effect of the Proportion of Line Power Flow Measurements
on the Min-Cut Procedure

As explained in Section III, the Min-Cut procedure for (1)
achieves computation efficiency by approximately counting the
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TABLE II
ENSEMBLE MEAN OF THE SOLVE TIME AND ERROR STATISTICS FOR THE CASE STUDY IN SECTION V-B

TABLE III
ENSEMBLE MEAN OF THE SOLVE TIME AND ERROR STATISTICS FOR THE CASE STUDY IN SECTION V-C WITH VARYING INJECTION MEASUREMENT PROPORTION

injection measurements. Hence, the relative ratio between the
line power flow and bus injection measurements affects the ap-
proximation quality of the Min-Cut procedure. In this subsec-
tion, the relationship between approximation quality and the
proportion of transmission line measurements in the network is
considered.
The IEEE 14-bus, 57-bus, and 118-bus benchmark systems

are considered. The network topologies are from MATPOWER
[45]. For each system, 11 different measurement sets are con-
sidered. Each measurement set contains all injection measure-
ments, but the proportions of removed line power flow mea-
surements increase as 0%, 10%, , 100%. The removed line
measurements are randomly chosen. A study similar to the one
in Section V-A is performed, testing only the proposed Min-Cut
and MILP procedures. The above study can be considered as
“one sample” of a random experiment involving a sequence of
11 measurement sets for each benchmark system. The random-
ness stems from choice of the removed line flow measurements.
To examine the typical phenomena, the above random experi-
ment is repeated five times. Table II shows the mean value (over
5 experiments) of the performance and error statistics similar to
those in Table I.
While not seen from Table II, the computation time for

Min-Cut remains roughly the same. The increase in solve time
ratio (up to about 0.36 when 100% of line measurements are
removed) is due to the decrease in solve time of the MILP
procedure. In general, Min-Cut is more efficient than MILP. In
terms of approximation error, for up to 90% of line measure-
ment removal, Min-Cut results in at most 7% of measurements
whose sparsest critical -tuple cardinalities are overestimated
(the number is down to 3% for up to 40% of line measurement
removal). On average, the overestimation is by about 1 mea-

surement with the maximum observed in the experiment being
3 measurements (not shown in Table II). Finally, the average
relative overestimation is at worst 35% (e.g., overestimation by
1 measurement for a critical 3-tuple).

C. Effect of the Proportion of Injection Measurements and
Arbitrary Measurements on the Min-Cut Procedure

In this subsection, the experiment in Section V-B is repeated
for the 118-bus benchmark system with a difference in the defi-
nition of the measurement sets. Two cases are considered. In the
first case, each measurement set contains all line power flow
measurements and different proportions of the injection mea-
surements are randomly removed. In the second case, different
proportions of arbitrary measurements (injection or line) are
randomly removed in a way that the resulted network is still
observable. Table III lists the relevant statistics for the first case
and suggests (from the fourth row) that the Min-Cut procedure
is more accurate when the transmission lines are more densely
metered. On the other hand, Table IV lists the statistics for the
second case. In this case, at most
% of the measurements can be removed before the network

become unobservable. However, random removal of 40% of
the measurements typically results in a unobservable network,
and hence the corresponding result is not shown in Table IV.
Table IV confirms again that the Min-Cut procedure is efficient
and accurate for relatively dense measurement sets.

D. Time Efficiency of Min-Cut and MILP for Large Networks

This numerical study investigates the possible advantage of
the proposed Min-Cut procedure for the sparsest critical -tuple
analysis for larger scale power networks. The networks con-
sidered are the IEEE 118-bus, IEEE 300-bus, and the Polish
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TABLE IV
ENSEMBLE MEAN OF THE SOLVE TIME AND ERROR STATISTICS FOR THE CASE STUDY IN SECTION V-C WITH VARYING ARBITRARY MEASUREMENT PROPORTION

TABLE V
CPU TIMES FOR SOLVING ALL INSTANCES OF (1)

IN THE 118-, 300-, AND 2383-BUS SYSTEMS

2383-bus systems. The topologies of these networks are ob-
tained using MATPOWER [45]. On each transmission line of
the benchmark systems, there are two line power flow meters
(one from each terminal bus). In addition, all power injections
are measured. For each of the benchmark system, problem (1)
is solved using the Min-Cut procedure for all possible specified
measurement . For the 118- and 300-bus cases, the Min-Cut
procedure is experimentally found to be exact, compared with
solving the MILP formulation in (8). For the 2383-bus case,
only 14 instances of (8) are solved. For all these 14 instances,
Min-Cut also provides the correct estimates. The computation
times for using the proposedMin-Cut procedure and solving (8)
are listed in Table V. This numerical study again assures the ef-
ficiency and accuracy of the proposed Min-Cut procedure in the
case when all transmission lines and buses are metered.

E. Using Critical -Tuple Information for Meter Placement

While not the main focus of this paper, a possible use of
the critical -tuple information in (1) is for meter placement.
Problem (1) is solved for all specified measurement for the
IEEE 6-bus benchmark system (see Fig. 2). It is assumed that the
network is fullymetered (with 6 injection and 11 line power flow
measurements). The Min-Cut procedure (i.e., Algorithm 1 and
Algorithm 2) is used to solve (1). In total, 17 critical -tuples are
found. Then for each measurement , Fig. 3 shows the number
of critical -tuples containing . However, note that by solving
(1) for all specified measurement , all sparsest critical -tuples
are not found. Hence, Fig. 3 only shows the lower bounds for
the true number of critical -tuples containing . Fig. 3 indi-
cates that measurement 12 is probably not important (as far as
network observability is concerned), because only one critical
-tuple contains it and none of the other 16 critical -tuples will
be affected by the removal of measurement 12. This is consis-
tent with the network topology in Fig. 2, since measurement 12
is the line power flow measurement between bus 2 and bus 5
(i.e., the two buses with the largest degree). On the other hand,
Fig. 3 suggests that measurements 2 and 5 (i.e., power injec-
tions at buses 2 and 5) are definitely important because they are
involved in many critical -tuples. This is again consistent with
the topology in Fig. 2 since each of these injection measure-
ments can substitute one of the five line measurements in case
any one of them fails. Finally, note that the same analysis here

Fig. 2. IEEE 6-bus system.

Fig. 3. Number of critical -tuples containing any specific measurement.

can be carried out for larger scale networks where it becomes
less obvious from the topology which measurements are impor-
tant or unimportant.

VI. CONCLUSION

In conclusion, a version of the sparsest critical -tuple
problem is considered. The sparsest critical -tuple is sought
for one arbitrarily specified measurement. It is possible to
identify the weak points in the power network by listing all
measurements which might form critical -tuples with small
cardinality, even though this is short of a complete enumeration
of all possible sparsest critical -tuples. This paper demon-
strates that the studied sparsest critical -tuple problem can be
formulated as a MILP problem so that powerful MILP solvers
such as CPLEX and Gurobi can be utilized. On the other hand,
by using topological network observability results in [2] and
[21], a Min-Cut based approximate solution procedure can be
derived. The numerical experiment in this paper reveals that the
Min-Cut procedure is highly accurate and efficient when there
are a significant number of line power flow measurements in
the power network. Consequently, Min-Cut should be the first
method to attempt (over MILP) in this scenario.
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APPENDIX

Proof of Corollary 1: Suppose is an optimal solution to
(2) and is such that if and only if .
Then Theorem 3 states that is a feasible solution to (1) with
the objective value . Now suppose
is not optimal and there exists another feasible solution of
(1) such that . Then Theorem 3 states that
there exists , feasible in (2), such that

. This contradicts the assumption that
is an optimal solution to (2). Hence, does not exist and is
an optimal solution to (1). To establish the converse, suppose
is an optimal solution to (1). Then Theorem 3 states that there
exists feasible to (2) such that . In
fact, and is optimal to (2). If this is
not true, Theorem 3 implies that would not be optimal.
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